Search results for: uncertain lead times and processing times
121 Additional Opportunities of Forensic Medical Identification of Dead Bodies of Unkown Persons
Authors: Saule Mussabekova
Abstract:
A number of chemical elements widely presented in the nature is seldom met in people and vice versa. This is a peculiarity of accumulation of elements in the body, and their selective use regardless of widely changed parameters of external environment. Microelemental identification of human hair and particularly dead body is a new step in the development of modern forensic medicine which needs reliable criteria while identifying the person. In the condition of technology-related pressing of large industrial cities for many years and specific for each region multiple-factor toxic effect from many industrial enterprises it’s important to assess actuality and the role of researches of human hair while assessing degree of deposition with specific pollution. Hair is highly sensitive biological indicator and allows to assess ecological situation, to perform regionalism of large territories of geological and chemical methods. Besides, monitoring of concentrations of chemical elements in the regions of Kazakhstan gives opportunity to use these data while performing forensic medical identification of dead bodies of unknown persons. Methods based on identification of chemical composition of hair with further computer processing allowed to compare received data with average values for the sex, age, and to reveal causally significant deviations. It gives an opportunity preliminary to suppose the region of residence of the person, having concentrated actions of policy for search of people who are unaccounted for. It also allows to perform purposeful legal actions for its further identification having created more optimal and strictly individual scheme of personal identity. Hair is the most suitable material for forensic researches as it has such advances as long term storage properties with no time limitations and specific equipment. Besides, quantitative analysis of micro elements is well correlated with level of pollution of the environment, reflects professional diseases and with pinpoint accuracy helps not only to diagnose region of temporary residence of the person but to establish regions of his migration as well. Peculiarities of elemental composition of human hair have been established regardless of age and sex of persons residing on definite territories of Kazakhstan. Data regarding average content of 29 chemical elements in hair of population in different regions of Kazakhstan have been systemized. Coefficients of concentration of studies elements in hair relative to average values around the region have been calculated for each region. Groups of regions with specific spectrum of elements have been emphasized; these elements are accumulated in hair in quantities exceeding average indexes. Our results have showed significant differences in concentrations of chemical elements for studies groups and showed that population of Kazakhstan is exposed to different toxic substances. It depends on emissions to atmosphere from industrial enterprises dominating in each separate region. Performed researches have showed that obtained elemental composition of human hair residing in different regions of Kazakhstan reflects technogenic spectrum of elements.Keywords: analysis of elemental composition of hair, forensic medical research of hair, identification of unknown dead bodies, microelements
Procedia PDF Downloads 142120 Relationship Between Brain Entropy Patterns Estimated by Resting State fMRI and Child Behaviour
Authors: Sonia Boscenco, Zihan Wang, Euclides José de Mendoça Filho, João Paulo Hoppe, Irina Pokhvisneva, Geoffrey B.C. Hall, Michael J. Meaney, Patricia Pelufo Silveira
Abstract:
Entropy can be described as a measure of the number of states of a system, and when used in the context of physiological time-based signals, it serves as a measure of complexity. In functional connectivity data, entropy can account for the moment-to-moment variability that is neglected in traditional functional magnetic resonance imaging (fMRI) analyses. While brain fMRI resting state entropy has been associated with some pathological conditions like schizophrenia, no investigations have explored the association between brain entropy measures and individual differences in child behavior in healthy children. We describe a novel exploratory approach to evaluate brain fMRI resting state data in two child cohorts, and MAVAN (N=54, 4.5 years, 48% males) and GUSTO (N = 206, 4.5 years, 48% males) and its associations to child behavior, that can be used in future research in the context of child exposures and long-term health. Following rs-fMRI data pre-processing and Shannon entropy calculation across 32 network regions of interest to acquire 496 unique functional connections, partial correlation coefficient analysis adjusted for sex was performed to identify associations between entropy data and Strengths and Difficulties questionnaire in MAVAN and Child Behavior Checklist domains in GUSTO. Significance was set at p < 0.01, and we found eight significant associations in GUSTO. Negative associations were found between two frontoparietal regions and cerebellar posterior and oppositional defiant problems, (r = -0.212, p = 0.006) and (r = -0.200, p = 0.009). Positive associations were identified between somatic complaints and four default mode connections: salience insula (r = 0.202, p < 0.01), dorsal attention intraparietal sulcus (r = 0.231, p = 0.003), language inferior frontal gyrus (r = 0.207, p = 0.008) and language posterior superior temporal gyrus (r = 0.210, p = 0.008). Positive associations were also found between insula and frontoparietal connection and attention deficit / hyperactivity problems (r = 0.200, p < 0.01), and insula – default mode connection and pervasive developmental problems (r = 0.210, p = 0.007). In MAVAN, ten significant associations were identified. Two positive associations were found = with prosocial scores: the salience prefrontal cortex and dorsal attention connection (r = 0.474, p = 0.005) and the salience supramarginal gyrus and dorsal attention intraparietal sulcus (r = 0.447, p = 0.008). The insula and prefrontal connection were negatively associated with peer problems (r = -0.437, p < 0.01). Conduct problems were negatively associated with six separate connections, the left salience insula and right salience insula (r = -0.449, p = 0.008), left salience insula and right salience supramarginal gyrus (r = -0.512, p = 0.002), the default mode and visual network (r = -0.444, p = 0.009), dorsal attention and language network (r = -0.490, p = 0.003), and default mode and posterior parietal cortex (r = -0.546, p = 0.001). Entropy measures of resting state functional connectivity can be used to identify individual differences in brain function that are correlated with variation in behavioral problems in healthy children. Further studies applying this marker into the context of environmental exposures are warranted.Keywords: child behaviour, functional connectivity, imaging, Shannon entropy
Procedia PDF Downloads 202119 Membrane Technologies for Obtaining Bioactive Fractions from Blood Main Protein: An Exploratory Study for Industrial Application
Authors: Fatima Arrutia, Francisco Amador Riera
Abstract:
The meat industry generates large volumes of blood as a result of meat processing. Several industrial procedures have been implemented in order to treat this by-product, but are focused on the production of low-value products, and in many cases, blood is simply discarded as waste. Besides, in addition to economic interests, there is an environmental concern due to bloodborne pathogens and other chemical contaminants found in blood. Consequently, there is a dire need to find extensive uses for blood that can be both applicable to industrial scale and able to yield high value-added products. Blood has been recognized as an important source of protein. The main blood serum protein in mammals is serum albumin. One of the top trends in food market is functional foods. Among them, bioactive peptides can be obtained from protein sources by microbiological fermentation or enzymatic and chemical hydrolysis. Bioactive peptides are short amino acid sequences that can have a positive impact on health when administered. The main drawback for bioactive peptide production is the high cost of the isolation, purification and characterization techniques (such as chromatography and mass spectrometry) that make unaffordable the scale-up. On the other hand, membrane technologies are very suitable to apply to the industry because they offer a very easy scale-up and are low-cost technologies, compared to other traditional separation methods. In this work, the possibility of obtaining bioactive peptide fractions from serum albumin by means of a simple procedure of only 2 steps (hydrolysis and membrane filtration) was evaluated, as an exploratory study for possible industrial application. The methodology used in this work was, firstly, a tryptic hydrolysis of serum albumin in order to release the peptides from the protein. The protein was previously subjected to a thermal treatment in order to enhance the enzyme cleavage and thus the peptide yield. Then, the obtained hydrolysate was filtered through a nanofiltration/ultrafiltration flat rig at three different pH values with two different membrane materials, so as to compare membrane performance. The corresponding permeates were analyzed by liquid chromatography-tandem mass spectrometry technology in order to obtain the peptide sequences present in each permeate. Finally, different concentrations of every permeate were evaluated for their in vitro antihypertensive and antioxidant activities though ACE-inhibition and DPPH radical scavenging tests. The hydrolysis process with the previous thermal treatment allowed achieving a degree of hydrolysis of the 49.66% of the maximum possible. It was found that peptides were best transmitted to the permeate stream at pH values that corresponded to their isoelectric points. Best selectivity between peptide groups was achieved at basic pH values. Differences in peptide content were found between membranes and also between pH values for the same membrane. The antioxidant activity of all permeates was high compared with the control only for the highest dose. However, antihypertensive activity was best for intermediate concentrations, rather than higher or lower doses. Therefore, although differences between them, all permeates were promising regarding antihypertensive and antioxidant properties.Keywords: bioactive peptides, bovine serum albumin, hydrolysis, membrane filtration
Procedia PDF Downloads 200118 Development of an Artificial Neural Network to Measure Science Literacy Leveraging Neuroscience
Authors: Amanda Kavner, Richard Lamb
Abstract:
Faster growth in science and technology of other nations may make staying globally competitive more difficult without shifting focus on how science is taught in US classes. An integral part of learning science involves visual and spatial thinking since complex, and real-world phenomena are often expressed in visual, symbolic, and concrete modes. The primary barrier to spatial thinking and visual literacy in Science, Technology, Engineering, and Math (STEM) fields is representational competence, which includes the ability to generate, transform, analyze and explain representations, as opposed to generic spatial ability. Although the relationship is known between the foundational visual literacy and the domain-specific science literacy, science literacy as a function of science learning is still not well understood. Moreover, the need for a more reliable measure is necessary to design resources which enhance the fundamental visuospatial cognitive processes behind scientific literacy. To support the improvement of students’ representational competence, first visualization skills necessary to process these science representations needed to be identified, which necessitates the development of an instrument to quantitatively measure visual literacy. With such a measure, schools, teachers, and curriculum designers can target the individual skills necessary to improve students’ visual literacy, thereby increasing science achievement. This project details the development of an artificial neural network capable of measuring science literacy using functional Near-Infrared Spectroscopy (fNIR) data. This data was previously collected by Project LENS standing for Leveraging Expertise in Neurotechnologies, a Science of Learning Collaborative Network (SL-CN) of scholars of STEM Education from three US universities (NSF award 1540888), utilizing mental rotation tasks, to assess student visual literacy. Hemodynamic response data from fNIRsoft was exported as an Excel file, with 80 of both 2D Wedge and Dash models (dash) and 3D Stick and Ball models (BL). Complexity data were in an Excel workbook separated by the participant (ID), containing information for both types of tasks. After changing strings to numbers for analysis, spreadsheets with measurement data and complexity data were uploaded to RapidMiner’s TurboPrep and merged. Using RapidMiner Studio, a Gradient Boosted Trees artificial neural network (ANN) consisting of 140 trees with a maximum depth of 7 branches was developed, and 99.7% of the ANN predictions are accurate. The ANN determined the biggest predictors to a successful mental rotation are the individual problem number, the response time and fNIR optode #16, located along the right prefrontal cortex important in processing visuospatial working memory and episodic memory retrieval; both vital for science literacy. With an unbiased measurement of science literacy provided by psychophysiological measurements with an ANN for analysis, educators and curriculum designers will be able to create targeted classroom resources to help improve student visuospatial literacy, therefore improving science literacy.Keywords: artificial intelligence, artificial neural network, machine learning, science literacy, neuroscience
Procedia PDF Downloads 119117 An Analytic Cross-Sectional Study on the Association between Social Determinants of Health, Maternal and Child Health-Related Knowledge and Attitudes, and Utilization of Maternal, Newborn, Child Health and Nutrition Strategy-Prescribed Services for M
Authors: Rafael Carlos C. Aniceto, Bryce Abraham M. Anos, Don Christian A. Cornel, Marjerie Brianna S. Go, Samantha Nicole U. Roque, Earl Christian C. Te
Abstract:
Indigenous peoples (IPs) in the Philippines are a vulnerable, marginalized group in terms of health and overall well-being due to social inequities and cultural differences. National standards regarding maternal healthcare are geared towards facility-based delivery with modern medicine, health services, and skilled birth attendants. Standards and procedures of care for pregnant mothers do not take into account cultural differences between indigenous people and the majority of the population. There do exist, however, numerous other factors that cause relatively poorer health outcomes among indigenous peoples (IPs). This analytic cross-sectional study sought to determine the association between social determinants of health (SDH), focusing on status as indigenous peoples, and maternal health-related knowledge and attitudes (KA), and health behavior of the Dumagat-Agta indigenous people of Barangay Catablingan and Barangay San Marcelino, General Nakar, Quezon Province, and their utilization of health facilities for antenatal care, facility-based delivery and postpartum care, which would affect their health outcomes (that were not within the scope of this study). To quantitatively measure the primary/secondary exposures and outcomes, a total of 90 face-to-face interviews with IP and non-IP mothers were done. For qualitative information, participant observation among 6 communities (5 IP and 1 non-IP), 11 key informant interviews (traditional and modern health providers) and 4 focused group discussions among IP mothers were conducted. Primary quantitative analyses included chi-squared, T-test and binary logistic regression, while secondary qualitative analyses involved thematic analysis and triangulation. The researchers spent a total of 15 days in the community to learn the culture and participate in the practices of the Dumagat-Agta more intensively and deeply. Overall, utilization of all MNCHN services measured in the study was lower for IP mothers compared to their non-IP counterparts. After controlling for confounders measured in the study, IP status (primary exposure) was found to be significantly correlated with utilization of and adherence to two MNCHN-prescribed services: number of antenatal care check-ups and place of delivery (secondary outcomes). Findings show that being an indigenous mother leads to unfavorable social determinants of health, and if compounded by a difference in knowledge and attitudes, would then lead to poor levels of utilization of MNCHN-prescribed services. Key themes from qualitative analyses show that factors that affected utilization were: culture, land alienation, social discrimination, socioeconomic status, and relations between IPs and non-IPs, specifically with non-IP healthcare providers. The findings of this study aim to be used to help and guide in policy-making, to provide healthcare that is not only adequate and of quality, but more importantly, that addresses inequities stemming from various social determinants, and which is socio-culturally acceptable to indigenous communities. To address the root causes of health problems of IPs, there must be full recognition and exercise of their collective rights to communal assets, specifically land, and self-determination. This would improve maternal and child health outcomes to one of the most vulnerable and neglected sectors in society today.Keywords: child health, indigenous people, knowledge-attitudes-practices, maternal health, social determinants of health
Procedia PDF Downloads 194116 Characterization of Agroforestry Systems in Burkina Faso Using an Earth Observation Data Cube
Authors: Dan Kanmegne
Abstract:
Africa will become the most populated continent by the end of the century, with around 4 billion inhabitants. Food security and climate changes will become continental issues since agricultural practices depend on climate but also contribute to global emissions and land degradation. Agroforestry has been identified as a cost-efficient and reliable strategy to address these two issues. It is defined as the integrated management of trees and crops/animals in the same land unit. Agroforestry provides benefits in terms of goods (fruits, medicine, wood, etc.) and services (windbreaks, fertility, etc.), and is acknowledged to have a great potential for carbon sequestration; therefore it can be integrated into reduction mechanisms of carbon emissions. Particularly in sub-Saharan Africa, the constraint stands in the lack of information about both areas under agroforestry and the characterization (composition, structure, and management) of each agroforestry system at the country level. This study describes and quantifies “what is where?”, earliest to the quantification of carbon stock in different systems. Remote sensing (RS) is the most efficient approach to map such a dynamic technology as agroforestry since it gives relatively adequate and consistent information over a large area at nearly no cost. RS data fulfill the good practice guidelines of the Intergovernmental Panel On Climate Change (IPCC) that is to be used in carbon estimation. Satellite data are getting more and more accessible, and the archives are growing exponentially. To retrieve useful information to support decision-making out of this large amount of data, satellite data needs to be organized so to ensure fast processing, quick accessibility, and ease of use. A new solution is a data cube, which can be understood as a multi-dimensional stack (space, time, data type) of spatially aligned pixels and used for efficient access and analysis. A data cube for Burkina Faso has been set up from the cooperation project between the international service provider WASCAL and Germany, which provides an accessible exploitation architecture of multi-temporal satellite data. The aim of this study is to map and characterize agroforestry systems using the Burkina Faso earth observation data cube. The approach in its initial stage is based on an unsupervised image classification of a normalized difference vegetation index (NDVI) time series from 2010 to 2018, to stratify the country based on the vegetation. Fifteen strata were identified, and four samples per location were randomly assigned to define the sampling units. For safety reasons, the northern part will not be part of the fieldwork. A total of 52 locations will be visited by the end of the dry season in February-March 2020. The field campaigns will consist of identifying and describing different agroforestry systems and qualitative interviews. A multi-temporal supervised image classification will be done with a random forest algorithm, and the field data will be used for both training the algorithm and accuracy assessment. The expected outputs are (i) map(s) of agroforestry dynamics, (ii) characteristics of different systems (main species, management, area, etc.); (iii) assessment report of Burkina Faso data cube.Keywords: agroforestry systems, Burkina Faso, earth observation data cube, multi-temporal image classification
Procedia PDF Downloads 145115 Artificial Intelligence for Traffic Signal Control and Data Collection
Authors: Reggie Chandra
Abstract:
Trafficaccidents and traffic signal optimization are correlated. However, 70-90% of the traffic signals across the USA are not synchronized. The reason behind that is insufficient resources to create and implement timing plans. In this work, we will discuss the use of a breakthrough Artificial Intelligence (AI) technology to optimize traffic flow and collect 24/7/365 accurate traffic data using a vehicle detection system. We will discuss what are recent advances in Artificial Intelligence technology, how does AI work in vehicles, pedestrians, and bike data collection, creating timing plans, and what is the best workflow for that. Apart from that, this paper will showcase how Artificial Intelligence makes signal timing affordable. We will introduce a technology that uses Convolutional Neural Networks (CNN) and deep learning algorithms to detect, collect data, develop timing plans and deploy them in the field. Convolutional Neural Networks are a class of deep learning networks inspired by the biological processes in the visual cortex. A neural net is modeled after the human brain. It consists of millions of densely connected processing nodes. It is a form of machine learning where the neural net learns to recognize vehicles through training - which is called Deep Learning. The well-trained algorithm overcomes most of the issues faced by other detection methods and provides nearly 100% traffic data accuracy. Through this continuous learning-based method, we can constantly update traffic patterns, generate an unlimited number of timing plans and thus improve vehicle flow. Convolutional Neural Networks not only outperform other detection algorithms but also, in cases such as classifying objects into fine-grained categories, outperform humans. Safety is of primary importance to traffic professionals, but they don't have the studies or data to support their decisions. Currently, one-third of transportation agencies do not collect pedestrian and bike data. We will discuss how the use of Artificial Intelligence for data collection can help reduce pedestrian fatalities and enhance the safety of all vulnerable road users. Moreover, it provides traffic engineers with tools that allow them to unleash their potential, instead of dealing with constant complaints, a snapshot of limited handpicked data, dealing with multiple systems requiring additional work for adaptation. The methodologies used and proposed in the research contain a camera model identification method based on deep Convolutional Neural Networks. The proposed application was evaluated on our data sets acquired through a variety of daily real-world road conditions and compared with the performance of the commonly used methods requiring data collection by counting, evaluating, and adapting it, and running it through well-established algorithms, and then deploying it to the field. This work explores themes such as how technologies powered by Artificial Intelligence can benefit your community and how to translate the complex and often overwhelming benefits into a language accessible to elected officials, community leaders, and the public. Exploring such topics empowers citizens with insider knowledge about the potential of better traffic technology to save lives and improve communities. The synergies that Artificial Intelligence brings to traffic signal control and data collection are unsurpassed.Keywords: artificial intelligence, convolutional neural networks, data collection, signal control, traffic signal
Procedia PDF Downloads 169114 Web-Based Decision Support Systems and Intelligent Decision-Making: A Systematic Analysis
Authors: Serhat Tüzün, Tufan Demirel
Abstract:
Decision Support Systems (DSS) have been investigated by researchers and technologists for more than 35 years. This paper analyses the developments in the architecture and software of these systems, provides a systematic analysis for different Web-based DSS approaches and Intelligent Decision-making Technologies (IDT), with the suggestion for future studies. Decision Support Systems literature begins with building model-oriented DSS in the late 1960s, theory developments in the 1970s, and the implementation of financial planning systems and Group DSS in the early and mid-80s. Then it documents the origins of Executive Information Systems, online analytic processing (OLAP) and Business Intelligence. The implementation of Web-based DSS occurred in the mid-1990s. With the beginning of the new millennia, intelligence is the main focus on DSS studies. Web-based technologies are having a major impact on design, development and implementation processes for all types of DSS. Web technologies are being utilized for the development of DSS tools by leading developers of decision support technologies. Major companies are encouraging its customers to port their DSS applications, such as data mining, customer relationship management (CRM) and OLAP systems, to a web-based environment. Similarly, real-time data fed from manufacturing plants are now helping floor managers make decisions regarding production adjustment to ensure that high-quality products are produced and delivered. Web-based DSS are being employed by organizations as decision aids for employees as well as customers. A common usage of Web-based DSS has been to assist customers configure product and service according to their needs. These systems allow individual customers to design their own products by choosing from a menu of attributes, components, prices and delivery options. The Intelligent Decision-making Technologies (IDT) domain is a fast growing area of research that integrates various aspects of computer science and information systems. This includes intelligent systems, intelligent technology, intelligent agents, artificial intelligence, fuzzy logic, neural networks, machine learning, knowledge discovery, computational intelligence, data science, big data analytics, inference engines, recommender systems or engines, and a variety of related disciplines. Innovative applications that emerge using IDT often have a significant impact on decision-making processes in government, industry, business, and academia in general. This is particularly pronounced in finance, accounting, healthcare, computer networks, real-time safety monitoring and crisis response systems. Similarly, IDT is commonly used in military decision-making systems, security, marketing, stock market prediction, and robotics. Even though lots of research studies have been conducted on Decision Support Systems, a systematic analysis on the subject is still missing. Because of this necessity, this paper has been prepared to search recent articles about the DSS. The literature has been deeply reviewed and by classifying previous studies according to their preferences, taxonomy for DSS has been prepared. With the aid of the taxonomic review and the recent developments over the subject, this study aims to analyze the future trends in decision support systems.Keywords: decision support systems, intelligent decision-making, systematic analysis, taxonomic review
Procedia PDF Downloads 279113 Philippine Site Suitability Analysis for Biomass, Hydro, Solar, and Wind Renewable Energy Development Using Geographic Information System Tools
Authors: Jara Kaye S. Villanueva, M. Rosario Concepcion O. Ang
Abstract:
For the past few years, Philippines has depended most of its energy source on oil, coal, and fossil fuel. According to the Department of Energy (DOE), the dominance of coal in the energy mix will continue until the year 2020. The expanding energy needs in the country have led to increasing efforts to promote and develop renewable energy. This research is a part of the government initiative in preparation for renewable energy development and expansion in the country. The Philippine Renewable Energy Resource Mapping from Light Detection and Ranging (LiDAR) Surveys is a three-year government project which aims to assess and quantify the renewable energy potential of the country and to put them into usable maps. This study focuses on the site suitability analysis of the four renewable energy sources – biomass (coconut, corn, rice, and sugarcane), hydro, solar, and wind energy. The site assessment is a key component in determining and assessing the most suitable locations for the construction of renewable energy power plants. This method maximizes the use of both the technical methods in resource assessment, as well as taking into account the environmental, social, and accessibility aspect in identifying potential sites by utilizing and integrating two different methods: the Multi-Criteria Decision Analysis (MCDA) method and Geographic Information System (GIS) tools. For the MCDA, Analytical Hierarchy Processing (AHP) is employed to determine the parameters needed for the suitability analysis. To structure these site suitability parameters, various experts from different fields were consulted – scientists, policy makers, environmentalists, and industrialists. The need to have a well-represented group of people to consult with is relevant to avoid bias in the output parameter of hierarchy levels and weight matrices. AHP pairwise matrix computation is utilized to derive weights per level out of the expert’s gathered feedback. Whereas from the threshold values derived from related literature, international studies, and government laws, the output values were then consulted with energy specialists from the DOE. Geospatial analysis using GIS tools translate this decision support outputs into visual maps. Particularly, this study uses Euclidean distance to compute for the distance values of each parameter, Fuzzy Membership algorithm which normalizes the output from the Euclidean Distance, and the Weighted Overlay tool for the aggregation of the layers. Using the Natural Breaks algorithm, the suitability ratings of each of the map are classified into 5 discrete categories of suitability index: (1) not suitable (2) least suitable, (3) suitable, (4) moderately suitable, and (5) highly suitable. In this method, the classes are grouped based on the best groups similar values wherein each subdivision are set from the rest based on the big difference in boundary values. Results show that in the entire Philippine area of responsibility, biomass has the highest suitability rating with rice as the most suitable at 75.76% suitability percentage, whereas wind has the least suitability percentage with score 10.28%. Solar and Hydro fall in the middle of the two, with suitability values 28.77% and 21.27%.Keywords: site suitability, biomass energy, hydro energy, solar energy, wind energy, GIS
Procedia PDF Downloads 149112 Study of the Association between Salivary Microbiological Data, Oral Health Indicators, Behavioral Factors, and Social Determinants among Post-COVID Patients Aged 7 to 12 Years in Tbilisi City
Authors: Lia Mania, Ketevan Nanobashvili
Abstract:
Background: The coronavirus disease COVID-19 has become the cause of a global health crisis during the current pandemic. This study aims to fill the paucity of epidemiological studies on the impact of COVID-19 on the oral health of pediatric populations. Methods: It was conducted an observational, cross-sectional study in Georgia, in Tbilisi (capital of Georgia), among 7 to 12-year-old PCR or rapid test-confirmed post-Covid populations in all districts of Tbilisi (10 districts in total). 332 beneficiaries who were infected with Covid within one year were included in the study. The population was selected in schools of Tbilisi according to the principle of cluster selection. A simple random selection took place in the selected clusters. According to this principle, an equal number of beneficiaries were selected in all districts of Tbilisi. By July 1, 2022, according to National Center for Disease Control and Public Health data (NCDC.Ge), the number of test-confirmed cases in the population aged 0-18 in Tbilisi was 115137 children (17.7% of all confirmed cases). The number of patients to be examined was determined by the sample size. Oral screening, microbiological examination of saliva, and administration of oral health questionnaires to guardians were performed. Statistical processing of data was done with SPSS-23. Risk factors were estimated by odds ratio and logistic regression with 95% confidence interval. Results: Statistically reliable differences between the averages of oral health indicators in asymptomatic and symptomatic covid-infected groups are: for caries intensity (DMF+def) t=4.468 and p=0.000, for modified gingival index (MGI) t=3.048, p=0.002, for simplified oral hygiene index (S-OHI) t=4.853; p=0.000. Symptomatic covid-infection has a reliable effect on the oral microbiome (Staphylococcus aureus, Candida albicans, Pseudomonas aeruginosa, Streptococcus pneumoniae, Staphylococcus epidermalis); (n=332; 77.3% vs n=332; 58.0%; OR=2.46, 95%CI: 1.318-4.617). According to the logistic regression, it was found that the severity of the covid infection has a significant effect on the frequency of pathogenic and conditionally pathogenic bacteria in the oral cavity B=0.903 AOR=2.467 (CL 1.318-4.617). Symptomatic covid-infection affects oral health indicators, regardless of the presence of other risk factors, such as parental employment status, tooth brushing behaviors, carbohydrate meal, fruit consumption. (p<0.05). Conclusion: Risk factors (parental employment status, tooth brushing behaviors, carbohydrate consumption) were associated with poorer oral health status in a post-Covid population of 7- to 12-year-old children. However, such a risk factor as symptomatic ongoing covid-infection affected the oral microbiome in terms of the abundant growth of pathogenic and conditionally pathogenic bacteria (Staphylococcus aureus, Candida albicans, Pseudomonas aeruginosa, Streptococcus pneumoniae, Staphylococcus epidermalis) and further worsened oral health indicators. Thus, a close association was established between symptomatic covid-infection and microbiome changes in the post-covid period; also - between the variables of oral health indicators and the symptomatic course of covid-infection.Keywords: oral microbiome, COVID-19, population based research, oral health indicators
Procedia PDF Downloads 69111 Explosive Clad Metals for Geothermal Energy Recovery
Authors: Heather Mroz
Abstract:
Geothermal fluids can provide a nearly unlimited source of renewable energy but are often highly corrosive due to dissolved carbon dioxide (CO2), hydrogen sulphide (H2S), Ammonia (NH3) and chloride ions. The corrosive environment drives material selection for many components, including piping, heat exchangers and pressure vessels, to higher alloys of stainless steel, nickel-based alloys and titanium. The use of these alloys is cost-prohibitive and does not offer the pressure rating of carbon steel. One solution, explosion cladding, has been proven to reduce the capital cost of the geothermal equipment while retaining the mechanical and corrosion properties of both the base metal and the cladded surface metal. Explosion cladding is a solid-state welding process that uses precision explosions to bond two dissimilar metals while retaining the mechanical, electrical and corrosion properties. The process is commonly used to clad steel with a thin layer of corrosion-resistant alloy metal, such as stainless steel, brass, nickel, silver, titanium, or zirconium. Additionally, explosion welding can join a wider array of compatible and non-compatible metals with more than 260 metal combinations possible. The explosion weld is achieved in milliseconds; therefore, no bulk heating occurs, and the metals experience no dilution. By adhering to a strict set of manufacturing requirements, both the shear strength and tensile strength of the bond will exceed the strength of the weaker metal, ensuring the reliability of the bond. For over 50 years, explosion cladding has been used in the oil and gas and chemical processing industries and has provided significant economic benefit in reduced maintenance and lower capital costs over solid construction. The focus of this paper will be on the many benefits of the use of explosion clad in process equipment instead of more expensive solid alloy construction. The method of clad-plate production with explosion welding as well as the methods employed to ensure sound bonding of the metals. It will also include the origins of explosion cladding as well as recent technological developments. Traditionally explosion clad plate was formed into vessels, tube sheets and heads but recent advances include explosion welded piping. The final portion of the paper will give examples of the use of explosion-clad metals in geothermal energy recovery. The classes of materials used for geothermal brine will be discussed, including stainless steels, nickel alloys and titanium. These examples will include heat exchangers (tube sheets), high pressure and horizontal separators, standard pressure crystallizers, piping and well casings. It is important to educate engineers and designers on material options as they develop equipment for geothermal resources. Explosion cladding is a niche technology that can be successful in many situations, like geothermal energy recovery, where high temperature, high pressure and corrosive environments are typical. Applications for explosion clad metals include vessel and heat exchanger components as well as piping.Keywords: clad metal, explosion welding, separator material, well casing material, piping material
Procedia PDF Downloads 154110 Smart Interior Design: A Revolution in Modern Living
Authors: Fatemeh Modirzare
Abstract:
Smart interior design represents a transformative approach to creating living spaces that integrate technology seamlessly into our daily lives, enhancing comfort, convenience, and sustainability. This paper explores the concept of smart interior design, its principles, benefits, challenges, and future prospects. It also highlights various examples and applications of smart interior design to illustrate its potential in shaping the way we live and interact with our surroundings. In an increasingly digitized world, the boundaries between technology and interior design are blurring. Smart interior design, also known as intelligent or connected interior design, involves the incorporation of advanced technologies and automation systems into residential and commercial spaces. This innovative approach aims to make living environments more efficient, comfortable, and adaptable while promoting sustainability and user well-being. Smart interior design seamlessly integrates technology into the aesthetics and functionality of a space, ensuring that devices and systems do not disrupt the overall design. Sustainable materials, energy-efficient systems, and eco-friendly practices are central to smart interior design, reducing environmental impact. Spaces are designed to be adaptable, allowing for reconfiguration to suit changing needs and preferences. Smart homes and spaces offer greater comfort through features like automated climate control, adjustable lighting, and customizable ambiance. Smart interior design can significantly reduce energy consumption through optimized heating, cooling, and lighting systems. Smart interior design integrates security systems, fire detection, and emergency response mechanisms for enhanced safety. Sustainable materials, energy-efficient appliances, and waste reduction practices contribute to a greener living environment. Implementing smart interior design can be expensive, particularly when retrofitting existing spaces with smart technologies. The increased connectivity raises concerns about data privacy and cybersecurity, requiring robust measures to protect user information. Rapid advancements in technology may lead to obsolescence, necessitating updates and replacements. Users must be familiar with smart systems to fully benefit from them, requiring education and ongoing support. Residential spaces incorporate features like voice-activated assistants, automated lighting, and energy management systems. Intelligent office design enhances productivity and employee well-being through smart lighting, climate control, and meeting room booking systems. Hospitals and healthcare facilities use smart interior design for patient monitoring, wayfinding, and energy conservation. Smart retail design includes interactive displays, personalized shopping experiences, and inventory management systems. The future of smart interior design holds exciting possibilities, including AI-powered design tools that create personalized spaces based on user preferences. Smart interior design will increasingly prioritize factors that improve physical and mental health, such as air quality monitoring and mood-enhancing lighting. Smart interior design is revolutionizing the way we interact with our living and working spaces. By embracing technology, sustainability, and user-centric design principles, smart interior design offers numerous benefits, from increased comfort and convenience to energy efficiency and sustainability. Despite challenges, the future holds tremendous potential for further innovation in this field, promising a more connected, efficient, and harmonious way of living and working.Keywords: smart interior design, home automation, sustainable living spaces, technological integration, user-centric design
Procedia PDF Downloads 70109 The Proposal for a Framework to Face Opacity and Discrimination ‘Sins’ Caused by Consumer Creditworthiness Machines in the EU
Authors: Diogo José Morgado Rebelo, Francisco António Carneiro Pacheco de Andrade, Paulo Jorge Freitas de Oliveira Novais
Abstract:
Not everything in AI-power consumer credit scoring turns out to be a wonder. When using AI in Creditworthiness Assessment (CWA), opacity and unfairness ‘sins’ must be considered to the task be deemed Responsible. AI software is not always 100% accurate, which can lead to misclassification. Discrimination of some groups can be exponentiated. A hetero personalized identity can be imposed on the individual(s) affected. Also, autonomous CWA sometimes lacks transparency when using black box models. However, for this intended purpose, human analysts ‘on-the-loop’ might not be the best remedy consumers are looking for in credit. This study seeks to explore the legality of implementing a Multi-Agent System (MAS) framework in consumer CWA to ensure compliance with the regulation outlined in Article 14(4) of the Proposal for an Artificial Intelligence Act (AIA), dated 21 April 2021 (as per the last corrigendum by the European Parliament on 19 April 2024), Especially with the adoption of Art. 18(8)(9) of the EU Directive 2023/2225, of 18 October, which will go into effect on 20 November 2026, there should be more emphasis on the need for hybrid oversight in AI-driven scoring to ensure fairness and transparency. In fact, the range of EU regulations on AI-based consumer credit will soon impact the AI lending industry locally and globally, as shown by the broad territorial scope of AIA’s Art. 2. Consequently, engineering the law of consumer’s CWA is imperative. Generally, the proposed MAS framework consists of several layers arranged in a specific sequence, as follows: firstly, the Data Layer gathers legitimate predictor sets from traditional sources; then, the Decision Support System Layer, whose Neural Network model is trained using k-fold Cross Validation, provides recommendations based on the feeder data; the eXplainability (XAI) multi-structure comprises Three-Step-Agents; and, lastly, the Oversight Layer has a 'Bottom Stop' for analysts to intervene in a timely manner. From the analysis, one can assure a vital component of this software is the XAY layer. It appears as a transparent curtain covering the AI’s decision-making process, enabling comprehension, reflection, and further feasible oversight. Local Interpretable Model-agnostic Explanations (LIME) might act as a pillar by offering counterfactual insights. SHapley Additive exPlanation (SHAP), another agent in the XAI layer, could address potential discrimination issues, identifying the contribution of each feature to the prediction. Alternatively, for thin or no file consumers, the Suggestion Agent can promote financial inclusion. It uses lawful alternative sources such as the share of wallet, among others, to search for more advantageous solutions to incomplete evaluation appraisals based on genetic programming. Overall, this research aspires to bring the concept of Machine-Centered Anthropocentrism to the table of EU policymaking. It acknowledges that, when put into service, credit analysts no longer exert full control over the data-driven entities programmers have given ‘birth’ to. With similar explanatory agents under supervision, AI itself can become self-accountable, prioritizing human concerns and values. AI decisions should not be vilified inherently. The issue lies in how they are integrated into decision-making and whether they align with non-discrimination principles and transparency rules.Keywords: creditworthiness assessment, hybrid oversight, machine-centered anthropocentrism, EU policymaking
Procedia PDF Downloads 34108 Low-carbon Footprint Diluents in Solvent Extraction for Lithium-ion Battery Recycling
Authors: Abdoulaye Maihatchi Ahamed, Zubin Arora, Benjamin Swobada, Jean-yves Lansot, Alexandre Chagnes
Abstract:
Lithium-ion battery (LiB) is the technology of choice in the development of electric vehicles. But there are still many challenges, including the development of positive electrode materials exhibiting high cycle ability, high energy density, and low environmental impact. For this latter, LiBs must be manufactured in a circular approach by developing the appropriate strategies to reuse and recycle them. Presently, the recycling of LiBs is carried out by the pyrometallurgical route, but more and more processes implement or will implement the hydrometallurgical route or a combination of pyrometallurgical and hydrometallurgical operations. After producing the black mass by mineral processing, the hydrometallurgical process consists in leaching the black mass in order to uptake the metals contained in the cathodic material. Then, these metals are extracted selectively by liquid-liquid extraction, solid-liquid extraction, and/or precipitation stages. However, liquid-liquid extraction combined with precipitation/crystallization steps is the most implemented operation in the LiB recycling process to selectively extract copper, aluminum, cobalt, nickel, manganese, and lithium from the leaching solution and precipitate these metals as high-grade sulfate or carbonate salts. Liquid-liquid extraction consists in contacting an organic solvent and an aqueous feed solution containing several metals, including the targeted metal(s) to extract. The organic phase is non-miscible with the aqueous phase. It is composed of an extractant to extract the target metals and a diluent, which is usually aliphatic kerosene produced from the petroleum industry. Sometimes, a phase modifier is added in the formulation of the extraction solvent to avoid the third phase formation. The extraction properties of the diluent do not depend only on the chemical structure of the extractant, but it may also depend on the nature of the diluent. Indeed, the interactions between the diluent can influence more or less the interactions between extractant molecules besides the extractant-diluent interactions. Only a few studies in the literature addressed the influence of the diluent on the extraction properties, while many studies focused on the effect of the extractants. Recently, new low-carbon footprint aliphatic diluents were produced by catalytic dearomatisation and distillation of bio-based oil. This study aims at investigating the influence of the nature of the diluent on the extraction properties of three extractants towards cobalt, nickel, manganese, copper, aluminum, and lithium: Cyanex®272 for nickel-cobalt separation, DEHPA for manganese extraction, and Acorga M5640 for copper extraction. The diluents used in the formulation of the extraction solvents are (i) low-odor aliphatic kerosene produced from the petroleum industry (ELIXORE 180, ELIXORE 230, ELIXORE 205, and ISANE IP 175) and (ii) bio-sourced aliphatic diluents (DEV 2138, DEV 2139, DEV 1763, DEV 2160, DEV 2161 and DEV 2063). After discussing the effect of the diluents on the extraction properties, this conference will address the development of a low carbon footprint process based on the use of the best bio-sourced diluent for the production of high-grade cobalt sulfate, nickel sulfate, manganese sulfate, and lithium carbonate, as well as metal copper.Keywords: diluent, hydrometallurgy, lithium-ion battery, recycling
Procedia PDF Downloads 88107 The Procedural Sedation Checklist Manifesto, Emergency Department, Jersey General Hospital
Authors: Jerome Dalphinis, Vishal Patel
Abstract:
The Bailiwick of Jersey is an island British crown dependency situated off the coast of France. Jersey General Hospital’s emergency department sees approximately 40,000 patients a year. It’s outside the NHS, with secondary care being free at the point of care. Sedation is a continuum which extends from a normal conscious level to being fully unresponsive. Procedural sedation produces a minimally depressed level of consciousness in which the patient retains the ability to maintain an airway, and they respond appropriately to physical stimulation. The goals of it are to improve patient comfort and tolerance of the procedure and alleviate associated anxiety. Indications can be stratified by acuity, emergency (cardioversion for life-threatening dysrhythmia), and urgency (joint reduction). In the emergency department, this is most often achieved using a combination of opioids and benzodiazepines. Some departments also use ketamine to produce dissociative sedation, a cataleptic state of profound analgesia and amnesia. The response to pharmacological agents is highly individual, and the drugs used occasionally have unpredictable pharmacokinetics and pharmacodynamics, which can always result in progression between levels of sedation irrespective of the intention. Therefore, practitioners must be able to ‘rescue’ patients from deeper sedation. These practitioners need to be senior clinicians with advanced airway skills (AAS) training. It can lead to adverse effects such as dangerous hypoxia and unintended loss of consciousness if incorrectly undertaken; studies by the National Confidential Enquiry into Patient Outcome and Death (NCEPOD) have reported avoidable deaths. The Royal College of Emergency Medicine, UK (RCEM) released an updated ‘Safe Sedation of Adults in the Emergency Department’ guidance in 2017 detailing a series of standards for staff competencies, and the required environment and equipment, which are required for each target sedation depth. The emergency department in Jersey undertook audit research in 2018 to assess their current practice. It showed gaps in clinical competency, the need for uniform care, and improved documentation. This spurred the development of a checklist incorporating the above RCEM standards, including contraindication for procedural sedation and difficult airway assessment. This was approved following discussion with the relevant heads of departments and the patient safety directorates. Following this, a second audit research was carried out in 2019 with 17 completed checklists (11 relocation of joints, 6 cardioversions). Data was obtained from looking at the controlled resuscitation drugs book containing documented use of ketamine, alfentanil, and fentanyl. TrakCare, which is the patient electronic record system, was then referenced to obtain further information. The results showed dramatic improvement compared to 2018, and they have been subdivided into six categories; pre-procedure assessment recording of significant medical history and ASA grade (2 fold increase), informed consent (100% documentation), pre-oxygenation (88%), staff (90% were AAS practitioners) and monitoring (92% use of non-invasive blood pressure, pulse oximetry, capnography, and cardiac rhythm monitoring) during procedure, and discharge instructions including the documented return of normal vitals and consciousness (82%). This procedural sedation checklist is a safe intervention that identifies pertinent information about the patient and provides a standardised checklist for the delivery of gold standard of care.Keywords: advanced airway skills, checklist, procedural sedation, resuscitation
Procedia PDF Downloads 117106 Comprehensive Analysis of RNA m5C Regulator ALYREF as a Suppressive Factor of Anti-tumor Immune and a Potential Tumor Prognostic Marker in Pan-Cancer
Authors: Yujie Yuan, Yiyang Fan, Hong Fan
Abstract:
Objective: The RNA methylation recognition protein Aly/REF export factor (ALYREF) is considered one type of “reader” protein acting as a recognition protein of m5C, has been reported involved in several biological progresses including cancer initiation and progression. 5-methylcytosine (m5C) is a conserved and prevalent RNA modification in all species, as accumulating evidence suggests its role in the promotion of tumorigenesis. It has been claimed that ALYREF mediates nuclear export of mRNA with m5C modification and regulates biological effects of cancer cells. However, the systematical regulatory pathways of ALYREF in cancer tissues have not been clarified, yet. Methods: The expression level of ALYREF in pan-cancer and their normal tissues was compared through the data acquired from The Cancer Genome Atlas (TCGA). The University of Alabama at Birmingham Cancer data analysis Portal UALCAN was used to analyze the relationship between ALYREF and clinical pathological features. The relationship between the expression level of ALYREF and prognosis of pan-cancer, and the correlation genes of ALYREF were figured out by using Gene Expression Correlation Analysis database GEPIA. Immune related genes were obtained from TISIDB (an integrated repository portal for tumor-immune system interactions). Immune-related research was conducted by using Estimation of STromal and Immune cells in MAlignant Tumor tissues using Expression data (ESTIMATE) and TIMER. Results: Based on the data acquired from TCGA, ALYREF has an obviously higher-level expression in various types of cancers compared with relevant normal tissues excluding thyroid carcinoma and kidney chromophobe. The immunohistochemical images on The Human Protein Atlas showed that ALYREF can be detected in cytoplasm, membrane, but mainly located in nuclear. In addition, a higher expression level of ALYREF in tumor tissue generates a poor prognosis in majority of cancers. According to the above results, cancers with a higher expression level of ALYREF compared with normal tissues and a significant correlation between ALYREF and prognosis were selected for further analysis. By using TISIDB, we found that portion of ALYREF co-expression genes (such as BIRC5, H2AFZ, CCDC137, TK1, and PPM1G) with high Pearson correlation coefficient (PCC) were involved in anti-tumor immunity or affect resistance or sensitivity to T cell-mediated killing. Furthermore, based on the results acquired from GEPIA, there was significant correlation between ALYREF and PD-L1. It was exposed that there is a negative correlation between the expression level of ALYREF and ESTIMATE score. Conclusion: The present study indicated that ALYREF plays a vital and universal role in cancer initiation and progression of pan-cancer through regulating mitotic progression, DNA synthesis and metabolic process, and RNA processing. The correlation between ALYREF and PD-L1 implied ALYREF may affect the therapeutic effect of immunotherapy of tumor. More evidence revealed that ALYREF may play an important role in tumor immunomodulation. The correlation between ALYREF and immune cell infiltration level indicated that ALYREF can be a potential therapeutic target. Exploring the regulatory mechanism of ALYREF in tumor tissues may expose the reason for poor efficacy of immunotherapy and offer more directions of tumor treatment.Keywords: ALYREF, pan-cancer, immunotherapy, PD-L1
Procedia PDF Downloads 71105 Strategies for Drought Adpatation and Mitigation via Wastewater Management
Authors: Simrat Kaur, Fatema Diwan, Brad Reddersen
Abstract:
The unsustainable and injudicious use of natural renewable resources beyond the self-replenishment limits of our planet has proved catastrophic. Most of the Earth’s resources, including land, water, minerals, and biodiversity, have been overexploited. Owing to this, there is a steep rise in the global events of natural calamities of contrasting nature, such as torrential rains, storms, heat waves, rising sea levels, and megadroughts. These are all interconnected through common elements, namely oceanic currents and land’s the green cover. The deforestation fueled by the ‘economic elites’ or the global players have already cleared massive forests and ecological biomes in every region of the globe, including the Amazon. These were the natural carbon sinks prevailing and performing CO2 sequestration for millions of years. The forest biomes have been turned into mono cultivation farms to produce feedstock crops such as soybean, maize, and sugarcane; which are one of the biggest green house gas emitters. Such unsustainable agriculture practices only provide feedstock for livestock and food processing industries with huge carbon and water footprints. These are two main factors that have ‘cause and effect’ relationships in the context of climate change. In contrast to organic and sustainable farming, the mono-cultivation practices to produce food, fuel, and feedstock using chemicals devoid of the soil of its fertility, abstract surface, and ground waters beyond the limits of replenishment, emit green house gases, and destroy biodiversity. There are numerous cases across the planet where due to overuse; the levels of surface water reservoir such as the Lake Mead in Southwestern USA and ground water such as in Punjab, India, have deeply shrunk. Unlike the rain fed food production system on which the poor communities of the world relies; the blue water (surface and ground water) dependent mono-cropping for industrial and processed food create water deficit which put the burden on the domestic users. Excessive abstraction of both surface and ground waters for high water demanding feedstock (soybean, maize, sugarcane), cereal crops (wheat, rice), and cash crops (cotton) have a dual and synergistic impact on the global green house gas emissions and prevalence of megadroughts. Both these factors have elevated global temperatures, which caused cascading events such as soil water deficits, flash fires, and unprecedented burning of the woods, creating megafires in multiple continents, namely USA, South America, Europe, and Australia. Therefore, it is imperative to reduce the green and blue water footprints of agriculture and industrial sectors through recycling of black and gray waters. This paper explores various opportunities for successful implementation of wastewater management for drought preparedness in high risk communities.Keywords: wastewater, drought, biodiversity, water footprint, nutrient recovery, algae
Procedia PDF Downloads 100104 Revolutionizing Oil Palm Replanting: Geospatial Terrace Design for High-precision Ground Implementation Compared to Conventional Methods
Authors: Nursuhaili Najwa Masrol, Nur Hafizah Mohammed, Nur Nadhirah Rusyda Rosnan, Vijaya Subramaniam, Sim Choon Cheak
Abstract:
Replanting in oil palm cultivation is vital to enable the introduction of planting materials and provides an opportunity to improve the road, drainage, terrace design, and planting density. Oil palm replanting is fundamentally necessary every 25 years. The adoption of the digital replanting blueprint is imperative as it can assist the Malaysia Oil Palm industry in addressing challenges such as labour shortages and limited expertise related to replanting tasks. Effective replanting planning should commence at least 6 months prior to the actual replanting process. Therefore, this study will help to plan and design the replanting blueprint with high-precision translation on the ground. With the advancement of geospatial technology, it is now feasible to engage in thoroughly researched planning, which can help maximize the potential yield. A blueprint designed before replanting is to enhance management’s ability to optimize the planting program, address manpower issues, or even increase productivity. In terrace planting blueprints, geographic tools have been utilized to design the roads, drainages, terraces, and planting points based on the ARM standards. These designs are mapped with location information and undergo statistical analysis. The geospatial approach is essential in precision agriculture and ensuring an accurate translation of design to the ground by implementing high-accuracy technologies. In this study, geospatial and remote sensing technologies played a vital role. LiDAR data was employed to determine the Digital Elevation Model (DEM), enabling the precise selection of terraces, while ortho imagery was used for validation purposes. Throughout the designing process, Geographical Information System (GIS) tools were extensively utilized. To assess the design’s reliability on the ground compared with the current conventional method, high-precision GPS instruments like EOS Arrow Gold and HIPER VR GNSS were used, with both offering accuracy levels between 0.3 cm and 0.5cm. Nearest Distance Analysis was generated to compare the design with actual planting on the ground. The analysis revealed that it could not be applied to the roads due to discrepancies between actual roads and the blueprint design, which resulted in minimal variance. In contrast, the terraces closely adhered to the GPS markings, with the most variance distance being less than 0.5 meters compared to actual terraces constructed. Considering the required slope degrees for terrace planting, which must be greater than 6 degrees, the study found that approximately 65% of the terracing was constructed at a 12-degree slope, while over 50% of the terracing was constructed at slopes exceeding the minimum degrees. Utilizing blueprint replanting promising strategies for optimizing land utilization in agriculture. This approach harnesses technology and meticulous planning to yield advantages, including increased efficiency, enhanced sustainability, and cost reduction. From this study, practical implementation of this technique can lead to tangible and significant improvements in agricultural sectors. In boosting further efficiencies, future initiatives will require more sophisticated techniques and the incorporation of precision GPS devices for upcoming blueprint replanting projects besides strategic progression aims to guarantee the precision of both blueprint design stages and its subsequent implementation on the field. Looking ahead, automating digital blueprints are necessary to reduce time, workforce, and costs in commercial production.Keywords: replanting, geospatial, precision agriculture, blueprint
Procedia PDF Downloads 82103 Via ad Reducendam Intensitatem Energiae Industrialis in Provincia Sino ad Conservationem Energiae
Authors: John Doe
Abstract:
This paper presents the research project “Escape Through Culture”, which is co-funded by the European Union and national resources through the Operational Programme “Competitiveness, Entrepreneurship and Innovation” 2014-2020 and the Single RTDI State Aid Action "RESEARCH - CREATE - INNOVATE". The project implementation is assumed by three partners, (1) the Computer Technology Institute and Press "Diophantus" (CTI), experienced with the design and implementation of serious games, natural language processing and ICT in education, (2) the Laboratory of Environmental Communication and Audiovisual Documentation (LECAD), part of the University of Thessaly, Department of Architecture, which is experienced with the study of creative transformation and reframing of the urban and environmental multimodal experiences through the use of AR and VR technologies, and (3) “Apoplou”, an IT Company with experience in the implementation of interactive digital applications. The research project proposes the design of innovative infrastructure of digital educational escape games for mobile devices and computers, with the use of Virtual Reality and Augmented Reality for the promotion of Greek cultural heritage in Greece and abroad. In particular, the project advocates the combination of Greek cultural heritage and literature, digital technologies advancements and the implementation of innovative gamifying practices. The cultural experience of the players will take place in 3 layers: (1) In space: the digital games produced are going to utilize the dual character of the space as a cultural landscape (the real space - landscape but also the space - landscape as presented with the technologies of augmented reality and virtual reality). (2) In literary texts: the selected texts of Greek writers will support the sense of place and the multi-sensory involvement of the user, through the context of space-time, language and cultural characteristics. (3) In the philosophy of the "escape game" tool: whether played in a computer environment, indoors or outdoors, the spatial experience is one of the key components of escape games. The innovation of the project lies both in the junction of Augmented/Virtual Reality with the promotion of cultural points of interest, as well as in the interactive, gamified practices of literary texts. The digital escape game infrastructure will be highly interactive, integrating the projection of Greek landscape cultural elements and digital literary text analysis, supporting the creation of escape games, establishing and highlighting new playful ways of experiencing iconic cultural places, such as Elefsina, Skiathos etc. The literary texts’ content will relate to specific elements of the Greek cultural heritage depicted by prominent Greek writers and poets. The majority of the texts will originate from Greek educational content available in digital libraries and repositories developed and maintained by CTI. The escape games produced will be available for use during educational field trips, thematic tourism holidays, etc. In this paper, the methodology adopted for infrastructure development will be presented. The research is based on theories of place, gamification, gaming development, making use of corpus linguistics concepts and digital humanities practices for the compilation and the analysis of literary texts.Keywords: escape games, cultural landscapes, gamification, digital humanities, literature
Procedia PDF Downloads 245102 Bio-Hub Ecosystems: Investment Risk Analysis Using Monte Carlo Techno-Economic Analysis
Authors: Kimberly Samaha
Abstract:
In order to attract new types of investors into the emerging Bio-Economy, new methodologies to analyze investment risk are needed. The Bio-Hub Ecosystem model was developed to address a critical area of concern within the global energy market regarding the use of biomass as a feedstock for power plants. This study looked at repurposing existing biomass-energy plants into Circular Zero-Waste Bio-Hub Ecosystems. A Bio-Hub model that first targets a ‘whole-tree’ approach and then looks at the circular economics of co-hosting diverse industries (wood processing, aquaculture, agriculture) in the vicinity of the Biomass Power Plants facilities. This study modeled the economics and risk strategies of cradle-to-cradle linkages to incorporate the value-chain effects on capital/operational expenditures and investment risk reductions using a proprietary techno-economic model that incorporates investment risk scenarios utilizing the Monte Carlo methodology. The study calculated the sequential increases in profitability for each additional co-host on an operating forestry-based biomass energy plant in West Enfield, Maine. Phase I starts with the base-line of forestry biomass to electricity only and was built up in stages to include co-hosts of a greenhouse and a land-based shrimp farm. Phase I incorporates CO2 and heat waste streams from the operating power plant in an analysis of lowering and stabilizing the operating costs of the agriculture and aquaculture co-hosts. Phase II analysis incorporated a jet-fuel biorefinery and its secondary slip-stream of biochar which would be developed into two additional bio-products: 1) A soil amendment compost for agriculture and 2) A biochar effluent filter for the aquaculture. The second part of the study applied the Monte Carlo risk methodology to illustrate how co-location derisks investment in an integrated Bio-Hub versus individual investments in stand-alone projects of energy, agriculture or aquaculture. The analyzed scenarios compared reductions in both Capital and Operating Expenditures, which stabilizes profits and reduces the investment risk associated with projects in energy, agriculture, and aquaculture. The major findings of this techno-economic modeling using the Monte Carlo technique resulted in the masterplan for the first Bio-Hub to be built in West Enfield, Maine. In 2018, the site was designated as an economic opportunity zone as part of a Federal Program, which allows for Capital Gains tax benefits for investments on the site. Bioenergy facilities are currently at a critical juncture where they have an opportunity to be repurposed into efficient, profitable and socially responsible investments, or be idled and scrapped. The Bio-hub Ecosystems techno-economic analysis model is a critical model to expedite new standards for investments in circular zero-waste projects. Profitable projects will expedite adoption and advance the critical transition from the current ‘take-make-dispose’ paradigm inherent in the energy, forestry and food industries to a more sustainable Bio-Economy paradigm that supports local and rural communities.Keywords: bio-economy, investment risk, circular design, economic modelling
Procedia PDF Downloads 101101 Spatio-Temporal Dynamic of Woody Vegetation Assessment Using Oblique Landscape Photographs
Authors: V. V. Fomin, A. P. Mikhailovich, E. M. Agapitov, V. E. Rogachev, E. A. Kostousova, E. S. Perekhodova
Abstract:
Ground-level landscape photos can be used as a source of objective data on woody vegetation and vegetation dynamics. We proposed a method for processing, analyzing, and presenting ground photographs, which has the following advantages: 1) researcher has to form holistic representation of the study area in form of a set of interlapping ground-level landscape photographs; 2) it is necessary to define or obtain characteristics of the landscape, objects, and phenomena present on the photographs; 3) it is necessary to create new or supplement existing textual descriptions and annotations for the ground-level landscape photographs; 4) single or multiple ground-level landscape photographs can be used to develop specialized geoinformation layers, schematic maps or thematic maps; 5) it is necessary to determine quantitative data that describes both images as a whole, and displayed objects and phenomena, using algorithms for automated image analysis. It is suggested to match each photo with a polygonal geoinformation layer, which is a sector consisting of areas corresponding with parts of the landscape visible in the photos. Calculation of visibility areas is performed in a geoinformation system within a sector using a digital model of a study area relief and visibility analysis functions. Superposition of the visibility sectors corresponding with various camera viewpoints allows matching landscape photos with each other to create a complete and wholesome representation of the space in question. It is suggested to user-defined data or phenomenons on the images with the following superposition over the visibility sector in the form of map symbols. The technology of geoinformation layers’ spatial superposition over the visibility sector creates opportunities for image geotagging using quantitative data obtained from raster or vector layers within the sector with the ability to generate annotations in natural language. The proposed method has proven itself well for relatively open and clearly visible areas with well-defined relief, for example, in mountainous areas in the treeline ecotone. When the polygonal layers of visibility sectors for a large number of different points of photography are topologically superimposed, a layer of visibility of sections of the entire study area is formed, which is displayed in the photographs. Also, as a result of this overlapping of sectors, areas that did not appear in the photo will be assessed as gaps. According to the results of this procedure, it becomes possible to obtain information about the photos that display a specific area and from which points of photography it is visible. This information may be obtained either as a query on the map or as a query for the attribute table of the layer. The method was tested using repeated photos taken from forty camera viewpoints located on Ray-Iz mountain massif (Polar Urals, Russia) from 1960 until 2023. It has been successfully used in combination with other ground-based and remote sensing methods of studying the climate-driven dynamics of woody vegetation in the Polar Urals. Acknowledgment: This research was collaboratively funded by the Russian Ministry for Science and Education project No. FEUG-2023-0002 (image representation) and Russian Science Foundation project No. 24-24-00235 (automated textual description).Keywords: woody, vegetation, repeated, photographs
Procedia PDF Downloads 89100 To Smile or Not to Smile: How Engendered Facial Cues affect Hiring Decisions
Authors: Sabrina S. W. Chan, Emily Schwartzman, Nicholas O. Rule
Abstract:
Past literature showed mixed findings on how smiling affects a person’s chance of getting hired. On one hand, smiling suggests enthusiasm, cooperativeness, and enthusiasm, which can elicit positive impressions. On the other hand, smiling can suggest weaker professionalism or a filler to hide nervousness, which can lower a candidate’s perceived competence. Emotion expressions can also be perceived differently depending on the person’s gender and can activate certain gender stereotypes. Women especially face a double bind with respect to hiring decisions and smiling. Because women are socially expected to smile more, those who do not smile will be considered stereotype incongruent. This becomes a noisy signal to employers and may lower their chance of being hired. However, women’s smiling as a formality may also be an obstacle. They are more likely to put on fake smiles; but if they do, they are also likely to be perceived as inauthentic and over-expressive. This paper sought to investigate how smiling affects hiring decisions, and whether this relationship is moderated by gender. In Study 1, participants were shown a series of smiling and emotionally neutral face images, incorporated into fabricated LinkedIn profiles. Participants were asked to rate how hireable they thought that candidate was. Results showed that participants rated smiling candidates as more hireable than nonsmiling candidates, and that there was no difference in gender. Moreover, individuals who did not study business were more biased in their perceptions than those who did. Since results showed a trending favoritism over female targets, in suspect of desirability bias, a second study was conducted to collect implicit measures behind the decision-making process. In Study 2, a mouse-tracking design was adopted to explore whether participants’ implicit attitudes were different from their explicit responses on hiring. Participants asked to respond whether they would offer an interview to a candidate. Findings from Study 1 was replicated in that smiling candidates received more offers than neutral-faced candidates. Results also showed that female candidates received significantly more offers than male candidates but was associated with higher attractiveness ratings. There were no significant findings in reaction time or change of decisions. However, stronger hesitation was detected for responses made towards neutral targets when participants perceived the given position as masculine, implying a conscious attempt of making situational judgments (e.g., considering candidate’s personality and job fit) to override automatic processing (evaluations based on attractiveness). Future studies would look at how these findings differ for positions which are stereotypically masculine (e.g., surgeons) and stereotypically feminine (e.g., kindergarten teachers). Current findings have strong implications for developing bias-free hiring policies in workplace, especially for organizations who maintain online/hybrid working arrangements in the post-pandemic era. This also bridges the literature gap between face perception and gender discrimination, highlighting how engendered facial cues can affect individual’s career development and organization’s success in diversity and inclusion.Keywords: engendered facial cues, face perception, gender stereotypes, hiring decisions, smiling, workplace discrimination
Procedia PDF Downloads 13399 Closing down the Loop Holes: How North Korea and Other Bad Actors Manipulate Global Trade in Their Favor
Authors: Leo Byrne, Neil Watts
Abstract:
In the complex and evolving landscape of global trade, maritime sanctions emerge as a critical tool wielded by the international community to curb illegal activities and alter the behavior of non-compliant states and entities. These sanctions, designed to restrict or prohibit trade by sea with sanctioned jurisdictions, entities, or individuals, face continuous challenges due to the sophisticated evasion tactics employed by countries like North Korea. As the Democratic People's Republic of Korea (DPRK) diverts significant resources to circumvent these measures, understanding the nuances of their methodologies becomes imperative for maintaining the integrity of global trade systems. The DPRK, one of the most sanctioned nations globally, has developed an intricate network to facilitate its trade in illicit goods, ensuring the flow of revenue from designated activities continues unabated. Given its geographic and economic conditions, North Korea predominantly relies on maritime routes, utilizing foreign ports to route its illicit trade. This reliance on the sea is exploited through various sophisticated methods, including the use of front companies, falsification of documentation, commingling of bulk cargos, and physical alterations to vessels. These tactics enable the DPRK to navigate through the gaps in regulatory frameworks and lax oversight, effectively undermining international sanctions regimes Maritime sanctions carry significant implications for global trade, imposing heightened risks in the maritime domain. The deceptive practices employed not only by the DPRK but also by other high-risk jurisdictions, necessitate a comprehensive understanding of UN targeted sanctions. For stakeholders in the maritime sector—including maritime authorities, vessel owners, shipping companies, flag registries, and financial institutions serving the shipping industry—awareness and compliance are paramount. Violations can lead to severe consequences, including reputational damage, sanctions, hefty fines, and even imprisonment. To mitigate risks associated with these deceptive practices, it is crucial for maritime sector stakeholders to employ rigorous due diligence and regulatory compliance screening measures. Effective sanctions compliance serves as a protective shield against legal, financial, and reputational risks, preventing exploitation by international bad actors. This requires not only a deep understanding of the sanctions landscape but also the capability to identify and manage risks through informed decision-making and proactive risk management practices. As the DPRK and other sanctioned entities continue to evolve their sanctions evasion tactics, the international community must enhance its collective efforts to demystify and counter these practices. By leveraging more stringent compliance measures, stakeholders can safeguard against the illicit use of the maritime domain, reinforcing the effectiveness of maritime sanctions as a tool for global security. This paper seeks to dissect North Korea's adaptive strategies in the face of maritime sanctions. By examining up-to-date, geographically, and temporally relevant case studies, it aims to shed light on the primary nodes through which Pyongyang evades sanctions and smuggles goods via third-party ports. The goal is to propose multi-level interaction strategies, ranging from governmental interventions to localized enforcement mechanisms, to counteract these evasion tactics.Keywords: maritime, maritime sanctions, international sanctions, compliance, risk
Procedia PDF Downloads 7098 On the Bias and Predictability of Asylum Cases
Authors: Panagiota Katsikouli, William Hamilton Byrne, Thomas Gammeltoft-Hansen, Tijs Slaats
Abstract:
An individual who demonstrates a well-founded fear of persecution or faces real risk of being subjected to torture is eligible for asylum. In Danish law, the exact legal thresholds reflect those established by international conventions, notably the 1951 Refugee Convention and the 1950 European Convention for Human Rights. These international treaties, however, remain largely silent when it comes to how states should assess asylum claims. As a result, national authorities are typically left to determine an individual’s legal eligibility on a narrow basis consisting of an oral testimony, which may itself be hampered by several factors, including imprecise language interpretation, insecurity or lacking trust towards the authorities among applicants. The leaky ground, on which authorities must assess their subjective perceptions of asylum applicants' credibility, questions whether, in all cases, adjudicators make the correct decision. Moreover, the subjective element in these assessments raises questions on whether individual asylum cases could be afflicted by implicit biases or stereotyping amongst adjudicators. In fact, recent studies have uncovered significant correlations between decision outcomes and the experience and gender of the assigned judge, as well as correlations between asylum outcomes and entirely external events such as weather and political elections. In this study, we analyze a publicly available dataset containing approximately 8,000 summaries of asylum cases, initially rejected, and re-tried by the Refugee Appeals Board (RAB) in Denmark. First, we look for variations in the recognition rates, with regards to a number of applicants’ features: their country of origin/nationality, their identified gender, their identified religion, their ethnicity, whether torture was mentioned in their case and if so, whether it was supported or not, and the year the applicant entered Denmark. In order to extract those features from the text summaries, as well as the final decision of the RAB, we applied natural language processing and regular expressions, adjusting for the Danish language. We observed interesting variations in recognition rates related to the applicants’ country of origin, ethnicity, year of entry and the support or not of torture claims, whenever those were made in the case. The appearance (or not) of significant variations in the recognition rates, does not necessarily imply (or not) bias in the decision-making progress. None of the considered features, with the exception maybe of the torture claims, should be decisive factors for an asylum seeker’s fate. We therefore investigate whether the decision can be predicted on the basis of these features, and consequently, whether biases are likely to exist in the decisionmaking progress. We employed a number of machine learning classifiers, and found that when using the applicant’s country of origin, religion, ethnicity and year of entry with a random forest classifier, or a decision tree, the prediction accuracy is as high as 82% and 85% respectively. tentially predictive properties with regards to the outcome of an asylum case. Our analysis and findings call for further investigation on the predictability of the outcome, on a larger dataset of 17,000 cases, which is undergoing.Keywords: asylum adjudications, automated decision-making, machine learning, text mining
Procedia PDF Downloads 9597 Upsouth: Digitally Empowering Rangatahi (Youth) and Whaanau (Families) to Build Skills in Critical and Creative Thinking to Achieve More Active Citizenship in Aotearoa New Zealand
Authors: Ayla Hoeta
Abstract:
In a post-colonial Aotearoa New Zealand, solutions by rangatahi (youth) for rangatahi are essential as is civic participation and building economic agency in an increasingly tough economic climate. Upsouth was an online community crowdsourcing platform developed by The Southern Initiative, in collaboration with Itsnoon that provides rangatahi and whānau (family) a safe space to share lived experience, thoughts and ideas about local kaupapa (issues/topics) of importance to them. The target participants were Māori indigenous peoples and Pacifica groups, aged 14 - 21 years. In the Aotearoa New Zealand context, this participant group is not likely to engage in traditional consultation processes despite being an essential constituent in helping shape better local communities, whānau and futures. The Upsouth platform was active for two years from 2018-2019 where it completed 42 callups with 4300+ participants. The web platform collates the ideas, voices, feedback, and content of users around a callup that has been commissioned by a sponsor, such as Auckland Council, Z Energy or Auckland Transport. A callup may be about a pressing challenge in a community such as climate change, a new housing development, homelessness etc. Each callup was funded by the sponsor with Upsouths main point of difference being that participants are given koha (money donation) through digital wallets for their ideas. Depending on the quality of what participants upload, the koha varies between small micropayments and larger payments. This encouraged participants to develop creative and critical thinking - upskilling for future focussed jobs, enterprise and democratic skills while earning pocket money at the same time. Upsouth enables youth-led action and voice, and empowers them to be a part of a reciprocal and creative economy. Rangatahi are encouraged to express themselves culturally, creatively, freely and in a way they are free to choose - for example, spoken word, song, dance, video, drawings, and/or poems. This challenges and changes what is considered acceptable as community engagement feedback by the local government. Many traditional engagement platforms are not as consultative, do not accept diverse types of feedback, nor incentivise this valuable expression of feedback. Upsouth is also empowering for rangatahi, since it allows them the opportunity to express their opinions directly to the government. Upsouth gained national and international recognition for the way it engages with youth: winning the Supreme Award and the Accessibility and Transparency Award at Auckland Council’s 2018 Engagement Awards, becoming a finalist in the 2018 Digital Equity and Accessibility category of International Data Corporation’s Smart City Asia and Pacific Awards. This paper will fully contextualize the challenges of rangatahi and whānau civic engagement in Aotearoa New Zealand and then present a reflective case study of the Upsouth project, with examples from some of the callups. This is intended to form part of the Divided Cities 22 conference New Ground sub-theme as a critical reflection on a design intervention, which was conceived and implemented by the lead author to overcome the post-colonial divisions of Māori, Pacifica and minority ethnic rangatahi in Aotearoa New Zealand.Keywords: rangatahi, youth empowerment, civic engagement, enabling, relating, digital platform, participation
Procedia PDF Downloads 8196 Wheat Cluster Farming Approach: Challenges and Prospects for Smallholder Farmers in Ethiopia
Authors: Hanna Mamo Ergando
Abstract:
Climate change is already having a severe influence on agriculture, affecting crop yields, the nutritional content of main grains, and livestock productivity. Significant adaptation investments will be necessary to sustain existing yields and enhance production and food quality to fulfill demand. Climate-smart agriculture (CSA) provides numerous potentials in this regard, combining a focus on enhancing agricultural output and incomes while also strengthening resilience and responding to climate change. To improve agriculture production and productivity, the Ethiopian government has adopted and implemented a series of strategies, including the recent agricultural cluster farming that is practiced as an effort to change, improve, and transform subsistence farming to modern, productive, market-oriented, and climate-smart approach through farmers production cluster. Besides, greater attention and focus have been given to wheat production and productivity by the government, and wheat is the major crop grown in cluster farming. Therefore, the objective of this assessment was to examine various opportunities and challenges farmers face in a cluster farming system. A qualitative research approach was used to generate primary and secondary data. Respondents were chosen using the purposeful sampling technique. Accordingly, experts from the Federal Ministry of Agriculture, the Ethiopian Agricultural Transformation Institute, the Ethiopian Agricultural Research Institute, and the Ethiopian Environment Protection Authority were interviewed. The assessment result revealed that farming in clusters is an economically viable technique for sustaining small, resource-limited, and socially disadvantaged farmers' agricultural businesses. The method assists farmers in consolidating their products and delivering them in bulk to save on transportation costs while increasing income. Smallholders' negotiating power has improved as a result of cluster membership, as has knowledge and information spillover. The key challenges, on the other hand, were identified as a lack of timely provision of modern inputs, insufficient access to credit services, conflict of interest in crop selection, and a lack of output market for agro-processing firms. Furthermore, farmers in the cluster farming approach grow wheat year after year without crop rotation or diversification techniques. Mono-cropping has disadvantages because it raises the likelihood of disease and insect outbreaks. This practice may result in long-term consequences, including soil degradation, reduced biodiversity, and economic risk for farmers. Therefore, the government must devote more resources to addressing the issue of environmental sustainability. Farmers' access to complementary services that promote production and marketing efficiencies through infrastructure and institutional services has to be improved. In general, the assessment begins with some hint that leads to a deeper study into the efficiency of the strategy implementation, upholding existing policy, and scaling up good practices in a sustainable and environmentally viable manner.Keywords: cluster farming, smallholder farmers, wheat, challenges, opportunities
Procedia PDF Downloads 21995 Towards Automatic Calibration of In-Line Machine Processes
Authors: David F. Nettleton, Elodie Bugnicourt, Christian Wasiak, Alejandro Rosales
Abstract:
In this presentation, preliminary results are given for the modeling and calibration of two different industrial winding MIMO (Multiple Input Multiple Output) processes using machine learning techniques. In contrast to previous approaches which have typically used ‘black-box’ linear statistical methods together with a definition of the mechanical behavior of the process, we use non-linear machine learning algorithms together with a ‘white-box’ rule induction technique to create a supervised model of the fitting error between the expected and real force measures. The final objective is to build a precise model of the winding process in order to control de-tension of the material being wound in the first case, and the friction of the material passing through the die, in the second case. Case 1, Tension Control of a Winding Process. A plastic web is unwound from a first reel, goes over a traction reel and is rewound on a third reel. The objectives are: (i) to train a model to predict the web tension and (ii) calibration to find the input values which result in a given tension. Case 2, Friction Force Control of a Micro-Pullwinding Process. A core+resin passes through a first die, then two winding units wind an outer layer around the core, and a final pass through a second die. The objectives are: (i) to train a model to predict the friction on die2; (ii) calibration to find the input values which result in a given friction on die2. Different machine learning approaches are tested to build models, Kernel Ridge Regression, Support Vector Regression (with a Radial Basis Function Kernel) and MPART (Rule Induction with continuous value as output). As a previous step, the MPART rule induction algorithm was used to build an explicative model of the error (the difference between expected and real friction on die2). The modeling of the error behavior using explicative rules is used to help improve the overall process model. Once the models are built, the inputs are calibrated by generating Gaussian random numbers for each input (taking into account its mean and standard deviation) and comparing the output to a target (desired) output until a closest fit is found. The results of empirical testing show that a high precision is obtained for the trained models and for the calibration process. The learning step is the slowest part of the process (max. 5 minutes for this data), but this can be done offline just once. The calibration step is much faster and in under one minute obtained a precision error of less than 1x10-3 for both outputs. To summarize, in the present work two processes have been modeled and calibrated. A fast processing time and high precision has been achieved, which can be further improved by using heuristics to guide the Gaussian calibration. Error behavior has been modeled to help improve the overall process understanding. This has relevance for the quick optimal set up of many different industrial processes which use a pull-winding type process to manufacture fibre reinforced plastic parts. Acknowledgements to the Openmind project which is funded by Horizon 2020 European Union funding for Research & Innovation, Grant Agreement number 680820Keywords: data model, machine learning, industrial winding, calibration
Procedia PDF Downloads 24194 Investigation on Pull-Out-Behavior and Interface Critical Parameters of Polymeric Fibers Embedded in Concrete and Their Correlation with Particular Fiber Characteristics
Authors: Michael Sigruener, Dirk Muscat, Nicole Struebbe
Abstract:
Fiber reinforcement is a state of the art to enhance mechanical properties in plastics. For concrete and civil engineering, steel reinforcements are commonly used. Steel reinforcements show disadvantages in their chemical resistance and weight, whereas polymer fibers' major problems are in fiber-matrix adhesion and mechanical properties. In spite of these facts, longevity and easy handling, as well as chemical resistance motivate researches to develop a polymeric material for fiber reinforced concrete. Adhesion and interfacial mechanism in fiber-polymer-composites are already studied thoroughly. For polymer fibers used as concrete reinforcement, the bonding behavior still requires a deeper investigation. Therefore, several differing polymers (e.g., polypropylene (PP), polyamide 6 (PA6) and polyetheretherketone (PEEK)) were spun into fibers via single screw extrusion and monoaxial stretching. Fibers then were embedded in a concrete matrix, and Single-Fiber-Pull-Out-Tests (SFPT) were conducted to investigate bonding characteristics and microstructural interface of the composite. Differences in maximum pull-out-force, displacement and slope of the linear part of force vs displacement-function, which depicts the adhesion strength and the ductility of the interfacial bond were studied. In SFPT fiber, debonding is an inhomogeneous process, where the combination of interfacial bonding and friction mechanisms add up to a resulting value. Therefore, correlations between polymeric properties and pull-out-mechanisms have to be emphasized. To investigate these correlations, all fibers were introduced to a series of analysis such as differential scanning calorimetry (DSC), contact angle measurement, surface roughness and hardness analysis, tensile testing and scanning electron microscope (SEM). Of each polymer, smooth and abraded fibers were tested, first to simulate the abrasion and damage caused by a concrete mixing process and secondly to estimate the influence of mechanical anchoring of rough surfaces. In general, abraded fibers showed a significant increase in maximum pull-out-force due to better mechanical anchoring. Friction processes therefore play a major role to increase the maximum pull-out-force. The polymer hardness affects the tribological behavior and polymers with high hardness lead to lower surface roughness verified by SEM and surface roughness measurements. This concludes into a decreased maximum pull-out-force for hard polymers. High surface energy polymers show better interfacial bonding strength in general, which coincides with the conducted SFPT investigation. Polymers such as PEEK or PA6 show higher bonding strength in smooth and roughened fibers, revealed through high pull-out-force and concrete particles bonded on the fiber surface pictured via SEM analysis. The surface energy divides into dispersive and polar part, at which the slope is correlating with the polar part. Only polar polymers increase their SFPT-function slope due to better wetting abilities when showing a higher bonding area through rough surfaces. Hence, the maximum force and the bonding strength of an embedded fiber is a function of polarity, hardness, and consequently surface roughness. Other properties such as crystallinity or tensile strength do not affect bonding behavior. Through the conducted analysis, it is now feasible to understand and resolve different effects in pull-out-behavior step-by-step based on the polymer properties itself. This investigation developed a roadmap on how to engineer high adhering polymeric materials for fiber reinforcement of concrete.Keywords: fiber-matrix interface, polymeric fibers, fiber reinforced concrete, single fiber pull-out test
Procedia PDF Downloads 11393 Investigation of Pu-238 Heat Source Modifications to Increase Power Output through (α,N) Reaction-Induced Fission
Authors: Alex B. Cusick
Abstract:
The objective of this study is to improve upon the current ²³⁸PuO₂ fuel technology for space and defense applications. Modern RTGs (radioisotope thermoelectric generators) utilize the heat generated from the radioactive decay of ²³⁸Pu to create heat and electricity for long term and remote missions. Application of RTG technology is limited by the scarcity and expense of producing the isotope, as well as the power output which is limited to only a few hundred watts. The scarcity and expense make the efficient use of ²³⁸Pu absolutely necessary. By utilizing the decay of ²³⁸Pu, not only to produce heat directly but to also indirectly induce fission in ²³⁹Pu (which is already present within currently used fuel), it is possible to see large increases in temperature which allows for a more efficient conversion to electricity and a higher power-to-weight ratio. This concept can reduce the quantity of ²³⁸Pu necessary for these missions, potentially saving millions on investment, while yielding higher power output. Current work investigating radioisotope power systems have focused on improving efficiency of the thermoelectric components and replacing systems which produce heat by virtue of natural decay with fission reactors. The technical feasibility of utilizing (α,n) reactions to induce fission within current radioisotopic fuels has not been investigated in any appreciable detail, and our study aims to thoroughly investigate the performance of many such designs, develop those with highest capabilities, and facilitate experimental testing of these designs. In order to determine the specific design parameters that maximize power output and the efficient use of ²³⁸Pu for future RTG units, MCNP6 simulations have been used to characterize the effects of modifying fuel composition, geometry, and porosity, as well as introducing neutron moderating, reflecting, and shielding materials to the system. Although this project is currently in the preliminary stages, the final deliverables will include sophisticated designs and simulation models that define all characteristics of multiple novel RTG fuels, detailed enough to allow immediate fabrication and testing. Preliminary work has consisted of developing a benchmark model to accurately represent the ²³⁸PuO₂ pellets currently in use by NASA; this model utilizes the alpha transport capabilities of MCNP6 and agrees well with experimental data. In addition, several models have been developed by varying specific parameters to investigate their effect on (α,n) and (n,fi ssion) reaction rates. Current practices in fuel processing are to exchange out the small portion of naturally occurring ¹⁸O and ¹⁷O to limit (α,n) reactions and avoid unnecessary neutron production. However, we have shown that enriching the oxide in ¹⁸O introduces a sufficient (α,n) reaction rate to support significant fission rates. For example, subcritical fission rates above 10⁸ f/cm³-s are easily achievable in cylindrical ²³⁸PuO₂ fuel pellets with a ¹⁸O enrichment of 100%, given an increase in size and a ⁹Be clad. Many viable designs exist and our intent is to discuss current results and future endeavors on this project.Keywords: radioisotope thermoelectric generators (RTG), Pu-238, subcritical reactors, (alpha, n) reactions
Procedia PDF Downloads 17192 Toward the Destigmatizing the Autism Label: Conceptualizing Celebratory Technologies
Authors: LouAnne Boyd
Abstract:
From the perspective of self-advocates, the biggest unaddressed problem is not the symptoms of an autism spectrum diagnosis but the social stigma that accompanies autism. This societal perspective is in contrast to the focus on the majority of interventions. Autism interventions, and consequently, most innovative technologies for autism, aim to improve deficits that occur within the person. For example, the most common Human-Computer Interaction research projects in assistive technology for autism target social skills from a normative perspective. The premise of the autism technologies is that difficulties occur inside the body, hence, the medical model focuses on ways to improve the ailment within the person. However, other technological approaches to support people with autism do exist. In the realm of Human Computer Interaction, there are other modes of research that provide critique of the medical model. For example, critical design, whose intended audience is industry or other HCI researchers, provides products that are the opposite of interventionist work to bring attention to the misalignment between the lived experience and the societal perception of autism. For example, parodies of interventionist work exist to provoke change, such as a recent project called Facesavr, a face covering that helps allistic adults be more independent in their emotional processing. Additionally, from a critical disability studies’ perspective, assistive technologies perpetuate harmful normalizing behaviors. However, these critical approaches can feel far from the frontline in terms of taking direct action to positively impact end users. From a critical yet more pragmatic perspective, projects such as Counterventions lists ways to reduce the likelihood of perpetuating ableism in interventionist’s work by reflectively analyzing a series of evolving assistive technology projects through a societal lens, thus leveraging the momentum of the evolving ecology of technologies for autism. Therefore, all current paradigms fall short of addressing the largest need—the negative impact of social stigma. The current work introduces a new paradigm for technologies for autism, borrowing from a paradigm introduced two decades ago around changing the narrative related to eating disorders. It is the shift from reprimanding poor habits to celebrating positive aspects of eating. This work repurposes Celebratory Technology for Neurodiversity and intended to reduce social stigma by targeting for the public at large. This presentation will review how requirements were derived from current research on autism social stigma as well as design sessions with autistic adults. Congruence between these two sources revealed three key design implications for technology: provide awareness of the autistic experience; generate acceptance of the neurodivergence; cultivate an appreciation for talents and accomplishments of neurodivergent people. The current pilot work in Celebratory Technology offers a new paradigm for supporting autism by shifting the burden of change from the person with autism to address changing society’s biases at large. Shifting the focus of research outside of the autistic body creates a new space for a design that extends beyond the bodies of a few and calls on all to embrace humanity as a whole.Keywords: neurodiversity, social stigma, accessibility, inclusion, celebratory technology
Procedia PDF Downloads 72