Search results for: time series models
23534 The Realization of a System’s State Space Based on Markov Parameters by Using Flexible Neural Networks
Authors: Ali Isapour, Ramin Nateghi
Abstract:
— Markov parameters are unique parameters of the system and remain unchanged under similarity transformations. Markov parameters from a power series that is convergent only if the system matrix’s eigenvalues are inside the unity circle. Therefore, Markov parameters of a stable discrete-time system are convergent. In this study, we aim to realize the system based on Markov parameters by using Artificial Neural Networks (ANN), and this end, we use Flexible Neural Networks. Realization means determining the elements of matrices A, B, C, and D.Keywords: Markov parameters, realization, activation function, flexible neural network
Procedia PDF Downloads 19423533 Forecasting Lake Malawi Water Level Fluctuations Using Stochastic Models
Authors: M. Mulumpwa, W. W. L. Jere, M. Lazaro, A. H. N. Mtethiwa
Abstract:
The study considered Seasonal Autoregressive Integrated Moving Average (SARIMA) processes to select an appropriate stochastic model to forecast the monthly data from the Lake Malawi water levels for the period 1986 through 2015. The appropriate model was chosen based on SARIMA (p, d, q) (P, D, Q)S. The Autocorrelation function (ACF), Partial autocorrelation (PACF), Akaike Information Criteria (AIC), Bayesian Information Criterion (BIC), Box–Ljung statistics, correlogram and distribution of residual errors were estimated. The SARIMA (1, 1, 0) (1, 1, 1)12 was selected to forecast the monthly data of the Lake Malawi water levels from August, 2015 to December, 2021. The plotted time series showed that the Lake Malawi water levels are decreasing since 2010 to date but not as much as was the case in 1995 through 1997. The future forecast of the Lake Malawi water levels until 2021 showed a mean of 474.47 m ranging from 473.93 to 475.02 meters with a confidence interval of 80% and 90% against registered mean of 473.398 m in 1997 and 475.475 m in 1989 which was the lowest and highest water levels in the lake respectively since 1986. The forecast also showed that the water levels of Lake Malawi will drop by 0.57 meters as compared to the mean water levels recorded in the previous years. These results suggest that the Lake Malawi water level may not likely go lower than that recorded in 1997. Therefore, utilisation and management of water-related activities and programs among others on the lake should provide room for such scenarios. The findings suggest a need to manage the Lake Malawi jointly and prudently with other stakeholders starting from the catchment area. This will reduce impacts of anthropogenic activities on the lake’s water quality, water level, aquatic and adjacent terrestrial ecosystems thereby ensuring its resilience to climate change impacts.Keywords: forecasting, Lake Malawi, water levels, water level fluctuation, climate change, anthropogenic activities
Procedia PDF Downloads 23023532 Predict Suspended Sediment Concentration Using Artificial Neural Networks Technique: Case Study Oued El Abiod Watershed, Algeria
Authors: Adel Bougamouza, Boualam Remini, Abd El Hadi Ammari, Feteh Sakhraoui
Abstract:
The assessment of sediments being carried by a river is importance for planning and designing of various water resources projects. In this study, Artificial Neural Network Techniques are used to estimate the daily suspended sediment concentration for the corresponding daily discharge flow in the upstream of Foum El Gherza dam, Biskra, Algeria. The FFNN, GRNN, and RBNN models are established for estimating current suspended sediment values. Some statistics involving RMSE and R2 were used to evaluate the performance of applied models. The comparison of three AI models showed that the RBNN model performed better than the FFNN and GRNN models with R2 = 0.967 and RMSE= 5.313 mg/l. Therefore, the ANN model had capability to improve nonlinear relationships between discharge flow and suspended sediment with reasonable precision.Keywords: artificial neural network, Oued Abiod watershed, feedforward network, generalized regression network, radial basis network, sediment concentration
Procedia PDF Downloads 41823531 Kinetic Façade Design Using 3D Scanning to Convert Physical Models into Digital Models
Authors: Do-Jin Jang, Sung-Ah Kim
Abstract:
In designing a kinetic façade, it is hard for the designer to make digital models due to its complex geometry with motion. This paper aims to present a methodology of converting a point cloud of a physical model into a single digital model with a certain topology and motion. The method uses a Microsoft Kinect sensor, and color markers were defined and applied to three paper folding-inspired designs. Although the resulted digital model cannot represent the whole folding range of the physical model, the method supports the designer to conduct a performance-oriented design process with the rough physical model in the reduced folding range.Keywords: design media, kinetic facades, tangible user interface, 3D scanning
Procedia PDF Downloads 41323530 A Framework for Auditing Multilevel Models Using Explainability Methods
Authors: Debarati Bhaumik, Diptish Dey
Abstract:
Multilevel models, increasingly deployed in industries such as insurance, food production, and entertainment within functions such as marketing and supply chain management, need to be transparent and ethical. Applications usually result in binary classification within groups or hierarchies based on a set of input features. Using open-source datasets, we demonstrate that popular explainability methods, such as SHAP and LIME, consistently underperform inaccuracy when interpreting these models. They fail to predict the order of feature importance, the magnitudes, and occasionally even the nature of the feature contribution (negative versus positive contribution to the outcome). Besides accuracy, the computational intractability of SHAP for binomial classification is a cause of concern. For transparent and ethical applications of these hierarchical statistical models, sound audit frameworks need to be developed. In this paper, we propose an audit framework for technical assessment of multilevel regression models focusing on three aspects: (i) model assumptions & statistical properties, (ii) model transparency using different explainability methods, and (iii) discrimination assessment. To this end, we undertake a quantitative approach and compare intrinsic model methods with SHAP and LIME. The framework comprises a shortlist of KPIs, such as PoCE (Percentage of Correct Explanations) and MDG (Mean Discriminatory Gap) per feature, for each of these three aspects. A traffic light risk assessment method is furthermore coupled to these KPIs. The audit framework will assist regulatory bodies in performing conformity assessments of AI systems using multilevel binomial classification models at businesses. It will also benefit businesses deploying multilevel models to be future-proof and aligned with the European Commission’s proposed Regulation on Artificial Intelligence.Keywords: audit, multilevel model, model transparency, model explainability, discrimination, ethics
Procedia PDF Downloads 9423529 Microbial Fuel Cells: Performance and Applications
Authors: Andrea Pietrelli, Vincenzo Ferrara, Bruno Allard, Francois Buret, Irene Bavasso, Nicola Lovecchio, Francesca Costantini, Firas Khaled
Abstract:
This paper aims to show some applications of microbial fuel cells (MFCs), an energy harvesting technique, as clean power source to supply low power device for application like wireless sensor network (WSN) for environmental monitoring. Furthermore, MFC can be used directly as biosensor to analyse parameters like pH and temperature or arranged in form of cluster devices in order to use as small power plant. An MFC is a bioreactor that converts energy stored in chemical bonds of organic matter into electrical energy, through a series of reactions catalysed by microorganisms. We have developed a lab-scale terrestrial microbial fuel cell (TMFC), based on soil that acts as source of bacteria and flow of nutrient and a lab-scale waste water microbial fuel cell (WWMFC), where waste water acts as flow of nutrient and bacteria. We performed large series of tests to exploit the capability as biosensor. The pH value has strong influence on the open circuit voltage (OCV) delivered from TMFCs. We analyzed three condition: test A and B were filled with same soil but changing pH from 6 to 6.63, test C was prepared using a different soil with a pH value of 6.3. Experimental results clearly show how with higher pH value a higher OCV was produced; indeed reactors are influenced by different values of pH which increases the voltage in case of a higher pH value until the best pH value of 7 is achieved. The influence of pH on OCV of lab-scales WWMFC was analyzed at pH value of 6.5, 7, 7.2, 7.5 and 8. WWMFCs are influenced from temperature more than TMFCs. We tested the power performance of WWMFCs considering four imposed values of ambient temperature. Results show how power performance increase proportionally with higher temperature values, doubling the output power from 20° to 40°. The best value of power produced from our lab-scale TMFC was equal to 310 μW using peaty soil, at 1KΩ, corresponding to a current of 0.5 mA. A TMFC can supply proper energy to low power devices of a WSN by means of the design of three stages scheme of an energy management system, which adapts voltage level of TMFC to those required by a WSN node, as 3.3V. Using a commercial DC/DC boost converter, that needs an input voltage of 700 mV, the current source of 0.5 mA, charges a capacitor of 6.8 mF until it will have accumulated an amount of charge equal to 700 mV in a time of 10 s. The output stage includes an output switch that close the circuit after a time of 10s + 1.5ms because the converter can boost the voltage from 0.7V to 3.3V in 1.5 ms. Furthermore, we tested in form of clusters connected in series up to 20 WWMFCs, we have obtained a high voltage value as output, around 10V, but low current value. MFC can be considered a suitable clean energy source to be used to supply low power devices as a WSN node or to be used directly as biosensor.Keywords: energy harvesting, low power electronics, microbial fuel cell, terrestrial microbial fuel cell, waste-water microbial fuel cell, wireless sensor network
Procedia PDF Downloads 20723528 Efficient Estimation for the Cox Proportional Hazards Cure Model
Authors: Khandoker Akib Mohammad
Abstract:
While analyzing time-to-event data, it is possible that a certain fraction of subjects will never experience the event of interest, and they are said to be cured. When this feature of survival models is taken into account, the models are commonly referred to as cure models. In the presence of covariates, the conditional survival function of the population can be modelled by using the cure model, which depends on the probability of being uncured (incidence) and the conditional survival function of the uncured subjects (latency), and a combination of logistic regression and Cox proportional hazards (PH) regression is used to model the incidence and latency respectively. In this paper, we have shown the asymptotic normality of the profile likelihood estimator via asymptotic expansion of the profile likelihood and obtain the explicit form of the variance estimator with an implicit function in the profile likelihood. We have also shown the efficient score function based on projection theory and the profile likelihood score function are equal. Our contribution in this paper is that we have expressed the efficient information matrix as the variance of the profile likelihood score function. A simulation study suggests that the estimated standard errors from bootstrap samples (SMCURE package) and the profile likelihood score function (our approach) are providing similar and comparable results. The numerical result of our proposed method is also shown by using the melanoma data from SMCURE R-package, and we compare the results with the output obtained from the SMCURE package.Keywords: Cox PH model, cure model, efficient score function, EM algorithm, implicit function, profile likelihood
Procedia PDF Downloads 14423527 Probabilistic Models to Evaluate Seismic Liquefaction In Gravelly Soil Using Dynamic Penetration Test and Shear Wave Velocity
Authors: Nima Pirhadi, Shao Yong Bo, Xusheng Wan, Jianguo Lu, Jilei Hu
Abstract:
Although gravels and gravelly soils are assumed to be non-liquefiable because of high conductivity and small modulus; however, the occurrence of this phenomenon in some historical earthquakes, especially recently earthquakes during 2008 Wenchuan, Mw= 7.9, 2014 Cephalonia, Greece, Mw= 6.1 and 2016, Kaikoura, New Zealand, Mw = 7.8, has been promoted the essential consideration to evaluate risk assessment and hazard analysis of seismic gravelly soil liquefaction. Due to the limitation in sampling and laboratory testing of this type of soil, in situ tests and site exploration of case histories are the most accepted procedures. Of all in situ tests, dynamic penetration test (DPT), Which is well known as the Chinese dynamic penetration test, and shear wave velocity (Vs) test, have been demonstrated high performance to evaluate seismic gravelly soil liquefaction. However, the lack of a sufficient number of case histories provides an essential limitation for developing new models. This study at first investigates recent earthquakes that caused liquefaction in gravelly soils to collect new data. Then, it adds these data to the available literature’s dataset to extend them and finally develops new models to assess seismic gravelly soil liquefaction. To validate the presented models, their results are compared to extra available models. The results show the reasonable performance of the proposed models and the critical effect of gravel content (GC)% on the assessment.Keywords: liquefaction, gravel, dynamic penetration test, shear wave velocity
Procedia PDF Downloads 20123526 Predictive Models for Compressive Strength of High Performance Fly Ash Cement Concrete for Pavements
Authors: S. M. Gupta, Vanita Aggarwal, Som Nath Sachdeva
Abstract:
The work reported through this paper is an experimental work conducted on High Performance Concrete (HPC) with super plasticizer with the aim to develop some models suitable for prediction of compressive strength of HPC mixes. In this study, the effect of varying proportions of fly ash (0% to 50% at 10% increment) on compressive strength of high performance concrete has been evaluated. The mix designs studied were M30, M40 and M50 to compare the effect of fly ash addition on the properties of these concrete mixes. In all eighteen concrete mixes have been designed, three as conventional concretes for three grades under discussion and fifteen as HPC with fly ash with varying percentages of fly ash. The concrete mix designing has been done in accordance with Indian standard recommended guidelines i.e. IS: 10262. All the concrete mixes have been studied in terms of compressive strength at 7 days, 28 days, 90 days and 365 days. All the materials used have been kept same throughout the study to get a perfect comparison of values of results. The models for compressive strength prediction have been developed using Linear Regression method (LR), Artificial Neural Network (ANN) and Leave One Out Validation (LOOV) methods.Keywords: high performance concrete, fly ash, concrete mixes, compressive strength, strength prediction models, linear regression, ANN
Procedia PDF Downloads 44423525 A General Variable Neighborhood Search Algorithm to Minimize Makespan of the Distributed Permutation Flowshop Scheduling Problem
Authors: G. M. Komaki, S. Mobin, E. Teymourian, S. Sheikh
Abstract:
This paper addresses minimizing the makespan of the distributed permutation flow shop scheduling problem. In this problem, there are several parallel identical factories or flowshops each with series of similar machines. Each job should be allocated to one of the factories and all of the operations of the jobs should be performed in the allocated factory. This problem has recently gained attention and due to NP-Hard nature of the problem, metaheuristic algorithms have been proposed to tackle it. Majority of the proposed algorithms require large computational time which is the main drawback. In this study, a general variable neighborhood search algorithm (GVNS) is proposed where several time-saving schemes have been incorporated into it. Also, the GVNS uses the sophisticated method to change the shaking procedure or perturbation depending on the progress of the incumbent solution to prevent stagnation of the search. The performance of the proposed algorithm is compared to the state-of-the-art algorithms based on standard benchmark instances.Keywords: distributed permutation flow shop, scheduling, makespan, general variable neighborhood search algorithm
Procedia PDF Downloads 35423524 Evaluating the Suitability and Performance of Dynamic Modulus Predictive Models for North Dakota’s Asphalt Mixtures
Authors: Duncan Oteki, Andebut Yeneneh, Daba Gedafa, Nabil Suleiman
Abstract:
Most agencies lack the equipment required to measure the dynamic modulus (|E*|) of asphalt mixtures, necessitating the need to use predictive models. This study compared measured |E*| values for nine North Dakota asphalt mixes using the original Witczak, modified Witczak, and Hirsch models. The influence of temperature on the |E*| models was investigated, and Pavement ME simulations were conducted using measured |E*| and predictions from the most accurate |E*| model. The results revealed that the original Witczak model yielded the lowest Se/Sy and highest R² values, indicating the lowest bias and highest accuracy, while the poorest overall performance was exhibited by the Hirsch model. Using predicted |E*| as inputs in the Pavement ME generated conservative distress predictions compared to using measured |E*|. The original Witczak model was recommended for predicting |E*| for low-reliability pavements in North Dakota.Keywords: asphalt mixture, binder, dynamic modulus, MEPDG, pavement ME, performance, prediction
Procedia PDF Downloads 4723523 Copula-Based Estimation of Direct and Indirect Effects in Path Analysis Model
Authors: Alam Ali, Ashok Kumar Pathak
Abstract:
Path analysis is a statistical technique used to evaluate the strength of the direct and indirect effects of variables. One or more structural regression equations are used to estimate a series of parameters in order to find the better fit of data. Sometimes, exogenous variables do not show a significant strength of their direct and indirect effect when the assumption of classical regression (ordinary least squares (OLS)) are violated by the nature of the data. The main motive of this article is to investigate the efficacy of the copula-based regression approach over the classical regression approach and calculate the direct and indirect effects of variables when data violates the OLS assumption and variables are linked through an elliptical copula. We perform this study using a well-organized numerical scheme. Finally, a real data application is also presented to demonstrate the performance of the superiority of the copula approach.Keywords: path analysis, copula-based regression models, direct and indirect effects, k-fold cross validation technique
Procedia PDF Downloads 7223522 Study and Conservation of Cultural and Natural Heritages with the Use of Laser Scanner and Processing System for 3D Modeling Spatial Data
Authors: Julia Desiree Velastegui Caceres, Luis Alejandro Velastegui Caceres, Oswaldo Padilla, Eduardo Kirby, Francisco Guerrero, Theofilos Toulkeridis
Abstract:
It is fundamental to conserve sites of natural and cultural heritage with any available technique or existing methodology of preservation in order to sustain them for the following generations. We propose a further skill to protect the actual view of such sites, in which with high technology instrumentation we are able to digitally preserve natural and cultural heritages applied in Ecuador. In this project the use of laser technology is presented for three-dimensional models, with high accuracy in a relatively short period of time. In Ecuador so far, there are not any records on the use and processing of data obtained by this new technological trend. The importance of the project is the description of the methodology of the laser scanner system using the Faro Laser Scanner Focus 3D 120, the method for 3D modeling of geospatial data and the development of virtual environments in the areas of Cultural and Natural Heritage. In order to inform users this trend in technology in which three-dimensional models are generated, the use of such tools has been developed to be able to be displayed in all kinds of digitally formats. The results of the obtained 3D models allows to demonstrate that this technology is extremely useful in these areas, but also indicating that each data campaign needs an individual slightly different proceeding starting with the data capture and processing to obtain finally the chosen virtual environments.Keywords: laser scanner system, 3D model, cultural heritage, natural heritage
Procedia PDF Downloads 30623521 Domain specific Ontology-Based Knowledge Extraction Using R-GNN and Large Language Models
Authors: Andrey Khalov
Abstract:
The rapid proliferation of unstructured data in IT infrastructure management demands innovative approaches for extracting actionable knowledge. This paper presents a framework for ontology-based knowledge extraction that combines relational graph neural networks (R-GNN) with large language models (LLMs). The proposed method leverages the DOLCE framework as the foundational ontology, extending it with concepts from ITSMO for domain-specific applications in IT service management and outsourcing. A key component of this research is the use of transformer-based models, such as DeBERTa-v3-large, for automatic entity and relationship extraction from unstructured texts. Furthermore, the paper explores how transfer learning techniques can be applied to fine-tune large language models (LLaMA) for using to generate synthetic datasets to improve precision in BERT-based entity recognition and ontology alignment. The resulting IT Ontology (ITO) serves as a comprehensive knowledge base that integrates domain-specific insights from ITIL processes, enabling more efficient decision-making. Experimental results demonstrate significant improvements in knowledge extraction and relationship mapping, offering a cutting-edge solution for enhancing cognitive computing in IT service environments.Keywords: ontology mapping, R-GNN, knowledge extraction, large language models, NER, knowlege graph
Procedia PDF Downloads 1623520 An Alternative Concept of Green Screen Keying
Authors: Jin Zhi
Abstract:
This study focuses on a green screen keying method developed especially for film visual effects. There are a series of ways of using existing tools for creating mattes from green or blue screen plates. However, it is still a time-consuming process, and the results vary especially when it comes to retaining tiny details, such as hair and fur. This paper introduces an alternative concept and method for retaining edge details of characters on a green screen plate, also, a number of connected mathematical equations are explored. At the end of this study, a simplified process of applying this method in real productions is also introduced.Keywords: green screen, visual effects, compositing, matte
Procedia PDF Downloads 40423519 Physical Characterization of a Watershed for Correlation with Parameters of Thomas Hydrological Model and Its Application in Iber Hidrodinamic Model
Authors: Carlos Caro, Ernest Blade, Nestor Rojas
Abstract:
This study determined the relationship between basic geo-technical parameters and parameters of the hydro logical model Thomas for water balance of rural watersheds, as a methodological calibration application, applicable in distributed models as IBER model, which represents a distributed system simulation models for unsteady flow numerical free surface. There was an exploration in 25 points (on 15 sub) basin of Rio Piedras (Boy.) obtaining soil samples, to which geo-technical characterization was performed by laboratory tests. Thomas model has a physical characterization of the input area by only four parameters (a, b, c, d). Achieve measurable relationship between geo technical parameters and 4 values of hydro logical parameters helps to determine subsurface, underground and surface flow more agile manner. It is intended in this way to reach some solutions regarding limits initial model parameters on the basis of Thomas geo-technical characterization. In hydro geological models of rural watersheds, calibration is an important process in the characterization of the study area. This step can require a significant computational cost and time, especially if the initial values or parameters before calibration are outside of the geo-technical reality. A better approach in these initial values means optimization of these process through a geo-technical materials area, where is obtained an important approach to the study as in the starting range of variation for the calibration parameters.Keywords: distributed hydrology, hydrological and geotechnical characterization, Iber model
Procedia PDF Downloads 52223518 Circular Economy Maturity Models: A Systematic Literature Review
Authors: Dennis Kreutzer, Sarah Müller-Abdelrazeq, Ingrid Isenhardt
Abstract:
Resource scarcity, energy transition and the planned climate neutrality pose enormous challenges for manufacturing companies. In order to achieve these goals and a holistic sustainable development, the European Union has listed the circular economy as part of the Circular Economy Action Plan. In addition to a reduction in resource consumption, reduced emissions of greenhouse gases and a reduced volume of waste, the principles of the circular economy also offer enormous economic potential for companies, such as the generation of new circular business models. However, many manufacturing companies, especially small and medium-sized enterprises, do not have the necessary capacity to plan their transformation. They need support and strategies on the path to circular transformation, because this change affects not only production but also the entire company. Maturity models offer an approach, as they enable companies to determine the current status of their transformation processes. In addition, companies can use the models to identify transformation strategies and thus promote the transformation process. While maturity models are established in other areas, e.g. IT or project management, only a few circular economy maturity models can be found in the scientific literature. The aim of this paper is to analyse the identified maturity models of the circular economy through a systematic literature review (SLR) and, besides other aspects, to check their completeness as well as their quality. Since the terms "maturity model" and "readiness model" are often used to assess the transformation process, this paper considers both types of models to provide a more comprehensive result. For this purpose, circular economy maturity models at the company (micro) level were identified from the literature, compared, and analysed with regard to their theoretical and methodological structure. A specific focus was placed, on the one hand, on the analysis of the business units considered in the respective models and, on the other hand, on the underlying metrics and indicators in order to determine the individual maturity level of the entire company. The results of the literature review show, for instance, a significant difference in the holism of their assessment framework. Only a few models include the entire company with supporting areas outside the value-creating core process, e.g. strategy and vision. Additionally, there are large differences in the number and type of indicators as well as their metrics. For example, most models often use subjective indicators and very few objective indicators in their surveys. It was also found that there are rarely well-founded thresholds between the levels. Based on the generated results, concrete ideas and proposals for a research agenda in the field of circular economy maturity models are made.Keywords: maturity model, circular economy, transformation, metric, assessment
Procedia PDF Downloads 11423517 Effect of Pre-Aging and Aging Parameters on Mechanical Behavior of Be-Treated 7075 Aluminum Alloys: Experimental Correlation using Minitab Software
Authors: M. Tash, S. Alkahtani
Abstract:
The present study was undertaken to investigate the effect of pre-aging and aging parameters (time and temperature) on the mechanical properties of Al-Mg-Zn (7075) alloys. Ultimate tensile strength, 0.5% offset yield strength and % elongation measurements were carried out on specimens prepared from cast and heat treated 7075 alloys. Duplex aging treatments were carried out for the as solution treated (SHT) specimens (pre-aged at different time and temperature followed by high temperature aging). A statistical design of experiments (DOE) approach using fractional factorial design was applied to determine the influence of controlling variables of pre-aging and aging treatment parameters and any interactions between them on the mechanical properties of 7075 alloys. A mathematical models are developed to relate the alloy ultimate tensile strength, yield strength and % elongation with the different pre-aging and aging parameters i.e. Pre-aging Temperature (PA T0C), Pre-aging time (PA t h), Aging temperature (AT0C), Aging time (At h), to acquire an understanding of the effects of these variables and their interactions on the mechanical properties of be-treated 7075 alloys.Keywords: aging heat Treatment, tensile properties, be-treated cast Al-Mg-Zn (7075) alloys, experimental correlation
Procedia PDF Downloads 27523516 JaCoText: A Pretrained Model for Java Code-Text Generation
Authors: Jessica Lopez Espejel, Mahaman Sanoussi Yahaya Alassan, Walid Dahhane, El Hassane Ettifouri
Abstract:
Pretrained transformer-based models have shown high performance in natural language generation tasks. However, a new wave of interest has surged: automatic programming language code generation. This task consists of translating natural language instructions to a source code. Despite the fact that well-known pre-trained models on language generation have achieved good performance in learning programming languages, effort is still needed in automatic code generation. In this paper, we introduce JaCoText, a model based on Transformer neural network. It aims to generate java source code from natural language text. JaCoText leverages the advantages of both natural language and code generation models. More specifically, we study some findings from state of the art and use them to (1) initialize our model from powerful pre-trained models, (2) explore additional pretraining on our java dataset, (3) lead experiments combining the unimodal and bimodal data in training, and (4) scale the input and output length during the fine-tuning of the model. Conducted experiments on CONCODE dataset show that JaCoText achieves new state-of-the-art results.Keywords: java code generation, natural language processing, sequence-to-sequence models, transformer neural networks
Procedia PDF Downloads 28423515 Effect of Curing Temperature on Unconfined Compression Strength of Bagasse Ash-Calcium Carbide Residue Treated Organic Clay
Authors: John Trihatmoko, Luky Handoko
Abstract:
A series of experimental program was undertaken to study the effect of curing temperature on the unconfined compression strength of bagasse ash (BA) - calcium carbide residue (CCR) stabilized organic clay (OC). A preliminary experiment was performed to get the physical properties of OC, and to get the optimum water content (OMC), the standard compaction test was done. The stabilizing agents used in this research was (40% BA + 60% CCR) . Then to obtain the best binder proportion, unconfined compression test was undertaken for OC + 3, 6, 9, 12 and 15% of binder with 7, 14, 21, 28 and 56 days curing period. The best quantity of the binder was found on 9%. Finally, to study the effect of curing temperature, the unconfined compression test was performed on OC + 9% binder with 7, 14, 21, 28 and 56 days curing time with 20O, 25O, 30O, 40O, and 50O C curing temperature. The result indicates that unconfined compression strength (UCS) of treated OC improve according to the increase of curing temperature at the same curing time. The improvement of UCS is probably due to the degree of cementation and pozzolanic reactions.Keywords: curing temperature, organic clay, bagasse ash, calcium carbide residue, unconfined compression strength
Procedia PDF Downloads 12523514 Development of a Turbulent Boundary Layer Wall-pressure Fluctuations Power Spectrum Model Using a Stepwise Regression Algorithm
Authors: Zachary Huffman, Joana Rocha
Abstract:
Wall-pressure fluctuations induced by the turbulent boundary layer (TBL) developed over aircraft are a significant source of aircraft cabin noise. Since the power spectral density (PSD) of these pressure fluctuations is directly correlated with the amount of sound radiated into the cabin, the development of accurate empirical models that predict the PSD has been an important ongoing research topic. The sound emitted can be represented from the pressure fluctuations term in the Reynoldsaveraged Navier-Stokes equations (RANS). Therefore, early TBL empirical models (including those from Lowson, Robertson, Chase, and Howe) were primarily derived by simplifying and solving the RANS for pressure fluctuation and adding appropriate scales. Most subsequent models (including Goody, Efimtsov, Laganelli, Smol’yakov, and Rackl and Weston models) were derived by making modifications to these early models or by physical principles. Overall, these models have had varying levels of accuracy, but, in general, they are most accurate under the specific Reynolds and Mach numbers they were developed for, while being less accurate under other flow conditions. Despite this, recent research into the possibility of using alternative methods for deriving the models has been rather limited. More recent studies have demonstrated that an artificial neural network model was more accurate than traditional models and could be applied more generally, but the accuracy of other machine learning techniques has not been explored. In the current study, an original model is derived using a stepwise regression algorithm in the statistical programming language R, and TBL wall-pressure fluctuations PSD data gathered at the Carleton University wind tunnel. The theoretical advantage of a stepwise regression approach is that it will automatically filter out redundant or uncorrelated input variables (through the process of feature selection), and it is computationally faster than machine learning. The main disadvantage is the potential risk of overfitting. The accuracy of the developed model is assessed by comparing it to independently sourced datasets.Keywords: aircraft noise, machine learning, power spectral density models, regression models, turbulent boundary layer wall-pressure fluctuations
Procedia PDF Downloads 13523513 UPPAAL-based Design and Analysis of Intelligent Parking System
Authors: Abobaker Mohammed Qasem Farhan, Olof M. A. Saif
Abstract:
The demand for parking spaces in urban areas, particularly in developing countries, has led to a significant issue in the absence of sufficient parking spaces in crowded areas, which results in daily traffic congestion as drivers search for parking. This not only affects the appearance of the city but also has indirect impacts on the economy, society, and environment. In response to these challenges, researchers from various countries have sought technical and intelligent solutions to mitigate the problem through the development of smart parking systems. This paper aims to analyze and design three models of parking lots, with a focus on parking time and security. The study used computer software and Uppaal tools to simulate the models and determine the best among them. The results and suggestions provided in the paper aim to reduce the parking problems and improve the overall efficiency and safety of the parking process. The conclusion of the study highlights the importance of utilizing advanced technology to address the pressing issue of insufficient parking spaces in urban areas.Keywords: preliminaries, system requirements, timed Au- tomata, Uppaal
Procedia PDF Downloads 14723512 Human Resource Utilization Models for Graceful Ageing
Authors: Chuang-Chun Chiou
Abstract:
In this study, a systematic framework of graceful ageing has been used to explore the possible human resource utilization models for graceful ageing purpose. This framework is based on the Chinese culture. We call ‘Nine-old’ target. They are ageing gracefully with feeding, accomplishment, usefulness, learning, entertainment, care, protection, dignity, and termination. This study is focused on two areas: accomplishment and usefulness. We exam the current practices of initiatives and laws of promoting labor participation. That is to focus on how to increase Labor Force Participation Rate of the middle aged as well as the elderly and try to promote the elderly to achieve graceful ageing. Then we present the possible models that support graceful ageing.Keywords: human resource utilization model, labor participation, graceful ageing, employment
Procedia PDF Downloads 39023511 Evaluation of Reliability Indices Using Monte Carlo Simulation Accounting Time to Switch
Authors: Sajjad Asefi, Hossein Afrakhte
Abstract:
This paper presents the evaluation of reliability indices of an electrical distribution system using Monte Carlo simulation technique accounting Time To Switch (TTS) for each section. In this paper, the distribution system has been assumed by accounting random repair time omission. For simplicity, we have assumed the reliability analysis to be based on exponential law. Each segment has a specified rate of failure (λ) and repair time (r) which will give us the mean up time and mean down time of each section in distribution system. After calculating the modified mean up time (MUT) in years, mean down time (MDT) in hours and unavailability (U) in h/year, TTS have been added to the time which the system is not available, i.e. MDT. In this paper, we have assumed the TTS to be a random variable with Log-Normal distribution.Keywords: distribution system, Monte Carlo simulation, reliability, repair time, time to switch (TTS)
Procedia PDF Downloads 42723510 Online Battery Equivalent Circuit Model Estimation on Continuous-Time Domain Using Linear Integral Filter Method
Authors: Cheng Zhang, James Marco, Walid Allafi, Truong Q. Dinh, W. D. Widanage
Abstract:
Equivalent circuit models (ECMs) are widely used in battery management systems in electric vehicles and other battery energy storage systems. The battery dynamics and the model parameters vary under different working conditions, such as different temperature and state of charge (SOC) levels, and therefore online parameter identification can improve the modelling accuracy. This paper presents a way of online ECM parameter identification using a continuous time (CT) estimation method. The CT estimation method has several advantages over discrete time (DT) estimation methods for ECM parameter identification due to the widely separated battery dynamic modes and fast sampling. The presented method can be used for online SOC estimation. Test data are collected using a lithium ion cell, and the experimental results show that the presented CT method achieves better modelling accuracy compared with the conventional DT recursive least square method. The effectiveness of the presented method for online SOC estimation is also verified on test data.Keywords: electric circuit model, continuous time domain estimation, linear integral filter method, parameter and SOC estimation, recursive least square
Procedia PDF Downloads 38323509 Development of Computational Approach for Calculation of Hydrogen Solubility in Hydrocarbons for Treatment of Petroleum
Authors: Abdulrahman Sumayli, Saad M. AlShahrani
Abstract:
For the hydrogenation process, knowing the solubility of hydrogen (H2) in hydrocarbons is critical to improve the efficiency of the process. We investigated the H2 solubility computation in four heavy crude oil feedstocks using machine learning techniques. Temperature, pressure, and feedstock type were considered as the inputs to the models, while the hydrogen solubility was the sole response. Specifically, we employed three different models: Support Vector Regression (SVR), Gaussian process regression (GPR), and Bayesian ridge regression (BRR). To achieve the best performance, the hyper-parameters of these models are optimized using the whale optimization algorithm (WOA). We evaluated the models using a dataset of solubility measurements in various feedstocks, and we compared their performance based on several metrics. Our results show that the WOA-SVR model tuned with WOA achieves the best performance overall, with an RMSE of 1.38 × 10− 2 and an R-squared of 0.991. These findings suggest that machine learning techniques can provide accurate predictions of hydrogen solubility in different feedstocks, which could be useful in the development of hydrogen-related technologies. Besides, the solubility of hydrogen in the four heavy oil fractions is estimated in different ranges of temperatures and pressures of 150 ◦C–350 ◦C and 1.2 MPa–10.8 MPa, respectivelyKeywords: temperature, pressure variations, machine learning, oil treatment
Procedia PDF Downloads 6923508 Optimal Maintenance Policy for a Partially Observable Two-Unit System
Authors: Leila Jafari, Viliam Makis, G. B. Akram Khaleghei
Abstract:
In this paper, we present a maintenance model of a two-unit series system with economic dependence. Unit#1, which is considered to be more expensive and more important, is subject to condition monitoring (CM) at equidistant, discrete time epochs and unit#2, which is not subject to CM, has a general lifetime distribution. The multivariate observation vectors obtained through condition monitoring carry partial information about the hidden state of unit#1, which can be in a healthy or a warning state while operating. Only the failure state is assumed to be observable for both units. The objective is to find an optimal opportunistic maintenance policy minimizing the long-run expected average cost per unit time. The problem is formulated and solved in the partially observable semi-Markov decision process framework. An effective computational algorithm for finding the optimal policy and the minimum average cost is developed and illustrated by a numerical example.Keywords: condition-based maintenance, semi-Markov decision process, multivariate Bayesian control chart, partially observable system, two-unit system
Procedia PDF Downloads 45923507 Environmental Modeling of Storm Water Channels
Authors: L. Grinis
Abstract:
Turbulent flow in complex geometries receives considerable attention due to its importance in many engineering applications. It has been the subject of interest for many researchers. Some of these interests include the design of storm water channels. The design of these channels requires testing through physical models. The main practical limitation of physical models is the so called “scale effect”, that is, the fact that in many cases only primary physical mechanisms can be correctly represented, while secondary mechanisms are often distorted. These observations form the basis of our study, which centered on problems associated with the design of storm water channels near the Dead Sea, in Israel. To help reach a final design decision we used different physical models. Our research showed good coincidence with the results of laboratory tests and theoretical calculations, and allowed us to study different effects of fluid flow in an open channel. We determined that problems of this nature cannot be solved only by means of theoretical calculation and computer simulation. This study demonstrates the use of physical models to help resolve very complicated problems of fluid flow through baffles and similar structures. The study applies these models and observations to different construction and multiphase water flows, among them, those that include sand and stone particles, a significant attempt to bring to the testing laboratory a closer association with reality.Keywords: open channel, physical modeling, baffles, turbulent flow
Procedia PDF Downloads 28423506 Simultaneous Determination of Six Characterizing/Quality Parameters of Biodiesels via 1H NMR and Multivariate Calibration
Authors: Gustavo G. Shimamoto, Matthieu Tubino
Abstract:
The characterization and the quality of biodiesel samples are checked by determining several parameters. Considering a large number of analysis to be performed, as well as the disadvantages of the use of toxic solvents and waste generation, multivariate calibration is suggested to reduce the number of tests. In this work, hydrogen nuclear magnetic resonance (1H NMR) spectra were used to build multivariate models, from partial least squares (PLS) regression, in order to determine simultaneously six important characterizing and/or quality parameters of biodiesels: density at 20 ºC, kinematic viscosity at 40 ºC, iodine value, acid number, oxidative stability, and water content. Biodiesels from twelve different oils sources were used in this study: babassu, brown flaxseed, canola, corn, cottonseed, macauba almond, microalgae, palm kernel, residual frying, sesame, soybean, and sunflower. 1H NMR reflects the structures of the compounds present in biodiesel samples and showed suitable correlations with the six parameters. The PLS models were constructed with latent variables between 5 and 7, the obtained values of r(cal) and r(val) were greater than 0.994 and 0.989, respectively. In addition, the models were considered suitable to predict all the six parameters for external samples, taking into account the analytical speed to perform it. Thus, the alliance between 1H NMR and PLS showed to be appropriate to characterize and evaluate the quality of biodiesels, reducing significantly analysis time, the consumption of reagents/solvents, and waste generation. Therefore, the proposed methods can be considered to adhere to the principles of green chemistry.Keywords: biodiesel, multivariate calibration, nuclear magnetic resonance, quality parameters
Procedia PDF Downloads 53923505 Transforming Maternity and Neonatal Services in a Middle Eastern Country
Authors: M. A. Brown, K. Hugill, D. Meredith
Abstract:
Since the establishment of midwifery, as a professional identity in its own right, in the early years of the 20th century, midwifery-led models of childbirth have prevailed in many parts of the world. However, in many locations midwives’ scope of practice remains underdeveloped or absent. In Qatar, all births take place in hospital and are under the professional jurisdiction of obstetricians, predominately supported by internationally trained nurse-midwives and obstetric nurses. The strategic vision for health services in Qatar endorsed a desire to provide women with the ‘Best Care Always’ and the introduction of midwifery was seen as a way to achieve this. In 2015 the process of recruiting postgraduate educated Clinical Midwife Specialists from international sources began. The midwives were brought together to initiate an in hospital and community service transformation plan. This plan set out a series of wide-ranging actions to transform maternity and neonatal services to make care safer and give women more health choices. Change in any organization is a complex and dynamic process. This is made even more complex when multifaceted professional and cross cultural factors are involved. This presentation reports upon the motivations and challenges that exist and the progress around introducing a multicultural midwifery model of childbirth care in the state of Qatar. The paper examines and reflects upon the drivers and unique features of childbirth in the country. Despite accomplishments, progress still needs to be made in order to fully implement sustainable changes to further improve care and ensure women and neonates get the ‘Best Care Always’. The progress within the transformation plan highlights how midwifery may coexist with competing models of maternity care to create an innovative, eclectic and culturally sensitive paradigm that can best serve women and neonatal health needs.Keywords: culture, managing change, midwifery, neonatal, service transformation plan
Procedia PDF Downloads 148