Search results for: behavioral research
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 25426

Search results for: behavioral research

14446 A Study on Relationship between Firm Managers Environmental Attitudes and Environment-Friendly Practices for Textile Firms in India

Authors: Anupriya Sharma, Sapna Narula

Abstract:

Over the past decade, sustainability has gone mainstream as more people are worried about environment-related issues than ever before. These issues are of even more concern for industries which leave a significant impact on the environment. Following these ecological issues, corporates are beginning to comprehend the impact on their business. Many such initiatives have been made to address these emerging issues in the consumer-driven textile industry. Demand from customers, local communities, government regulations, etc. are considered some of the major factors affecting environmental decision-making. Research also shows that motivations to go green are inevitably determined by the way top managers perceive environmental issues as managers personal values and ethical commitment act as a motivating factor towards corporate social responsibility. Little empirical research has been conducted to examine the relationship between top managers’ personal environmental attitudes and corporate environmental behaviors for the textile industry in the Indian context. The primary purpose of this study is to determine the current state of environmental management in textile industry and whether the attitude of textile firms’ top managers is significantly related to firm’s response to environmental issues and their perceived benefits of environmental management. To achieve the aforesaid objectives of the study, authors used structured questionnaire based on literature review. The questionnaire consisted of six sections with a total length of eight pages. The first section was based on background information on the position of the respondents in the organization, annual turnover, year of firm’s establishment and so on. The other five sections of the questionnaire were based upon (drivers, attitude, and awareness, sustainable business practices, barriers to implementation and benefits achieved). To test the questionnaire, a pretest was conducted with the professionals working in corporate sustainability and had knowledge about the textile industry and was then mailed to various stakeholders involved in textile production thereby covering firms top manufacturing officers, EHS managers, textile engineers, HR personnel and R&D managers. The results of the study showed that most of the textile firms were implementing some type of environmental management practice, even though the magnitude of firm’s involvement in environmental management practices varied. The results also show that textile firms with a higher level of involvement in environmental management were more involved in the process driven technical environmental practices. It also identified that firm’s top managers environmental attitudes were correlated with perceived advantages of environmental management as textile firm’s top managers are the ones who possess managerial discretion on formulating and deciding business policies such as environmental initiatives.

Keywords: attitude and awareness, Environmental management, sustainability, textile industry

Procedia PDF Downloads 233
14445 On Dialogue Systems Based on Deep Learning

Authors: Yifan Fan, Xudong Luo, Pingping Lin

Abstract:

Nowadays, dialogue systems increasingly become the way for humans to access many computer systems. So, humans can interact with computers in natural language. A dialogue system consists of three parts: understanding what humans say in natural language, managing dialogue, and generating responses in natural language. In this paper, we survey deep learning based methods for dialogue management, response generation and dialogue evaluation. Specifically, these methods are based on neural network, long short-term memory network, deep reinforcement learning, pre-training and generative adversarial network. We compare these methods and point out the further research directions.

Keywords: dialogue management, response generation, deep learning, evaluation

Procedia PDF Downloads 165
14444 An Architecture for New Generation of Distributed Intrusion Detection System Based on Preventive Detection

Authors: H. Benmoussa, A. A. El Kalam, A. Ait Ouahman

Abstract:

The design and implementation of intrusion detection systems (IDS) remain an important area of research in the security of information systems. Despite the importance and reputation of the current intrusion detection systems, their efficiency and effectiveness remain limited as they should include active defense approach to allow anticipating and predicting intrusions before their occurrence. Consequently, they must be readapted. For this purpose we suggest a new generation of distributed intrusion detection system based on preventive detection approach and using intelligent and mobile agents. Our architecture benefits from mobile agent features and addresses some of the issues with centralized and hierarchical models. Also, it presents advantages in terms of increasing scalability and flexibility.

Keywords: Intrusion Detection System (IDS), preventive detection, mobile agents, distributed architecture

Procedia PDF Downloads 580
14443 Predicting Football Player Performance: Integrating Data Visualization and Machine Learning

Authors: Saahith M. S., Sivakami R.

Abstract:

In the realm of football analytics, particularly focusing on predicting football player performance, the ability to forecast player success accurately is of paramount importance for teams, managers, and fans. This study introduces an elaborate examination of predicting football player performance through the integration of data visualization methods and machine learning algorithms. The research entails the compilation of an extensive dataset comprising player attributes, conducting data preprocessing, feature selection, model selection, and model training to construct predictive models. The analysis within this study will involve delving into feature significance using methodologies like Select Best and Recursive Feature Elimination (RFE) to pinpoint pertinent attributes for predicting player performance. Various machine learning algorithms, including Random Forest, Decision Tree, Linear Regression, Support Vector Regression (SVR), and Artificial Neural Networks (ANN), will be explored to develop predictive models. The evaluation of each model's performance utilizing metrics such as Mean Squared Error (MSE) and R-squared will be executed to gauge their efficacy in predicting player performance. Furthermore, this investigation will encompass a top player analysis to recognize the top-performing players based on the anticipated overall performance scores. Nationality analysis will entail scrutinizing the player distribution based on nationality and investigating potential correlations between nationality and player performance. Positional analysis will concentrate on examining the player distribution across various positions and assessing the average performance of players in each position. Age analysis will evaluate the influence of age on player performance and identify any discernible trends or patterns associated with player age groups. The primary objective is to predict a football player's overall performance accurately based on their individual attributes, leveraging data-driven insights to enrich the comprehension of player success on the field. By amalgamating data visualization and machine learning methodologies, the aim is to furnish valuable tools for teams, managers, and fans to effectively analyze and forecast player performance. This research contributes to the progression of sports analytics by showcasing the potential of machine learning in predicting football player performance and offering actionable insights for diverse stakeholders in the football industry.

Keywords: football analytics, player performance prediction, data visualization, machine learning algorithms, random forest, decision tree, linear regression, support vector regression, artificial neural networks, model evaluation, top player analysis, nationality analysis, positional analysis

Procedia PDF Downloads 36
14442 Preparation and Analysis of Enhanced Glass Fiber Reinforced Plastics with Al Base Alloy

Authors: M. R. Ashok, S. Srivatsan, S. Vignesh

Abstract:

Common replacement for glass in composites is the Glass Fiber Reinforced Plastics (GFRP). The GFRP has its own advantages for being a good alternative. The purpose of this research is to find a suitable enhancement for the commonly used composite Glass Fiber Reinforced Plastics (GFRP). The goal is to enhance the material properties of the composite by providing a suitable matrix with Al base. The various mechanical tests are performed to analyze and compare the improvement in the mechanical properties of the composite. As a result, this material can be used as an alternative for the commonly used GFRP in various fields with increased effectiveness in its functioning.

Keywords: alloy based composites, composite materials, glass fiber reinforced plastics, sSuper composites

Procedia PDF Downloads 332
14441 A Comparative Study on Automatic Feature Classification Methods of Remote Sensing Images

Authors: Lee Jeong Min, Lee Mi Hee, Eo Yang Dam

Abstract:

Geospatial feature extraction is a very important issue in the remote sensing research. In the meantime, the image classification based on statistical techniques, but, in recent years, data mining and machine learning techniques for automated image processing technology is being applied to remote sensing it has focused on improved results generated possibility. In this study, artificial neural network and decision tree technique is applied to classify the high-resolution satellite images, as compared to the MLC processing result is a statistical technique and an analysis of the pros and cons between each of the techniques.

Keywords: remote sensing, artificial neural network, decision tree, maximum likelihood classification

Procedia PDF Downloads 345
14440 Animated Movies and Violence: A Participant Observatory Research on Nigerian Children

Authors: Uchenna Bella Onu

Abstract:

Violence has become a deadly plague in Nigeria and is spreading at an alarming rate. There is every indication that in a normal person, violence is not inborn but learned. Animated movies, which are designed to amuse and entertain children may contain a level of violence. These violent animated movies may affect the susceptible minds of children. This paper examines the effect of selected animated movies on Nigerian children. Sample is on Nigerian children aged seven and below. Method explored is participant observation with visual arts and visual technologies in a natural and familiar environment. Visual arts are used to draw out the innermost feelings of the young children. Findings show that animated movies have strong effect on Nigerian children. Whether the effect will be negative or positive depends largely on the content of the animated movies.

Keywords: animated movies, drawings, Nigerian children, videos, violence

Procedia PDF Downloads 288
14439 A Study on Improvement of Straightness of Preform Pulling Process of Hollow Pipe by Finete Element Analysis Method

Authors: Yeon-Jong Jeong, Jun-Hong Park, Hyuk Choi

Abstract:

In this study, we have studied the design of intermediate die in multipass drawing. Research has been continuously studied because of the advantage of better dimensional accuracy, smooth surface and improved mechanical properties in the case of drawing. Among them, multipass drawing, which is a method to realize complicated shape by drawing, was discussed in this study. The most important factor in the multipass drawing is the dimensional accuracy and simplify the process. To accomplish this, a multistage shape drawing was performed using various intermediate die shape designs, and finite element analysis was performed.

Keywords: FEM (Finite Element Method), multipass drawing, intermediate die, hollow pipe

Procedia PDF Downloads 315
14438 Work Happiness for Personnel of Suan Sunandha Rajabhat University

Authors: Adisai Thovicha

Abstract:

This study is the survey research, designed to study the work happiness level of personnel at Suan Sunandha Rajabhat University. The sample group consisted of 329 personnel. The results were collected by stratified sampling, using work positions for each stage. The results were analyzed and calculated by computer program. Statistics used during analyzing were percentage, mean, and standard deviation. From the study, the work happiness level of personnel were in very high score range in both overall and specific category. The top category which received the most score was positive attitude, work satisfaction, life satisfaction, and negative attitude.

Keywords: work happiness, Suan Sunandha Rajabhat University, personnel, positive attitude

Procedia PDF Downloads 373
14437 The Role of Validity and Reliability in the Development of Online Testing

Authors: Ani Demetrashvili

Abstract:

The purpose of this paper is to show how students trust online tests and determine validity and reliability in the development of online testing. The pandemic situation changed every field in the world, and it changed education as well. Educational institutions moved into the online space, which was the only decision they were able to make at that time. Online assessment through online proctoring was a totally new challenge for educational institutions, and they needed to deal with it successfully. Participants were chosen from the English language center. The validity of the questionnaire was identified according to the Likert scale and Cronbach’s alpha; later, data from the participants was analyzed as well. The article summarizes literature that is available about online assessment and is interesting for people who are interested in this kind of assessment. Based on the research findings, students favor in-person testing over online assessment due to their lack of experience and skills in the latter.

Keywords: online assessment, online proctoring

Procedia PDF Downloads 39
14436 Effects of Learner-Content Interaction Activities on the Context of Verbal Learning Outcomes in Interactive Courses

Authors: Alper Tolga Kumtepe, Erdem Erdogdu, M. Recep Okur, Eda Kaypak, Ozlem Kaya, Serap Ugur, Deniz Dincer, Hakan Yildirim

Abstract:

Interaction is one of the most important components of open and distance learning. According to Moore, who proposed one of the keystones on interaction types, there are three basic types of interaction: learner-teacher, learner-content, and learner-learner. From these interaction types, learner-content interaction, without doubt, can be identified as the most fundamental one on which all education is based. Efficacy, efficiency, and attraction of open and distance learning systems can be achieved by the practice of effective learner-content interaction. With the development of new technologies, interactive e-learning materials have been commonly used as a resource in open and distance learning, along with the printed books. The intellectual engagement of the learners with the content that is course materials may also affect their satisfaction for the open and distance learning practices in general. Learner satisfaction holds an important place in open and distance learning since it will eventually contribute to the achievement of learning outcomes. Using the learner-content interaction activities in course materials, Anadolu University, by its Open Education system, tries to involve learners in deep and meaningful learning practices. Especially, during the e-learning material design and production processes, identifying appropriate learner-content interaction activities within the context of learning outcomes holds a big importance. Considering the lack of studies adopting this approach, as well as its being a study on the use of e-learning materials in Open Education system, this research holds a big value in open and distance learning literature. In this respect, the present study aimed to investigate a) which learner-content interaction activities included in interactive courses are the most effective in learners’ achievement of verbal information learning outcomes and b) to what extent distance learners are satisfied with these learner-content interaction activities. For this study, the quasi-experimental research design was adopted. The 120 participants of the study were from Anadolu University Open Education Faculty students living in Eskişehir. The students were divided into 6 groups randomly. While 5 of these groups received different learner-content interaction activities as a part of the experiment, the other group served as the control group. The data were collected mainly through two instruments: pre-test and post-test. In addition to those tests, learners’ perceived learning was assessed with an item at the end of the program. The data collected from pre-test and post-test were analyzed by ANOVA, and in the light of the findings of this approximately 24-month study, suggestions for the further design of e-learning materials within the context of learner-content interaction activities will be provided at the conference. The current study is planned to be an antecedent for the following studies that will examine the effects of activities on other learning domains.

Keywords: interaction, distance education, interactivity, online courses

Procedia PDF Downloads 193
14435 Rings Characterized by Classes of Rad-plus-Supplemented Modules

Authors: Manoj Kumar Patel

Abstract:

In this paper, we introduce and give various properties of weak* Rad-plus-supplemented and cofinitely weak* Rad-plus-supplemented modules over some special kinds of rings, in particular, artinian serial ring and semiperfect ring. Also prove that ring R is artinian serial if and only if every right and left R-module is weak* Rad-plus-supplemented. We provide the counter example which proves that weak* Rad-plus-supplemented module is the generalization of plus-supplemented and Rad-plus-supplemented modules. Furthermore, as an application of above finding results of this research article, our main focus is to characterized the semisimple ring, artinian principal ideal ring, semilocal ring, semiperfect ring, perfect ring, commutative noetherian ring and Dedekind domain in terms of weak* Rad-plus-supplemented module.

Keywords: cofinitely weak* Rad-plus-supplemented module , Dedekind domain, Rad-plus-supplemented module, semiperfect ring

Procedia PDF Downloads 259
14434 Designing a Dispersion Flattened Single Mode PCF for E-Band to U-Band with Less Effective Area

Authors: Shabbir Chowdhury

Abstract:

A signal is broadened when it is gone through a channel, this phenomenon is known as dispersion. And dispersion is different for different wavelength. So bandwidth become limited. Research have tried to design an optical fiber with flattened dispersion to use more bandwidth and also for wavelength division multiplexing. In this paper, a single mode photonic crystal fiber with a flattened dispersion and less effective area has been proposed where silica is used as fiber materials. The effective dispersion varies from -1.996 to 0.1783 [ps/(nm-km)] for enter E-band to U-band. This fiber will take only 3.048 [micrometer^2] (for 1.75 micrometer wavelength). Silica is being used as the fiber material.

Keywords: photonic crystal fiber, dispersion, bandwidth, chromatic dispersion, effective dispersion, dispersion compensation, effective area, effective refractive index

Procedia PDF Downloads 413
14433 Architectural Thinking in a Time of Climate Emergency

Authors: Manoj Parmar

Abstract:

The article uses reflexivity as a research method to investigate and propose an architectural theory plan for climate change. It hypothecates that to discuss or formulate discourse on "Architectural Thinking in a Time of Climate Emergency," firstly, we need to understand the modes of integration that enable architectural thinking with climate change. The study intends to study the various integration modes that have evolved historically and situate them in time. Subsequently, it analyses the integration pattern, challenges the existing model, and finds a way towards climate change as central to architectural thinking. The study is fundamental on-premises that ecology and climate change scholarship has consistently out lashed the asymmetrical and nonlinear knowledge and needs approaches for architecture that are less burden to climate change to people and minimize its impact on ecology.

Keywords: climate change, architectural theory, reflexivity, modernity

Procedia PDF Downloads 283
14432 Theoretical Perspective on the Dearth of Investigative Journalism in Nigeria

Authors: John Ayodele Oyewole

Abstract:

Investigative journalism in Nigeria is increasingly declining as a result of some challenges associated with its practice, where corruption, incessant insecurity, embezzlement, religion, tribalism, and nepotism have indeed become a routine to the detriment of the country in every aspect of life. Investigative journalism is hardly being practised in Nigeria today because journalists fear for their lives. With in-depth interviews, this research uses the theory of media responsibility to examine the nature of investigative journalism in Nigeria, coupled with the exploration of secondary data - looking into how the Nigerian media disseminate news that is supposed to be continuous but is never brought to a conclusive end - where the hope of the audience with the current momentum of such news, as well as the enthusiasm of the audience to follow such stories is dashed, for lack of follow up of such stories. Therefore the paper suggests the need to resuscitate investigative journalism in Nigeria and the need to promulgate special laws to protect journalists.

Keywords: dearth, investigative journalism, Nigeria, journalism

Procedia PDF Downloads 158
14431 Advanced Machine Learning Algorithm for Credit Card Fraud Detection

Authors: Manpreet Kaur

Abstract:

When legitimate credit card users are mistakenly labelled as fraudulent in numerous financial delated applications, there are numerous ethical problems. The innovative machine learning approach we have suggested in this research outperforms the current models and shows how to model a data set for credit card fraud detection while minimizing false positives. As a result, we advise using random forests as the best machine learning method for predicting and identifying credit card transaction fraud. The majority of victims of these fraudulent transactions were discovered to be credit card users over the age of 60, with a higher percentage of fraudulent transactions taking place between the specific hours.

Keywords: automated fraud detection, isolation forest method, local outlier factor, ML algorithm, credit card

Procedia PDF Downloads 110
14430 COVID-19, Employee Perspectives, and the Shifting Nature of Work

Authors: Jonathan H. Westover, Maureen S. Andrade, Angela Schill, Jeff Peterson, Samuel Choi

Abstract:

The purpose of this research is to understand employee perspectives on their work characteristics and conditions, particularly related to the COVID-19 pandemic and the future of work. Working conditions impact job satisfaction. People tend to measure job satisfaction by comparing aspects of the job they have with those they want. Job satisfaction is related to the value that one places on specific aspects of a job, such as autonomy, pay and benefits, challenge, growth, or meaningful work, and the degree to which such elements are present. The value one places on these various job characteristics may differ based on gender, age, personality, occupation, context, or other factors. This study will examine various job characteristics and working conditions with an emphasis on COVID-19 to determine how managers and leaders and better support and develop their employees.

Keywords: COVID-19, employee perspectives nature of work, future of work

Procedia PDF Downloads 167
14429 Labor Welfare and Social Security

Authors: Shoaib Alvi

Abstract:

Mahatma Gandhi was said “Man becomes great exactly in the degree in which he works for the welfare of his fellow-men”. Labor welfare is an important fact of Industrial relations. With the growth of industrialization, mechanization and computerization, labor welfare measures have got the fillip. The author believes that Labor welfare includes provisions of various facilities and amenities in and around the work place for the better life of the workers. Labor welfare is, thus, one of the major determinants of industrial relations. It comprises all human efforts the work place for the better life of the worker. The social and economic aspects of the life of the workers have the direct influence on the social and economic development of the nation. Author thinks that there could be multiple objectives in having, labor welfare programme the concern for improving the lot of the workers, a philosophy of humanitarianism or internal social responsibility, a feeling of concern, and caring by providing some of life's basic amenities, besides the basic pay packet. Such caring is supposed to build a sense of loyalty on the part of the employee towards the organization. The author thinks that Social security is the security that the State furnishes against the risks which an individual of small means cannot today, stand up to by himself even in private combination with his fellows. Social security is one of the pillars on which the structure of a welfare state rests, and it constitutes the hardcore of social policy in most countries. It is through social security measures that the state attempts to maintain every citizen at a certain prescribed level below which no one is allowed to fall. According to author, social assistance is a method according to which benefits are given to the needy persons, fulfilling the prescribed conditions, by the government out of its own resources. Author has analyzed and studied the relationship between the labor welfare social security and also studied various international conventions on provisions of social security by International Authorities like United Nations, International Labor Organization, and European Union etc. Author has also studied and analyzed concept of labor welfare and social security schemes of many countries around the globe ex:- Social security in Australia, Social security in Switzerland, Social Security (United States), Mexican Social Security Institute, Welfare in Germany, Social security schemes of India for labor welfare in both organized sector and unorganized sector. In this Research paper, Author has done the study on the Conceptual framework of the Labour Welfare. According to author, labors are highly perishable, which need constant welfare measures for their upgradation and performance in this field. At last author has studied role of trade unions and labor welfare unions and other institutions working for labor welfare, in this research paper author has also identified problems these Unions and labor welfare bodies’ face and tried to find out solutions for the problems and also analyzed various steps taken by the government of various countries around the globe.

Keywords: labor welfare, internal social responsibility, social security, international conventions

Procedia PDF Downloads 573
14428 Artificial Intelligence: Reimagining Education

Authors: Silvia Zanazzi

Abstract:

Artificial intelligence (AI) has become an integral part of our world, transitioning from scientific exploration to practical applications that impact daily life. The emergence of generative AI is reshaping education, prompting new questions about the role of teachers, the nature of learning, and the overall purpose of schooling. While AI offers the potential for optimizing teaching and learning processes, concerns about discrimination and bias arising from training data and algorithmic decisions persist. There is a risk of a disconnect between the rapid development of AI and the goals of building inclusive educational environments. The prevailing discourse on AI in education often prioritizes efficiency and individual skill acquisition. This narrow focus can undermine the importance of collaborative learning and shared experiences. A growing body of research challenges this perspective, advocating for AI that enhances, rather than replaces, human interaction in education. This study aims to examine the relationship between AI and education critically. Reviewing existing research will identify both AI implementation’s potential benefits and risks. The goal is to develop a framework that supports the ethical and effective integration of AI into education, ensuring it serves the needs of all learners. The theoretical reflection will be developed based on a review of national and international scientific literature on artificial intelligence in education. The primary objective is to curate a selection of critical contributions from diverse disciplinary perspectives and/or an inter- and transdisciplinary viewpoint, providing a state-of-the-art overview and a critical analysis of potential future developments. Subsequently, the thematic analysis of these contributions will enable the creation of a framework for understanding and critically analyzing the role of artificial intelligence in schools and education, highlighting promising directions and potential pitfalls. The expected results are (1) a classification of the cognitive biases present in representations of AI in education and the associated risks and (2) a categorization of potentially beneficial interactions between AI applications and teaching and learning processes, including those already in use or under development. While not exhaustive, the proposed framework will serve as a guide for critically exploring the complexity of AI in education. It will help to reframe dystopian visions often associated with technology and facilitate discussions on fostering synergies that balance the ‘dream’ of quality education for all with the realities of AI implementation. The discourse on artificial intelligence in education, highlighting reductionist models rooted in fragmented and utilitarian views of knowledge, has the merit of stimulating the construction of alternative perspectives that can ‘return’ teaching and learning to education, human growth, and the well-being of individuals and communities.

Keywords: education, artificial intelligence, teaching, learning

Procedia PDF Downloads 19
14427 Reproduction Characteristics of Saanen Goats Raised under Intensive Conditions in Konya Province

Authors: Vahdettin Sariyel, Birol Dag

Abstract:

In this research, it is aimed to determine the effects of several environmental factors on adaptation and some yield parameters of Saanen goats reared under intensive conditions at a private farm in Konya province. Gestation rate, twins rate and litter size were evaluated as reproductive traits. Gestation rate was determined as 93.8% and 90.5% for 2011 and 2012 years respectively. Twins rate was determined as 59.35 % and 70.00 % for 2011 and 2012 years respectively. Litter size was 1.49 and 1.46 for 2011 and 2012 years respectively. Survival rates of kids from birth to weaning at three months of age were found as 87.74 % and 98.54 % for 2011 and 2012 years respectively.

Keywords: gestation rate, reproduction, saanen, twins rate, vitality

Procedia PDF Downloads 589
14426 Stochastic Pi Calculus in Financial Markets: An Alternate Approach to High Frequency Trading

Authors: Jerome Joshi

Abstract:

The paper presents the modelling of financial markets using the Stochastic Pi Calculus model. The Stochastic Pi Calculus model is mainly used for biological applications; however, the feature of this model promotes its use in financial markets, more prominently in high frequency trading. The trading system can be broadly classified into exchange, market makers or intermediary traders and fundamental traders. The exchange is where the action of the trade is executed, and the two types of traders act as market participants in the exchange. High frequency trading, with its complex networks and numerous market participants (intermediary and fundamental traders) poses a difficulty while modelling. It involves the participants to seek the advantage of complex trading algorithms and high execution speeds to carry out large volumes of trades. To earn profits from each trade, the trader must be at the top of the order book quite frequently by executing or processing multiple trades simultaneously. This would require highly automated systems as well as the right sentiment to outperform other traders. However, always being at the top of the book is also not best for the trader, since it was the reason for the outbreak of the ‘Hot – Potato Effect,’ which in turn demands for a better and more efficient model. The characteristics of the model should be such that it should be flexible and have diverse applications. Therefore, a model which has its application in a similar field characterized by such difficulty should be chosen. It should also be flexible in its simulation so that it can be further extended and adapted for future research as well as be equipped with certain tools so that it can be perfectly used in the field of finance. In this case, the Stochastic Pi Calculus model seems to be an ideal fit for financial applications, owing to its expertise in the field of biology. It is an extension of the original Pi Calculus model and acts as a solution and an alternative to the previously flawed algorithm, provided the application of this model is further extended. This model would focus on solving the problem which led to the ‘Flash Crash’ which is the ‘Hot –Potato Effect.’ The model consists of small sub-systems, which can be integrated to form a large system. It is designed in way such that the behavior of ‘noise traders’ is considered as a random process or noise in the system. While modelling, to get a better understanding of the problem, a broader picture is taken into consideration with the trader, the system, and the market participants. The paper goes on to explain trading in exchanges, types of traders, high frequency trading, ‘Flash Crash,’ ‘Hot-Potato Effect,’ evaluation of orders and time delay in further detail. For the future, there is a need to focus on the calibration of the module so that they would interact perfectly with other modules. This model, with its application extended, would provide a basis for researchers for further research in the field of finance and computing.

Keywords: concurrent computing, high frequency trading, financial markets, stochastic pi calculus

Procedia PDF Downloads 77
14425 Urban and Building Information Modeling’s Applications for Environmental Education: Case Study of Educational Campuses

Authors: Samar Alarif

Abstract:

Smart sustainable educational campuses are the latest paradigm of innovation in the education domain. Campuses become a hub for sustainable environmental innovations. University has a vital role in paving the road for digital transformations in the infrastructure domain by preparing skilled engineers and specialists. The open digital platform enables smart campuses to simulate real education experience by managing their infrastructure within the curriculums. Moreover, it allows the engagement between governments, businesses, and citizens to push for innovation and sustainable services. Urban and building information modeling platforms have recently attained widespread attention in smart campuses due to their applications and benefits for creating the campus's digital twin in the form of an open digital platform. Qualitative and quantitative strategies were used in directing this research to develop and validate the UIM/BIM platform benefits for smart campuses FM and its impact on the institution's sustainable vision. The research findings are based on literature reviews and case studies of the TU berlin El-Gouna campus. Textual data will be collected using semi-structured interviews with actors, secondary data like BIM course student projects, documents, and publications related to the campus actors. The study results indicated that UIM/BIM has several benefits for the smart campus. Universities can achieve better capacity-building by integrating all the actors in the UIM/BIM process. Universities would achieve their community outreach vision by launching an online outreach of UIM/BIM course for the academic and professional community. The UIM/BIM training courses would integrate students from different disciplines and alumni graduated as well as engineers and planners and technicians. Open platforms enable universities to build a partnership with the industry; companies should be involved in the development of BIM technology courses. The collaboration between academia and the industry would fix the gap, promote the academic courses to reply to the professional requirements, and transfer the industry's academic innovations. In addition to that, the collaboration between academia, industry, government vocational and training centers, and civil society should be promoted by co-creation workshops, a series of seminars, and conferences. These co-creation activities target the capacity buildings and build governmental strategies and policies to support expanding the sustainable innovations and to agree on the expected role of all the stakeholders to support the transformation.

Keywords: smart city, smart educational campus, UIM, urban platforms, sustainable campus

Procedia PDF Downloads 120
14424 Preparation and Struggle of Two Generations for Future Care: A Study of Intergenerational Care Planning among Mainland Immigrant Ageing Families in Hong Kong

Authors: Xue Bai, Ranran He, Chang Liu

Abstract:

Care planning before the onset of intensive care needs can benefit older adults’ psychological well-being and increases families’ ability to manage caregiving crises and cope with care transitions. Effective care planning requires collaborative ‘team-work’ in families. However, future care planning has not been substantially examined in intergenerational or family contexts, let alone among immigrant families who have to face particular challenges in parental caregiving. From a family systems perspective, this study intends to explore the extent, processes, and contents of intergenerational care planning of Mainland immigrant ageing families in Hong Kong and to examine the intergenerational congruence and discrepancies in the care planning process. Adopting a qualitative research design, semi-structured in-depth interviews were conducted with 17 adult child-older parent pairs and another 33 adult children. In total, 50 adult children who migrated to Hong Kong after the age of 18 with more than three years’ work experience in Hong Kong had at least one parent aged over 55 years old who was not a Hong Kong resident and considered his/herself as the primary caregiver of the parent were recruited. Seventeen ageing parents of the recruited adult children were invited for dyadic interviews. Scarcity of caregiving resources in the context of cross-border migration, intergenerational discrepancies in care planning stages, both generations’ struggle and ambivalence toward filial care, intergenerational transmission of care values, and facilitating role of accumulated family capital in care preparation were primary themes concluded from participants’ narratives. Compared with ageing parents, immigrant adult children generally displayed lower levels of care planning. Although with a strong awareness of parents’ future care needs, few adult children were found engaged in concrete planning activities. This is largely due to their uncertainties toward future life and career, huge work and living pressure, the relatively good health status of their parents, and restrictions of public welfare policies in the receiving society. By contrast, children’s cross-border migration encouraged ageing parents to have early and clear preparation for future care. Ageing parents mostly expressed low filial care expectations when realizing the scarcity of family caregiving resources in the cross-border context. Even though they prefer in-person support from children, most of them prepare themselves for independent ageing to prioritize the next generation’s needs or choose to utilize paid services, welfare systems, friend networks, or extended family networks in their sending society. Adult children were frequently found caught in the dilemma of desiring to provide high quality and in-person support for their parents but lacking sufficient resources. Notably, a salient pattern of intergenerational transmission in terms of family and care values and ideal care arrangement emerged from intergenerational care preparation. Moreover, the positive role of accumulated family capital generated by a reunion in care preparation and joint decision-making were also identified. The findings of the current study will enhance professionals’ and service providers’ awareness of intergenerational care planning in cross-border migration contexts, inform services to alleviate unpreparedness for elderly care and intergenerational discrepancies concerning care arrangements and broaden family services to encompass intergenerational care planning interventions. Acknowledgment: This study is supported by a General Research Grant from the Research Grants Council of the HKSAR, China (Project Number: 15603818).

Keywords: intergenerational care planning, mainland immigrants in Hong Kong, migrant family, older adults

Procedia PDF Downloads 126
14423 Recycling of Sintered NdFeB Magnet Waste Via Oxidative Roasting and Selective Leaching

Authors: W. Kritsarikan, T. Patcharawit, T. Yingnakorn, S. Khumkoa

Abstract:

Neodymium-iron-boron (NdFeB) magnets classified as high-power magnets are widely used in various applications such as electrical and medical devices and account for 13.5 % of the permanent magnet’s market. Since its typical composition of 29 - 32 % Nd, 64.2 – 68.5 % Fe and 1 – 1.2 % B contains a significant amount of rare earth metals and will be subjected to shortages in the future. Domestic NdFeB magnet waste recycling should therefore be developed in order to reduce social, environmental impacts toward a circular economy. Most research works focus on recycling the magnet wastes, both from the manufacturing process and end of life. Each type of wastes has different characteristics and compositions. As a result, these directly affect recycling efficiency as well as the types and purity of the recyclable products. This research, therefore, focused on the recycling of manufacturing NdFeB magnet waste obtained from the sintering stage of magnet production and the waste contained 23.6% Nd, 60.3% Fe and 0.261% B in order to recover high purity neodymium oxide (Nd₂O₃) using hybrid metallurgical process via oxidative roasting and selective leaching techniques. The sintered NdFeB waste was first ground to under 70 mesh prior to oxidative roasting at 550 - 800 °C to enable selective leaching of neodymium in the subsequent leaching step using H₂SO₄ at 2.5 M over 24 h. The leachate was then subjected to drying and roasting at 700 – 800 °C prior to precipitation by oxalic acid and calcination to obtain neodymium oxide as the recycling product. According to XRD analyses, it was found that increasing oxidative roasting temperature led to an increasing amount of hematite (Fe₂O₃) as the main composition with a smaller amount of magnetite (Fe₃O₄) found. Peaks of neodymium oxide (Nd₂O₃) were also observed in a lesser amount. Furthermore, neodymium iron oxide (NdFeO₃) was present and its XRD peaks were pronounced at higher oxidative roasting temperatures. When proceeded to acid leaching and drying, iron sulfate and neodymium sulfate were mainly obtained. After the roasting step prior to water leaching, iron sulfate was converted to form hematite as the main compound, while neodymium sulfate remained in the ingredient. However, a small amount of magnetite was still detected by XRD. The higher roasting temperature at 800 °C resulted in a greater Fe₂O₃ to Nd₂(SO₄)₃ ratio, indicating a more effective roasting temperature. Iron oxides were subsequently water leached and filtered out while the solution contained mainly neodymium sulfate. Therefore, low oxidative roasting temperature not exceeding 600 °C followed by acid leaching and roasting at 800 °C gave the optimum condition for further steps of precipitation and calcination to finally achieve neodymium oxide.

Keywords: NdFeB magnet waste, oxidative roasting, recycling, selective leaching

Procedia PDF Downloads 181
14422 Speeding Up Lenia: A Comparative Study Between Existing Implementations and CUDA C++ with OpenGL Interop

Authors: L. Diogo, A. Legrand, J. Nguyen-Cao, J. Rogeau, S. Bornhofen

Abstract:

Lenia is a system of cellular automata with continuous states, space and time, which surprises not only with the emergence of interesting life-like structures but also with its beauty. This paper reports ongoing research on a GPU implementation of Lenia using CUDA C++ and OpenGL Interoperability. We demonstrate how CUDA as a low-level GPU programming paradigm allows optimizing performance and memory usage of the Lenia algorithm. A comparative analysis through experimental runs with existing implementations shows that the CUDA implementation outperforms the others by one order of magnitude or more. Cellular automata hold significant interest due to their ability to model complex phenomena in systems with simple rules and structures. They allow exploring emergent behavior such as self-organization and adaptation, and find applications in various fields, including computer science, physics, biology, and sociology. Unlike classic cellular automata which rely on discrete cells and values, Lenia generalizes the concept of cellular automata to continuous space, time and states, thus providing additional fluidity and richness in emerging phenomena. In the current literature, there are many implementations of Lenia utilizing various programming languages and visualization libraries. However, each implementation also presents certain drawbacks, which serve as motivation for further research and development. In particular, speed is a critical factor when studying Lenia, for several reasons. Rapid simulation allows researchers to observe the emergence of patterns and behaviors in more configurations, on bigger grids and over longer periods without annoying waiting times. Thereby, they enable the exploration and discovery of new species within the Lenia ecosystem more efficiently. Moreover, faster simulations are beneficial when we include additional time-consuming algorithms such as computer vision or machine learning to evolve and optimize specific Lenia configurations. We developed a Lenia implementation for GPU using the C++ and CUDA programming languages, and CUDA/OpenGL Interoperability for immediate rendering. The goal of our experiment is to benchmark this implementation compared to the existing ones in terms of speed, memory usage, configurability and scalability. In our comparison we focus on the most important Lenia implementations, selected for their prominence, accessibility and widespread use in the scientific community. The implementations include MATLAB, JavaScript, ShaderToy GLSL, Jupyter, Rust and R. The list is not exhaustive but provides a broad view of the principal current approaches and their respective strengths and weaknesses. Our comparison primarily considers computational performance and memory efficiency, as these factors are critical for large-scale simulations, but we also investigate the ease of use and configurability. The experimental runs conducted so far demonstrate that the CUDA C++ implementation outperforms the other implementations by one order of magnitude or more. The benefits of using the GPU become apparent especially with larger grids and convolution kernels. However, our research is still ongoing. We are currently exploring the impact of several software design choices and optimization techniques, such as convolution with Fast Fourier Transforms (FFT), various GPU memory management scenarios, and the trade-off between speed and accuracy using single versus double precision floating point arithmetic. The results will give valuable insights into the practice of parallel programming of the Lenia algorithm, and all conclusions will be thoroughly presented in the conference paper. The final version of our CUDA C++ implementation will be published on github and made freely accessible to the Alife community for further development.

Keywords: artificial life, cellular automaton, GPU optimization, Lenia, comparative analysis.

Procedia PDF Downloads 40
14421 Role of Natural Language Processing in Information Retrieval; Challenges and Opportunities

Authors: Khaled M. Alhawiti

Abstract:

This paper aims to analyze the role of natural language processing (NLP). The paper will discuss the role in the context of automated data retrieval, automated question answer, and text structuring. NLP techniques are gaining wider acceptance in real life applications and industrial concerns. There are various complexities involved in processing the text of natural language that could satisfy the need of decision makers. This paper begins with the description of the qualities of NLP practices. The paper then focuses on the challenges in natural language processing. The paper also discusses major techniques of NLP. The last section describes opportunities and challenges for future research.

Keywords: data retrieval, information retrieval, natural language processing, text structuring

Procedia PDF Downloads 336
14420 Impacts and Implications: Exploring the Long-Term Health Benefits of Regular Physical Activity

Authors: Muhammad Wahb

Abstract:

Physical activity is increasingly recognized as a significant factor in maintaining optimal health and preventing chronic diseases. This research scrutinizes the long-term health benefits of sustained physical activity, employing a systematic review of epidemiological studies and randomized control trials conducted over the past decade. The study illuminates the protective effects of regular physical activity against cardiovascular disease, obesity, diabetes, and mental health disorders, with a special focus on the mechanisms involved. Furthermore, the paper provides insights into how public health initiatives can effectively promote physical activity among diverse populations, contributing to improved community health outcomes.

Keywords: physical activity, long-term health benefits, chronic disease prevention, public health

Procedia PDF Downloads 94
14419 Forecasting Residential Water Consumption in Hamilton, New Zealand

Authors: Farnaz Farhangi

Abstract:

Many people in New Zealand believe that the access to water is inexhaustible, and it comes from a history of virtually unrestricted access to it. For the region like Hamilton which is one of New Zealand’s fastest growing cities, it is crucial for policy makers to know about the future water consumption and implementation of rules and regulation such as universal water metering. Hamilton residents use water freely and they do not have any idea about how much water they use. Hence, one of proposed objectives of this research is focusing on forecasting water consumption using different methods. Residential water consumption time series exhibits seasonal and trend variations. Seasonality is the pattern caused by repeating events such as weather conditions in summer and winter, public holidays, etc. The problem with this seasonal fluctuation is that, it dominates other time series components and makes difficulties in determining other variations (such as educational campaign’s effect, regulation, etc.) in time series. Apart from seasonality, a stochastic trend is also combined with seasonality and makes different effects on results of forecasting. According to the forecasting literature, preprocessing (de-trending and de-seasonalization) is essential to have more performed forecasting results, while some other researchers mention that seasonally non-adjusted data should be used. Hence, I answer the question that is pre-processing essential? A wide range of forecasting methods exists with different pros and cons. In this research, I apply double seasonal ARIMA and Artificial Neural Network (ANN), considering diverse elements such as seasonality and calendar effects (public and school holidays) and combine their results to find the best predicted values. My hypothesis is the examination the results of combined method (hybrid model) and individual methods and comparing the accuracy and robustness. In order to use ARIMA, the data should be stationary. Also, ANN has successful forecasting applications in terms of forecasting seasonal and trend time series. Using a hybrid model is a way to improve the accuracy of the methods. Due to the fact that water demand is dominated by different seasonality, in order to find their sensitivity to weather conditions or calendar effects or other seasonal patterns, I combine different methods. The advantage of this combination is reduction of errors by averaging of each individual model. It is also useful when we are not sure about the accuracy of each forecasting model and it can ease the problem of model selection. Using daily residential water consumption data from January 2000 to July 2015 in Hamilton, I indicate how prediction by different methods varies. ANN has more accurate forecasting results than other method and preprocessing is essential when we use seasonal time series. Using hybrid model reduces forecasting average errors and increases the performance.

Keywords: artificial neural network (ANN), double seasonal ARIMA, forecasting, hybrid model

Procedia PDF Downloads 336
14418 The Role of Societas Europaea in Business Environment of Czech Republic

Authors: Werner Bernatik, Pavel Adamek

Abstract:

The Societas Europaea is the legal form of company which plays its role within European Union since 2004. Since that it has settled in particular EU's member according to conditions. There is several hundreds of Societas Europaea found in EU and the article pays attention to historical background of conditions which formed the European Entrepreneurial Environment. Also, the differences of particular details of Societas Europaea are mentioned. Furthermore, the case of Czech Republic Business Environment is subject of interest where, surprisingly, the total amount of registered Societas Europaea was identified as the highest. The possible reasons of such situation are subject of research and results are to be presented in the article.

Keywords: Societas Europaea, business environment, legal form of company, entrepreneurial environment, European Union, competitivness

Procedia PDF Downloads 420
14417 Assessing Lithium Recovery from Secondary Sources

Authors: Carolina A. Santos, Alexandra B. Ribeiro

Abstract:

Climate change and environmental degradation are threats to humanity. Europe has been addressing these problems, namely through the Green Deal, with the use of batteries in mobility and energy fields. However, these require the use of critical raw materials, like lithium, which demand is estimated to grow 60 times in the next 30 years. Thus, it is fundamental to promote a circular economy with lithium recovery from secondary resources. These are nowadays key topics, which will be even more relevant in the future, so a new way to approach them is needed and must be encouraged. Therefore, one of our main goals is to analyse two methods of lithium retrieval from secondary sources, bioleaching, and electrodialysis, and assess them regarding their sustainability. The latest results show good efficiency of removal with both methods, even though there are some matrix interferences. Hence, further investment and research are needed in order to make this process sustainable and our society more circular.

Keywords: lithium, sustainable mining, social license to operate, bioleaching, electrodialysis

Procedia PDF Downloads 128