Search results for: the applying models and sufficiency development
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 22696

Search results for: the applying models and sufficiency development

11746 Development and Evaluation of a Portable Ammonia Gas Detector

Authors: Jaheon Gu, Wooyong Chung, Mijung Koo, Seonbok Lee, Gyoutae Park, Sangguk Ahn, Hiesik Kim, Jungil Park

Abstract:

In this paper, we present a portable ammonia gas detector for performing the gas safety management efficiently. The display of the detector is separated from its body. The display module is received the data measured from the detector using ZigBee. The detector has a rechargeable li-ion battery which can be use for 11~12 hours, and a Bluetooth module for sending the data to the PC or the smart devices. The data are sent to the server and can access using the web browser or mobile application. The range of the detection concentration is 0~100ppm.

Keywords: ammonia, detector, gas, portable

Procedia PDF Downloads 401
11745 Investigation of Dissolution in Diammonium Hydrogen Phosphate Solutions of Gypsum

Authors: Turan Çalban, Nursel Keskin, Sabri Çolak, Soner Kuşlu

Abstract:

Gypsum (CaSO4.2H2O) is a mineral that is found in large quantities in the Turkey and in the World. The dissolution of this mineral in the diammonium hydrogen phosphate solutions has not been studied so far. Investigation of the dissolution and dissolution kinetics gypsum in diammonium hydrogen phosphate solutions will be useful for evaluating of solid wastes containing gypsum. In this study, parameters such as diammonium hydrogen phosphate concentration, temperature and stirring speed affecting on the dissolution rate of the gypsum in diammonium hydrogen phosphate solutions were investigated. In experimental studies have researched effectiveness of the selected parameters. The dissolution of gypsum were examined in two parts at low and high temperatures. The experimental results were successfully correlated by linear regression using Statistica program. Dissolution curves were evaluated shrinking core models for solid-fluid systems. The activation energy was found to be 34.58 kJ/mol and 44.45 kJ/mol for the low and the high temperatures. The dissolution of gypsum was controlled by chemical reaction both low temperatures and high temperatures. Reaction rate expressions of dissolution of gypsum at the low temperatures and the high temperatures controlled by chemical reaction are as follows, respectively. = k1.e-5159.5/T.t = k2.e-5346.8/T.t Where k1 and k2 are constants depending on the diammonium hydrogen phosphate solution concentration, the solid/liquid ratio, the stirring speed and the particle size.

Keywords: diammonium hydrogen phosphate, dissolution kinetics, gypsum, kinetics.

Procedia PDF Downloads 373
11744 Winery Owners’ Perceptions of Social Media in Promoting Wine Tourism: Case Study of Langhe, Italy

Authors: Magali Canovi, Francesca Pucciarelli

Abstract:

Over the past decade Langhe has developed as a wine tourism destination and has become increasingly popular on an international basis. Wine tourism has been recognized as an important business driver for wineries in Langhe and wine owners have taken advantage of this opportunity through developing a variety of tourism-related activities at their wineries, notably winery visits, wine tastings, cellar-door sales, B&Bs and/or restaurants. In order to promote these tourism-related activities and attract an increasing number of wine tourists, wineries have started to engage in social media. While tourism scholars are now well aware of the benefits social media provides to both travellers and service providers, the existing literature on social media from supplier’s perspective remains limited. Accordingly, this paper aims to fill this gap through providing new insights into how service providers, that is winery owners, exploit social media to promote tourism online. The paper explores the importance and the role of social media as part of wineries’ marketing strategies to promote wine tourism online. The focus lies on understanding, which motives drive winery owners to activate and implement social media activities in promoting wine tourism. A case study approach is adopted, using the North Italian wine region of Langhe in Piedmont. Empirical evidence is provided by a sample of 28 winery owners. An interpretivist approach to research is adopted in order to extend current understandings of social media within the context of wine tourism. In line with the interpretivist perspective, this paper uses discourse analysis (DA) as a methodological approach for analyzing and interpreting winery owners’ accounts. Three key findings emerge from this research. First, there is a general understanding among winery owners what social media represents an opportunity in promoting wine tourism – if not even a must have. Second, the majority of interviewed winery owners are currently applying to some extent social media to promote wine tourism online as well as to interact and engage with tourists directly. Lastly, a varying degree of usage of social media amongst wineries is identified, with some wineries not recognizing social media as a crucial tool in marketing communication strategies. On the other extent, some commonalities in strategies and platforms chosen can be detected by these wineries that actively participate in social media. In conclusion, the main contribution of this paper is that it extends current understandings of social media in the wine tourism context by offering valuable insights into how service providers perceive and engage in social media.

Keywords: langhe, promotion, social media, wine tourism

Procedia PDF Downloads 170
11743 Onco@Home: Comparing the Costs, Revenues, and Patient Experience of Cancer Treatment at Home with the Standard of Care

Authors: Sarah Misplon, Wim Marneffe, Johan Helling, Jana Missiaen, Inge Decock, Dries Myny, Steve Lervant, Koen Vaneygen

Abstract:

The aim of this study was twofold. First, we investigated whether the current funding from the national health insurance (NHI) of home hospitalization (HH) for oncological patients is sufficient in Belgium. Second, we compared patient’s experiences and preferences of HH to the standard of care (SOC). Two HH models were examined in three Belgian hospitals and three home nursing organizations. In a first HH model, the blood draw and monitoring prior to intravenous therapy were performed by a trained home nurse at the patient’s home the day before the visit to the day hospital. In a second HH model, the administration of two subcutaneous treatments was partly provided at home instead of in the hospital. Therefore, we conducted (1) a bottom-up micro-costing study to compare the costs and revenues for the providers (hospitals and home care organizations), and (2) a cross-sectional survey to compare patient’s experiences and preferences of the SOC group and the HH group. Our results show that HH patients prefer HH and none of them wanted to return to SOC, although the satisfaction of patients was not significantly different between the two categories. At the same time, we find that costs associated to HH are higher overall. Comparing revenues with costs, we conclude that the current funding from NHI of HH for oncological patients is insufficient.

Keywords: cost analysis, health insurance, preference, home hospitalization

Procedia PDF Downloads 104
11742 Evaluating the Fire Resistance of Offshore Tubular K-Joints Subjected to Balanced Axial Loads

Authors: Neda Azari Dodaran, Hamid Ahmadi

Abstract:

Results of 405 finite element (FE) analyses were used in the present research to study the effect of the joint geometry on the ultimate strength and initial stiffness of tubular K-joints subjected to axial loading at fire-induced elevated temperatures. The FE models were validated against the data available from experimental tests. Structural behavior under different temperatures (200ºC, 400ºC, 500ºC, and 700ºC) was investigated and compared to the behavior at ambient temperature (20ºC). A parametric study was conducted to investigate the effect of dimensionless geometrical parameters (β, γ, θ, and τ) on the ultimate strength and initial stiffness. Afterwards, ultimate strength data extracted from the FE analyses were compared with the values calculated from the equations proposed by available design codes in which the ultimate strength of the joint at elevated temperatures is obtained by replacing the yield stress of the steel at ambient temperature with the corresponding value at elevated temperature. It was indicated that this method may not have acceptable accuracy for K-joints under axial loading. Hence, a design formula was developed, through nonlinear regression analyses, to determine the ultimate strength of K-joints subjected to balanced axial loads at elevated temperatures.

Keywords: axial loading, elevated temperature, parametric equation, static strength, tubular K-joint

Procedia PDF Downloads 138
11741 A Design Methodology and Tool to Support Ecodesign Implementation in Induction Hobs

Authors: Anna Costanza Russo, Daniele Landi, Michele Germani

Abstract:

Nowadays, the European Ecodesign Directive has emerged as a new approach to integrate environmental concerns into the product design and related processes. Ecodesign aims to minimize environmental impacts throughout the product life cycle, without compromising performances and costs. In addition, the recent Ecodesign Directives require products which are increasingly eco-friendly and eco-efficient, preserving high-performances. It is very important for producers measuring performances, for electric cooking ranges, hobs, ovens, and grills for household use, and a low power consumption of appliances represents a powerful selling point, also in terms of ecodesign requirements. The Ecodesign Directive provides a clear framework about the sustainable design of products and it has been extended in 2009 to all energy-related products, or products with an impact on energy consumption during the use. The European Regulation establishes measures of ecodesign of ovens, hobs, and kitchen hoods, and domestic use and energy efficiency of a product has a significant environmental aspect in the use phase which is the most impactful in the life cycle. It is important that the product parameters and performances are not affected by ecodesign requirements from a user’s point of view, and the benefits of reducing energy consumption in the use phase should offset the possible environmental impact in the production stage. Accurate measurements of cooking appliance performance are essential to help the industry to produce more energy efficient appliances. The development of ecodriven products requires ecoinnovation and ecodesign tools to support the sustainability improvement. The ecodesign tools should be practical and focused on specific ecoobjectives in order to be largely diffused. The main scope of this paper is the development, implementation, and testing of an innovative tool, which could be an improvement for the sustainable design of induction hobs. In particular, a prototypical software tool is developed in order to simulate the energy performances of the induction hobs. The tool is focused on a multiphysics model which is able to simulate the energy performances and the efficiency of induction hobs starting from the design data. The multiphysics model is composed by an electromagnetic simulation and a thermal simulation. The electromagnetic simulation is able to calculate the eddy current induced in the pot, which leads to the Joule heating of material. The thermal simulation is able to measure the energy consumption during the operational phase. The Joule heating caused from the eddy currents is the output of electromagnetic simulation and the input of thermal ones. The aims of the paper are the development of integrated tools and methodologies of virtual prototyping in the context of the ecodesign. This tool could be a revolutionary instrument in the field of industrial engineering and it gives consideration to the environmental aspects of product design and focus on the ecodesign of energy-related products, in order to achieve a reduced environmental impact.

Keywords: ecodesign, energy efficiency, induction hobs, virtual prototyping

Procedia PDF Downloads 245
11740 Role of Community Based Forest Management to Address Climate Change Problem: A Case of Nepalese Community Forestry

Authors: Bikram Jung Kunwar

Abstract:

Forests have central roles in climate change. The conservation of forests sequestrates the carbon from the atmosphere and also regulates the carbon cycle. However, knowingly and unknowingly the world’s forests were deforested and degraded annually at the rate of 0.18% and emitted the carbon to the atmosphere. The IPCC reports claimed that the deforestation and forest degradation accounts 1/5th of total carbon emission, which is second position after fossil fuels. Since 1.6 billion people depend on varying degree on forests for their daily livelihood, not all deforestation are undesirable. Therefore, to conserve the forests and find the livelihood opportunities for forest surrounding people is prerequisites to address the climate change problems especially in developing countries, and also a growing concern to the forestry sector researchers, planners and policy makers. The study examines the role of community based forest management in carbon mitigation and adaptation taking the examples of Nepal’s community forestry program. In the program, the government hands over a part of national forests to the local communities with sole forest management authorities. However, the government itself retained the ownership rights of forestland. Local communities organized through a local institution called Community Forest User Group (CFUG) managed the forests. They also formed an operational plan with technical prescriptions and a constitution with forest management rules and regulations. The implementation results showed that the CFUGs are not only found effective to organize the local people and construct a local institution to forest conservation and management activities, but also they are able to collect a community fund from the sale of forest products and carried out various community development activities. These development activities have decisive roles to improve the livelihood of forest surrounding people and eventually to address the climate change problems.

Keywords: climate change, community forestry, local institution, Nepal

Procedia PDF Downloads 287
11739 Organic Farming for Sustainable Production of Some Promising Halophytic Species in Saline Environment

Authors: Medhat Tawfik, Ezzat Abd El Lateef, Bahr Amany, Mohamed Magda

Abstract:

Applying organic farming systems in biosaline agriculture is unconventional approach for sustainable use of marginal soil and desert land for planting non-traditional halophytic crops such as Leptochloa fusca, Kochia indica, Sporobolus virginicus and Spartina patens. These plants are highly salt tolerant C4 halophytic forage plants grown well in coastal salt marsh. These halophytic plant will take important place in the farming system, especially in the coastal areas and salt-affected land. We can call it environmentally smart crops because they ensure food security, contribute to energy security, guarantee environmental sustainability, and mitigate the negative impacts of climate change. Organic Agriculture is the most important and widely practiced agro-ecological farming system. It is claimed to be the most sustainable approach and long term adaptation strategy. It promotes soil fertility and diversity at all levels and makes soils less susceptible to erosion. It is also reported to be climate change resilience farming systems as it promotes the proper management of soil, water, biodiversity and local knowledge and provides producers with ecologically sound management decisions. A field experiment was carried out at the Model Farm of National Research Centre, El Tour, South Sinai to study the impact of (Mycorrhiza 1kg/fed., charcoal 4 tons/fed., chicken manure 5 tons/fed., in addition to control treatment) on some growth characters, photosynthetic pigments content, and some physiological aspects i.e. prolind and soluble carbohydrates content, succulence and osmotic pressure values, as well as nutritive values i.e. Crude fat (CF), Acid detergent fiber (ADF), Neutral detergent fiber (NDF), Ether extract (EE) and Nitrogen-free extract (NFE) of five halophytic plant species (Leptochloa fusca, Kochia indica, Sporobolus virginicus and Spartina patens). Our results showed that organic fertilizer treatment enhanced all the previous character as compared with control with superiority to chicken manure over the other treatments.

Keywords: organic agriculture, halophytic plants, saline environment, water security

Procedia PDF Downloads 213
11738 Energy Intensity: A Case of Indian Manufacturing Industries

Authors: Archana Soni, Arvind Mittal, Manmohan Kapshe

Abstract:

Energy has been recognized as one of the key inputs for the economic growth and social development of a country. High economic growth naturally means a high level of energy consumption. However, in the present energy scenario where there is a wide gap between the energy generation and energy consumption, it is extremely difficult to match the demand with the supply. India being one of the largest and rapidly growing developing countries, there is an impending energy crisis which requires immediate measures to be adopted. In this situation, the concept of Energy Intensity comes under special focus to ensure energy security in an environmentally sustainable way. Energy Intensity is defined as the energy consumed per unit output in the context of industrial energy practices. It is a key determinant of the projections of future energy demands which assists in policy making. Energy Intensity is inversely related to energy efficiency; lesser the energy required to produce a unit of output or service, the greater is the energy efficiency. Energy Intensity of Indian manufacturing industries is among the highest in the world and stands for enormous energy consumption. Hence, reducing the Energy Intensity of Indian manufacturing industries is one of the best strategies to achieve a low level of energy consumption and conserve energy. This study attempts to analyse the factors which influence the Energy Intensity of Indian manufacturing firms and how they can be used to reduce the Energy Intensity. The paper considers six of the largest energy consuming manufacturing industries in India viz. Aluminium, Cement, Iron & Steel Industries, Textile Industries, Fertilizer and Paper industries and conducts a detailed Energy Intensity analysis using the data from PROWESS database of the Centre for Monitoring Indian Economy (CMIE). A total of twelve independent explanatory variables based on various factors such as raw material, labour, machinery, repair and maintenance, production technology, outsourcing, research and development, number of employees, wages paid, profit margin and capital invested have been taken into consideration for the analysis.

Keywords: energy intensity, explanatory variables, manufacturing industries, PROWESS database

Procedia PDF Downloads 322
11737 Mediating Role of Social Responsibility on the Relationship between Consumer Awareness of Green Marketing and Purchase Intentions

Authors: Norazah Mohd Suki, Norbayah Mohd Suki

Abstract:

This research aims to examine the influence of mediating effect of corporate social responsibility on the relationship between consumer awareness of green marketing and purchase intentions in the retail setting. Data from 200 valid questionnaires was analyzed using the partial least squares (PLS) approach for the analysis of structural equation models with SmartPLS computer program version 2.0 as research data does not necessarily have a multivariate normal distribution and is less sensitive to sample size than other covariance approaches. PLS results revealed that corporate social responsibility partially mediated the link between consumer awareness of green marketing and purchase intentions of the product in the retail setting. Marketing managers should allocate a sufficient portion of their budget to appropriate corporate social responsibility activities by engaging in voluntary programs for positive return on investment leading to increased business profitability and long run business sustainability. The outcomes of the mediating effects of corporate social responsibility add a new impetus to the growing literature and preceding discoveries on consumer green marketing awareness, which is inadequately researched in the Malaysian setting. Direction for future research is also presented.

Keywords: green marketing awareness, social responsibility, partial least squares, purchase intention

Procedia PDF Downloads 590
11736 Analysis of Metamaterial Permeability on the Performance of Loosely Coupled Coils

Authors: Icaro V. Soares, Guilherme L. F. Brandao, Ursula D. C. Resende, Glaucio L. Siqueira

Abstract:

Electrical energy can be wirelessly transmitted through resonant coupled coils that operate in the near-field region. Once in this region, the field has evanescent character, the efficiency of Resonant Wireless Power Transfer (RWPT) systems decreases proportionally with the inverse cube of distance between the transmitter and receiver coils. The commercially available RWPT systems are restricted to short and mid-range applications in which the distance between coils is lesser or equal to the coil size. An alternative to overcome this limitation is applying metamaterial structures to enhance the coupling between coils, thus reducing the field decay along the distance between them. Metamaterials can be conceived as composite materials with periodic or non-periodic structure whose unconventional electromagnetic behaviour is due to its unit cell disposition and chemical composition. This new kind of material has been used in frequency selective surfaces, invisibility cloaks, leaky-wave antennas, among other applications. However, for RWPT it is mainly applied as superlenses which are lenses that can overcome the optical limitation and are made of left-handed media, that is, a medium with negative magnetic permeability and electric permittivity. As RWPT systems usually operate at wavelengths of hundreds of meters, the metamaterial unit cell size is much smaller than the wavelength. In this case, electric and magnetic field are decoupled, therefore the double negative condition for superlenses are not required and the negative magnetic permeability is enough to produce an artificial magnetic medium. In this work, the influence of the magnetic permeability of a metamaterial slab inserted between two loosely coupled coils is studied in order to find the condition that leads to the maximum transmission efficiency. The metamaterial used is formed by a subwavelength unit cell that consist of a capacitor-loaded split ring with an inner spiral that is designed and optimized using the software Computer Simulation Technology. The unit cell permeability is experimentally characterized by the ratio of the transmission parameters between coils measured with and without the presence of the metamaterial slab. Early measurements results show that the transmission coefficient at the resonant frequency after the inclusion of the metamaterial is about three times higher than with just the two coils, which confirms the enhancement that this structure brings to RWPT systems.

Keywords: electromagnetic lens, loosely coupled coils, magnetic permeability, metamaterials, resonant wireless power transfer, subwavelength unit cells

Procedia PDF Downloads 135
11735 A Method to Compute Efficient 3D Helicopters Flight Trajectories Based On a Motion Polymorph-Primitives Algorithm

Authors: Konstanca Nikolajevic, Nicolas Belanger, David Duvivier, Rabie Ben Atitallah, Abdelhakim Artiba

Abstract:

Finding the optimal 3D path of an aerial vehicle under flight mechanics constraints is a major challenge, especially when the algorithm has to produce real-time results in flight. Kinematics models and Pythagorian Hodograph curves have been widely used in mobile robotics to solve this problematic. The level of difficulty is mainly driven by the number of constraints to be saturated at the same time while minimizing the total length of the path. In this paper, we suggest a pragmatic algorithm capable of saturating at the same time most of dimensioning helicopter 3D trajectories’ constraints like: curvature, curvature derivative, torsion, torsion derivative, climb angle, climb angle derivative, positions. The trajectories generation algorithm is able to generate versatile complex 3D motion primitives feasible by a helicopter with parameterization of the curvature and the climb angle. An upper ”motion primitives’ concatenation” algorithm is presented based. In this article we introduce a new way of designing three-dimensional trajectories based on what we call the ”Dubins gliding symmetry conjecture”. This extremely performing algorithm will be soon integrated to a real-time decisional system dealing with inflight safety issues.

Keywords: robotics, aerial robots, motion primitives, helicopter

Procedia PDF Downloads 600
11734 Additional Usage of Remdesivir with the Standard of Care in Patients with Moderate And Severe COVID-19: A Tertiary Hospital’s Experience

Authors: Pugazhenthan Thangaraju

Abstract:

Background: Since the pandemic began, more than millions of people have become infected with COVID-19. Globally, researchers are working for safe and effective treatments for this disease. Remdesivir is a drug that has been approved for the treatment of COVID-19. Many aspects are still being considered that may influence the future use of remdesivir. Aim: To assess the safety and efficacy of Remdesivir in hospitalized adult patients diagnosed with moderate and severe COVID-19. Methods: It was a record-based retrospective cohort study conducted between April 1st, 2020 and June 30th, 2021 at the tertiary care teaching hospital All India Institutes of Medical Sciences (AIIMS), Raipur Results: There were a total of 10,559 medical records of COVID-19 patients of which 1034 records were included in this study. Overall, irrespective of the survival status, there was statistical significant difference observed between the WHO score at the time of admission and discharge. Clinical improvement among the survivors was found to be statistically significant. Conclusion: Remdesivir's potential efficacy against coronaviruses has so far been limited to in vitro studies and animal models. However, information about COVID-19 is rapidly expanding. Several clinical trials for the treatment of COVID-19 with remdesivir are now underway. However, the findings of this study support remdesivir as a promising agent in the fight against SARS-CoV-2.

Keywords: Remdesivir, COVID-19, SARS-CoV-2, antiviral, RNA-dependent RNA polymerase, viral pneumonia

Procedia PDF Downloads 52
11733 Mixed Alumina-Silicate Materials for Groundwater Remediation

Authors: Ziyad Abunada, Abir Al-tabbaa

Abstract:

The current work is investigating the effectiveness of combined mixed materials mainly modified bentonites and organoclay in treating contaminated groundwater. Sodium bentonite was manufactured with a quaternary amine surfactant, dimethyl ammonium chloride to produce organoclay (OC). Inorgano-organo bentonite (IOB) was produced by intercalating alkylbenzyd-methyl-ammonium chloride surfactant into sodium bentonite and pillared with chlorohydrol pillaring agent. The materials efficiency was tested for both TEX compounds from model-contaminated water and a mixture of organic contaminants found in groundwater samples collected from a contaminated site in the United Kingdom. The sorption data was fitted well to both Langmuir and Freundlich adsorption models reflecting the double sorption model where the correlation coefficient was greater than 0.89 for all materials. The mixed materials showed higher sorptive capacity than individual material with a preference order of X> E> T and a maximum sorptive capacity of 21.8 mg/g was reported for IOB-OC materials for o-xylene. The mixed materials showed at least two times higher affinity towards a mixture of organic contaminants in groundwater samples. Other experimental parameters such as pH and contact time were also investigated. The pseudo-second-order rate equation was able to provide the best description of adsorption kinetics.

Keywords: modified bentobite, groundwater, adsorption, contaminats

Procedia PDF Downloads 211
11732 The Effects of Interest Rates on Islamic Banks in a Dual Banking System: Empirical Evidence from Saudi Arabia

Authors: Mouldi Djelassi, Jamel Boukhatem

Abstract:

Background: A relation has been established between Islamic banks' activities and interest rates. The aim of this study was to explore the impact of interest rates on the deposits and loans held by Islamic and conventional banks in Saudi Arabia. Methods: A time series data was performed over the period 2008Q1-2020Q2 on eight conventional banks and four Islamic banks. The impacts of interest rate shocks on deposits and loans were identified through panel vector autoregressive models. Results: Impulse response function analysis showed that increasing interest rates reduce loans and conventional deposits. For Islamic banks, deposits are more affected by interest rates than lending. Variance decomposition analysis revealed that deposits contribute to 61% of the Islamic financing variation and only 25% of the conventional loans. Conclusion: Interest rates impacted Islamic banks especially through deposits, which is inconsistent with the theoretical framework. Islamic deposits played an important role in Islamic financing variation and may provide to be a channel for the transmission of the monetary policy in a dual banking system. Monetary policy in Saudi Arabia works in part through “credits” (conventional bank credits) as well as through “money” (conventional and Islamic bank deposits).

Keywords: Islamic banking, interest rates, monetary policy transmission, panel VAR

Procedia PDF Downloads 95
11731 An Application of Meta-Modeling Methods for Surrogating Lateral Dynamics Simulation in Layout-Optimization for Electric Drivetrains

Authors: Christian Angerer, Markus Lienkamp

Abstract:

Electric vehicles offer a high variety of possible drivetrain topologies with up to 4 motors. Multi-motor-designs can have several advantages regarding traction, vehicle dynamics, safety and even efficiency. With a rising number of motors, the whole drivetrain becomes more complex. All permutations of gearings, drivetrain-layouts, motor-types and –sizes lead up in a very large solution space. Single elements of this solution space can be analyzed by simulation methods. In addition to longitudinal vehicle behavior, which most optimization-approaches are restricted to, also lateral dynamics are important for vehicle dynamics, stability and efficiency. In order to compete large solution spaces and to find an optimal result, genetic algorithm based optimization is state-of-the-art. As lateral dynamics simulation is way more CPU-intensive, optimization takes much more time than in case of longitudinal-only simulation. Therefore, this paper shows an approach how to create meta-models from a 14-degree of freedom vehicle model in order to enable a numerically efficient drivetrain-layout optimization process under consideration of lateral dynamics. Different meta-modelling approaches such as neural networks or DoE are implemented and comparatively discussed.

Keywords: driving dynamics, drivetrain layout, genetic optimization, meta-modeling, lateral dynamicx

Procedia PDF Downloads 398
11730 Artificial Intelligence in Penetration Testing of a Connected and Autonomous Vehicle Network

Authors: Phillip Garrad, Saritha Unnikrishnan

Abstract:

The recent popularity of connected and autonomous vehicles (CAV) corresponds with an increase in the risk of cyber-attacks. These cyber-attacks have been instigated by both researchers or white-coat hackers and cyber-criminals. As Connected Vehicles move towards full autonomy, the impact of these cyber-attacks also grows. The current research details challenges faced in cybersecurity testing of CAV, including access and cost of the representative test setup. Other challenges faced are lack of experts in the field. Possible solutions to how these challenges can be overcome are reviewed and discussed. From these findings, a software simulated CAV network is established as a cost-effective representative testbed. Penetration tests are then performed on this simulation, demonstrating a cyber-attack in CAV. Studies have shown Artificial Intelligence (AI) to improve runtime, increase efficiency and comprehensively cover all the typical test aspects in penetration testing in other industries. There is an attempt to introduce similar AI models to the software simulation. The expectation from this implementation is to see similar improvements in runtime and efficiency for the CAV model. If proven to be an effective means of penetration test for CAV, this methodology may be used on a full CAV test network.

Keywords: cybersecurity, connected vehicles, software simulation, artificial intelligence, penetration testing

Procedia PDF Downloads 92
11729 The Use of Rule-Based Cellular Automata to Track and Forecast the Dispersal of Classical Biocontrol Agents at Scale, with an Application to the Fopius arisanus Fruit Fly Parasitoid

Authors: Agboka Komi Mensah, John Odindi, Elfatih M. Abdel-Rahman, Onisimo Mutanga, Henri Ez Tonnang

Abstract:

Ecosystems are networks of organisms and populations that form a community of various species interacting within their habitats. Such habitats are defined by abiotic and biotic conditions that establish the initial limits to a population's growth, development, and reproduction. The habitat’s conditions explain the context in which species interact to access resources such as food, water, space, shelter, and mates, allowing for feeding, dispersal, and reproduction. Dispersal is an essential life-history strategy that affects gene flow, resource competition, population dynamics, and species distributions. Despite the importance of dispersal in population dynamics and survival, understanding the mechanism underpinning the dispersal of organisms remains challenging. For instance, when an organism moves into an ecosystem for survival and resource competition, its progression is highly influenced by extrinsic factors such as its physiological state, climatic variables and ability to evade predation. Therefore, greater spatial detail is necessary to understand organism dispersal dynamics. Understanding organisms dispersal can be addressed using empirical and mechanistic modelling approaches, with the adopted approach depending on the study's purpose Cellular automata (CA) is an example of these approaches that have been successfully used in biological studies to analyze the dispersal of living organisms. Cellular automata can be briefly described as occupied cells by an individual that evolves based on proper decisions based on a set of neighbours' rules. However, in the ambit of modelling individual organisms dispersal at the landscape scale, we lack user friendly tools that do not require expertise in mathematical models and computing ability; such as a visual analytics framework for tracking and forecasting the dispersal behaviour of organisms. The term "visual analytics" (VA) describes a semiautomated approach to electronic data processing that is guided by users who can interact with data via an interface. Essentially, VA converts large amounts of quantitative or qualitative data into graphical formats that can be customized based on the operator's needs. Additionally, this approach can be used to enhance the ability of users from various backgrounds to understand data, communicate results, and disseminate information across a wide range of disciplines. To support effective analysis of the dispersal of organisms at the landscape scale, we therefore designed Pydisp which is a free visual data analytics tool for spatiotemporal dispersal modeling built in Python. Its user interface allows users to perform a quick and interactive spatiotemporal analysis of species dispersal using bioecological and climatic data. Pydisp enables reuse and upgrade through the use of simple principles such as Fuzzy cellular automata algorithms. The potential of dispersal modeling is demonstrated in a case study by predicting the dispersal of Fopius arisanus (Sonan), endoparasitoids to control Bactrocera dorsalis (Hendel) (Diptera: Tephritidae) in Kenya. The results obtained from our example clearly illustrate the parasitoid's dispersal process at the landscape level and confirm that dynamic processes in an agroecosystem are better understood when designed using mechanistic modelling approaches. Furthermore, as demonstrated in the example, the built software is highly effective in portraying the dispersal of organisms despite the unavailability of detailed data on the species dispersal mechanisms.

Keywords: cellular automata, fuzzy logic, landscape, spatiotemporal

Procedia PDF Downloads 66
11728 Uncertainty and Multifunctionality as Bridging Concepts from Socio-Ecological Resilience to Infrastructure Finance in Water Resource Decision Making

Authors: Anita Lazurko, Laszlo Pinter, Jeremy Richardson

Abstract:

Uncertain climate projections, multiple possible development futures, and a financing gap create challenges for water infrastructure decision making. In contrast to conventional predict-plan-act methods, an emerging decision paradigm that enables social-ecological resilience supports decisions that are appropriate for uncertainty and leverage social, ecological, and economic multifunctionality. Concurrently, water infrastructure project finance plays a powerful role in sustainable infrastructure development but remains disconnected from discourse in socio-ecological resilience. At the time of research, a project to transfer water from Lesotho to Botswana through South Africa in the Orange-Senqu River Basin was at the pre-feasibility stage. This case was analysed through documents and interviews to investigate how uncertainty and multifunctionality are conceptualised and considered in decisions for the resilience of water infrastructure and to explore bridging concepts that might allow project finance to better enable socio-ecological resilience. Interviewees conceptualised uncertainty as risk, ambiguity and ignorance, and multifunctionality as politically-motivated shared benefits. Numerous efforts to adopt emerging decision methods that consider these terms were in use but required compromises to accommodate the persistent, conventional decision paradigm, though a range of future opportunities was identified. Bridging these findings to finance revealed opportunities to consider a more comprehensive scope of risk, to leverage risk mitigation measures, to diffuse risks and benefits over space, time and to diverse actor groups, and to clarify roles to achieve multiple objectives for resilience. In addition to insights into how multiple decision paradigms interact in real-world decision contexts, the research highlights untapped potential at the juncture between socio-ecological resilience and project finance.

Keywords: socio-ecological resilience, finance, multifunctionality, uncertainty

Procedia PDF Downloads 111
11727 Physics of Decision for Polling Place Management: A Case Study from the 2020 USA Presidential Election

Authors: Nafe Moradkhani, Frederick Benaben, Benoit Montreuil, Ali Vatankhah Barenji, Dima Nazzal

Abstract:

In the context of the global pandemic, the practical management of the 2020 presidential election in the USA was a strong concern. To anticipate and prepare for this election accurately, one of the main challenges was to confront (i) forecasts of voter turnout, (ii) capacities of the facilities and, (iii) potential configuration options of resources. The approach chosen to conduct this anticipative study consists of collecting data about forecasts and using simulation models to work simultaneously on resource allocation and facility configuration of polling places in Fulton County, Georgia’s largest county. A polling place is a dedicated facility where voters cast their ballots in elections using different devices. This article presents the results of the simulations of such places facing pre-identified potential risks. These results are oriented towards the efficiency of these places according to different criteria (health, trust, comfort). Then a dynamic framework is introduced to describe risks as physical forces perturbing the efficiency of the observed system. Finally, the main benefits and contributions resulting from this simulation campaign are presented.

Keywords: performance, decision support, simulation, artificial intelligence, risk management, election, pandemics, information system

Procedia PDF Downloads 136
11726 Comparison of Sourcing Process in Supply Chain Operation References Model and Business Information Systems

Authors: Batuhan Kocaoglu

Abstract:

Although using powerful systems like ERP (Enterprise Resource Planning), companies still cannot benchmark their processes and measure their process performance easily based on predefined SCOR (Supply Chain Operation References) terms. The purpose of this research is to identify common and corresponding processes to present a conceptual model to model and measure the purchasing process of an organization. The main steps for the research study are: Literature review related to 'procure to pay' process in ERP system; Literature review related to 'sourcing' process in SCOR model; To develop a conceptual model integrating 'sourcing' of SCOR model and 'procure to pay' of ERP model. In this study, we examined the similarities and differences between these two models. The proposed framework is based on the assumptions that are drawn from (1) the body of literature, (2) the authors’ experience by working in the field of enterprise and logistics information systems. The modeling framework provides a structured and systematic way to model and decompose necessary information from conceptual representation to process element specification. This conceptual model will help the organizations to make quality purchasing system measurement instruments and tools. And offered adaptation issues for ERP systems and SCOR model will provide a more benchmarkable and worldwide standard business process.

Keywords: SCOR, ERP, procure to pay, sourcing, reference model

Procedia PDF Downloads 347
11725 Evaluation in Vitro and in Silico of Pleurotus ostreatus Capacity to Decrease the Amount of Low-Density Polyethylene Microplastics Present in Water Sample from the Middle Basin of the Magdalena River, Colombia

Authors: Loren S. Bernal., Catalina Castillo, Carel E. Carvajal, José F. Ibla

Abstract:

Plastic pollution, specifically microplastics, has become a significant issue in aquatic ecosystems worldwide. The large amount of plastic waste carried by water tributaries has resulted in the accumulation of microplastics in water bodies. The polymer aging process caused by environmental influences such as photodegradation and chemical degradation of additives leads to polymer embrittlement and properties change that require degradation or reduction procedures in rivers. However, there is a lack of such procedures for freshwater entities that develop over extended periods. The aim of this study is evaluate the potential of Pleurotus ostreatus a fungus, in reducing lowdensity polyethylene microplastics present in freshwater samples collected from the middle basin of the Magdalena River in Colombia. The study aims to evaluate this process both in vitro and in silico by identifying the growth capacity of Pleurotus ostreatus in the presence of microplastics and identifying the most likely interactions of Pleurotus ostreatus enzymes and their affinity energies. The study follows an engineering development methodology applied on an experimental basis. The in vitro evaluation protocol applied in this study focused on the growth capacity of Pleurotus ostreatus on microplastics using enzymatic inducers. In terms of in silico evaluation, molecular simulations were conducted using the Autodock 1.5.7 program to calculate interaction energies. The molecular dynamics were evaluated by using the myPresto Portal and GROMACS program to calculate radius of gyration and Energies.The results of the study showed that Pleurotus ostreatus has the potential to degrade low-density polyethylene microplastics. The in vitro evaluation revealed the adherence of Pleurotus ostreatus to LDPE using scanning electron microscopy. The best results were obtained with enzymatic inducers as a MnSO4 generating the activation of laccase or manganese peroxidase enzymes in the degradation process. The in silico modelling demonstrated that Pleurotus ostreatus was able to interact with the microplastics present in LDPE, showing affinity energies in molecular docking and molecular dynamics shown a minimum energy and the representative radius of gyration between each enzyme and its substract. The study contributes to the development of bioremediation processes for the removal of microplastics from freshwater sources using the fungus Pleurotus ostreatus. The in silico study provides insights into the affinity energies of Pleurotus ostreatus microplastic degrading enzymes and their interaction with low-density polyethylene. The study demonstrated that Pleurotus ostreatus can interact with LDPE microplastics, making it a good agent for the development of bioremediation processes that aid in the recovery of freshwater sources. The results of the study suggested that bioremediation could be a promising approach to reduce microplastics in freshwater systems.

Keywords: bioremediation, in silico modelling, microplastics, Pleurotus ostreatus

Procedia PDF Downloads 100
11724 Application of Sentinel-2 Data to Evaluate the Role of Mangrove Conservation and Restoration on Aboveground Biomass

Authors: Raheleh Farzanmanesh, Christopher J. Weston

Abstract:

Mangroves are forest ecosystems located in the inter-tidal regions of tropical and subtropical coastlines that provide many valuable economic and ecological benefits for millions of people, such as preventing coastal erosion, providing breeding, and feeding grounds, improving water quality, and supporting the well-being of local communities. In addition, mangroves capture and store high amounts of carbon in biomass and soils that play an important role in combating climate change. The decline in mangrove area has prompted government and private sector interest in mangrove conservation and restoration projects to achieve multiple Sustainable Development Goals, from reducing poverty to improving life on land. Mangrove aboveground biomass plays an essential role in the global carbon cycle, climate change mitigation and adaptation by reducing CO2 emissions. However, little information is available about the effectiveness of mangrove sustainable management on mangrove change area and aboveground biomass (AGB). Here, we proposed a method for mapping, modeling, and assessing mangrove area and AGB in two Global Environment Facility (GEF) blue forests projects based on Sentinel-2 Level 1C imagery during their conservation lifetime. The SVR regression model was used to estimate AGB in Tahiry Honko project in Madagascar and the Abu Dhabi Blue Carbon Demonstration Project (Abu Dhabi Emirates. The results showed that mangrove forests and AGB declined in the Tahiry Honko project, while in the Abu Dhabi project increased after the conservation initiative was established. The results provide important information on the impact of mangrove conservation activities and contribute to the development of remote sensing applications for mapping and assessing mangrove forests in blue carbon initiatives.

Keywords: blue carbon, mangrove forest, REDD+, aboveground biomass, Sentinel-2

Procedia PDF Downloads 55
11723 Design of the Intelligent Virtual Learning Coach. A Contextual Learning Approach to Digital Literacy of Senior Learners in the Context of Electronic Health Record (EHR)

Authors: Ilona Buchem, Carolin Gellner

Abstract:

The call for the support of senior learners in the development of digital literacy has become prevalent in recent years, especially in view of the aging societies paired with advances in digitalization in all spheres of life, including e-health. The goal has been to create opportunities for learning that incorporate the use of context in a reflective and dialogical way. Contextual learning has focused on developing skills through the application of authentic problems. While major research efforts in supporting senior learners in developing digital literacy have been invested so far in e-learning, focusing on knowledge acquisition and cognitive tasks, little research exists in reflective mentoring and coaching with the help of pedagogical agents and addressing the contextual dimensions of learning. This paper describes an approach to creating opportunities for senior learners to improve their digital literacy in the authentic context of the electronic health record (EHR) with the support of an intelligent virtual learning coach. The paper focuses on the design of the virtual coach as part of an e-learning system, which was developed in the EPA-Coach project founded by the German Ministry of Education and Research. The paper starts with the theoretical underpinnings of contextual learning and the related design considerations for a virtual learning coach based on previous studies. Since previous research in the area was mostly designed to cater to the needs of younger audiences, the results had to be adapted to the specific needs of senior learners. Next, the paper outlines the stages in the design of the virtual coach, which included the adaptation of the design requirements, the iterative development of the prototypes, the results of the two evaluation studies and how these results were used to improve the design of the virtual coach. The paper then presents the four prototypes of a senior-friendly virtual learning coach, which were designed to represent different preferences related to the visual appearance, the communication and social interaction styles, and the pedagogical roles. The first evaluation of the virtual coach design was an exploratory, qualitative study, which was carried out in October 2020 with eight seniors aged 64 to 78 and included a range of questions about the preferences of senior learners related to the visual design, gender, age, communication and role. Based on the results of the first evaluation, the design was adapted to the preferences of the senior learners and the new versions of prototypes were created to represent two male and two female options of the virtual coach. The second evaluation followed a quantitative approach with an online questionnaire and was conducted in May 2021 with 41 seniors aged 66 to 93 years. Following three research questions, the survey asked about (1) the intention to use, (2) the perceived characteristics, and (3) the preferred communication/interaction style of the virtual coach, i. e. task-oriented, relationship-oriented, or a mix. This paper follows with the discussion of the results of the design process and ends with conclusions and next steps in the development of the virtual coach including recommendations for further research.

Keywords: virtual learning coach, virtual mentor, pedagogical agent, senior learners, digital literacy, electronic health records

Procedia PDF Downloads 163
11722 Synthesis and Performance Adsorbent from Coconut Shells Polyetheretherketone for Natural Gas Storage

Authors: Umar Hayatu Sidik

Abstract:

The natural gas vehicle represents a cost-competitive, lower-emission alternative to the gasoline-fuelled vehicle. The immediate challenge that confronts natural gas is increasing its energy density. This paper addresses the question of energy density by reviewing the storage technologies for natural gas with improved adsorbent. Technical comparisons are made between storage systems containing adsorbent and conventional compressed natural gas based on the associated amount of moles contained with Compressed Natural Gas (CNG) and Adsorbed Natural Gas (ANG). We also compare gas storage in different cylinder types (1, 2, 3 and 4) based on weight factor and storage capacity. For the storage tank system, we discussed the concept of carbon adsorbents, when used in CNG tanks, offer a means of increasing onboard fuel storage and, thereby, increase the driving range of the vehicle. It confirms that the density of the stored gas in ANG is higher than that of compressed natural gas (CNG) operated at the same pressure. The obtained experimental data were correlated using linear regression analysis with common adsorption kinetic (Pseudo-first order and Pseudo-second order) and isotherm models (Sip and Toth). The pseudo-second-order kinetics describe the best fitness with a correlation coefficient of 9945 at 35 bar. For adsorption isotherms, the Sip model shows better fitness with the regression coefficient (R2) of 0.9982 and with the lowest RSMD value of 0.0148. The findings revealed the potential of adsorbent in natural gas storage applications.

Keywords: natural gas, adsorbent, compressed natural gas, adsorption

Procedia PDF Downloads 52
11721 Issues and Influences in Academic Choices among Communication Students in Oman

Authors: Bernard Nnamdi Emenyeonu

Abstract:

The study of communication as a fully-fledged discipline in institutions of higher education in the Sultanate of Oman is relatively young. Its evolution is associated with Oman's Renaissance beginning from 1970, which ushered in an era of modernization in which education, industrialization, expansion, and liberalization of the mass media, provision of infrastructure, and promotion of multilateral commercial ventures were considered among the top priorities of national development plans. Communication studies were pioneered by the sole government university, Sultan Qaboos University, in the 1990s, but so far, the program is taught in Arabic only. In recognition of the need to produce professionals suitably equipped to fit into the expanding media establishments in the Sultanate as well as the widening global market, the government decided to establish programs in which communication would be taught in English language. Under the supervision of the Ministry of Higher Education, six Colleges of Applied Sciences were established in Oman in 2007. These colleges offer a 4-year Bachelor degree program in communication studies that comprises six areas of specialization: Advertising, Digital Media, International Communication, Journalism, Media Management and Public Relations. Over the years, a trend has emerged where students tend to flock to particular specializations such as Public Relations and Digital Media, while others, such as Advertising and Journalism, continue to draw the least number of students. In some instances, some specializations have had to be frozen due to the dire lack of interest among new students. It has also been observed that female students are more likely to be more biased in choice of specializations. It was therefore the task of this paper to establish, through a survey and focus group interviews, the factors that influence choice of communication studies as well as particular specializations, among Omani Communication Studies undergraduates. Results of the study show that prior to entering into the communication studies program, the majority of students had no idea of what the field entailed. Whatever information they had about communication studies was sourced from friends and relatives rather than more reliable sources such as career fairs or guidance counselors. For the most part, the choice of communication studies as a major was also influenced by factors such as family, friends and prospects for jobs. Another significant finding is the strong association between gender and choice of specializations within the program, with females flocking to digital media while males tended to prefer public relations. Reasons for specialization preferences dwelt strongly on expectations of a good GPA and the promise of a good salary after graduation. Regardless of gender, most students identified careers in news reporting, public relations and advertising as unsuitable for females. Teaching and program presentation were identified as the most suitable for females. Based on these and other results, the paper not only examined the social and cultural factors that are likely to have influenced the respondent's attitude to communication studies, but also discussed the implication for curriculum development and career development in a developing society such as Oman.

Keywords: career choice, communication specialization, media education, Oman

Procedia PDF Downloads 220
11720 Molecular Characterization of Ovine Herpesvirus 2 Strains Based on Selected Glycoprotein and Tegument Genes

Authors: Fulufhelo Amanda Doboro, Kgomotso Sebeko, Stephen Njiro, Moritz Van Vuuren

Abstract:

Ovine herpesvirus 2 (OvHV-2) genome obtained from the lymphopblastoid cell line of a BJ1035 cow was recently sequenced in the United States of America (USA). Information on the sequences of OvHV-2 genes obtained from South African strains from bovine or other African countries and molecular characterization of OvHV-2 is not documented. Present investigation provides information on the nucleotide and derived amino acid sequences and genetic diversity of Ov 7, Ov 8 ex2, ORF 27 and ORF 73 genes, of these genes from OvHV-2 strains circulating in South Africa. Gene-specific primers were designed and used for PCR of DNA extracted from 42 bovine blood samples that previously tested positive for OvHV-2. The expected PCR products of 495 bp, 253 bp, 890 bp and 1632 bp respectively for Ov 7, Ov 8 ex2, ORF 27 and ORF 73 genes were sequenced and multiple sequence analysis done on the selected regions of the sequenced PCR products. Two genotypes for ORF 27 and ORF 73 gene sequences, and three genotypes for Ov 7 and Ov 8 ex2 gene sequences were identified, and similar groupings for the derived amino acid sequences were obtained for each gene. Nucleotide and amino acid sequence variations that led to the identification of the different genotypes included SNPs, deletions and insertions. Sequence analysis of Ov 7 and ORF 27 genes revealed variations that distinguished between sequences from SA and reference OvHV-2 strains. The implication of geographic origin among SA sequences was difficult to evaluate because of random distribution of genotypes in the different provinces, for each gene. However, socio-economic factors such as migration of people with animals, or transportation of animals for agricultural or business use from one province to another are most likely to be responsible for this observation. The sequence variations observed in this study have no impact on the antibody binding activities of glycoproteins encoded by Ov 7, Ov 8 ex2 and ORF 27 genes, as determined by prediction of the presence of B cell epitopes using BepiPred 1.0. The findings of this study will be used for selection of gene candidates for the development of diagnostic assays and vaccine development as well.

Keywords: amino acid, genetic diversity, genes, nucleotide

Procedia PDF Downloads 477
11719 Using ROVs to Teach a Blended STEM Curriculum

Authors: Geoffrey A. Wright

Abstract:

Over the past year we have developed and implemented a blended STEM curriculum based on ROV (Remotely Operated Vehicle) underwater technology with over 300 students in grades 2–9. This paper presents an overview of the curriculum, what we have learned from the development and implementation, with suggestions of how to build a similar statewide ROV program, and how we will continue and enhance the effort this next year with more than 300 additional students. The benefits of the program are the application and blending of STEM principles using inquiry based instruction, where students have shown to increase in STEM self-efficacy and interest.

Keywords: STEM, technology, engineering, ROV

Procedia PDF Downloads 350
11718 Feasibility Study on the Application of Waste Materials for Production of Sustainable Asphalt Mixtures

Authors: Farzaneh Tahmoorian, Bijan Samali, John Yeaman

Abstract:

Road networks are expanding all over the world during the past few decades to meet the increasing freight volumes created by the population growth and industrial development. At the same time, the rate of generation of solid wastes in the society is increasing with the population growth, technological development, and changes in the lifestyle of people. Thus, the management of solid wastes has become an acute problem. Accordingly, there is a need for greater efficiency in the construction and maintenance of road networks, in reducing the overall cost, especially the utilization of natural materials such as aggregates. An efficient means to reduce construction and maintenance costs of road networks is to replace natural (virgin) materials by secondary, recycled materials. Recycling will also help to reduce pressure on landfills and demand for extraction of natural virgin materials thus ensuring sustainability. Application of solid wastes in asphalt layer reduces not only environmental issues associated with waste disposal but also the demand for virgin materials which will subsequently result in sustainability. Therefore, this research aims to investigate the feasibility of the application of some of the waste materials such as glass, construction and demolition wastes, etc. as alternative materials in pavement construction, particularly flexible pavements. To this end, various combination of different waste materials in certain percentages is considered in designing the asphalt mixture. One of the goals of this research is to determine the optimum percentage of all these materials in the mixture. This is done through a series of tests to evaluate the volumetric properties and resilient modulus of the mixture. The information and data collected from these tests are used to select the adequate samples for further assessment through advanced tests such as triaxial dynamic test and fatigue test, in order to investigate the asphalt mixture resistance to permanent deformation and also cracking. This paper presents the results of these investigations on the application of waste materials in asphalt mixture for production of a sustainable asphalt mix.

Keywords: asphalt, glass, pavement, recycled aggregate, sustainability

Procedia PDF Downloads 222
11717 Group Sequential Covariate-Adjusted Response Adaptive Designs for Survival Outcomes

Authors: Yaxian Chen, Yeonhee Park

Abstract:

Driven by evolving FDA recommendations, modern clinical trials demand innovative designs that strike a balance between statistical rigor and ethical considerations. Covariate-adjusted response-adaptive (CARA) designs bridge this gap by utilizing patient attributes and responses to skew treatment allocation in favor of the treatment that is best for an individual patient’s profile. However, existing CARA designs for survival outcomes often hinge on specific parametric models, constraining their applicability in clinical practice. In this article, we address this limitation by introducing a CARA design for survival outcomes (CARAS) based on the Cox model and a variance estimator. This method addresses issues of model misspecification and enhances the flexibility of the design. We also propose a group sequential overlapweighted log-rank test to preserve type I error rate in the context of group sequential trials using extensive simulation studies to demonstrate the clinical benefit, statistical efficiency, and robustness to model misspecification of the proposed method compared to traditional randomized controlled trial designs and response-adaptive randomization designs.

Keywords: cox model, log-rank test, optimal allocation ratio, overlap weight, survival outcome

Procedia PDF Downloads 46