Search results for: structural strength
6432 Rheological Properties of Polysulfone-Sepiolite Nanocomposites
Authors: Nilay Tanrıver, Birgül Benli, Nilgün Kızılcan
Abstract:
Polysulfone (PSU) is a specialty engineering polymer having various industrial applications. PSU is especially used in waste water treatment membranes due to its good mechanical properties, structural and chemical stability. But it is a hydrophobic material and therefore its surface aim to pollute easily. In order to resolve this problem and extend the properties of membrane, PSU surface is rendered hydrophilic by addition of the sepiolite nanofibers. Sepiolite is one of the natural clays, which is a hydrate magnesium silicate fiber, also one of the well known layered clays of the montmorillonites where has several unique channels and pores within. It has also moisture durability, strength and low price. Sepiolite channels give great capacity of absorption and good surface properties. In this study, nanocomposites of commercial PSU and Sepiolite were prepared by solvent mixing method. Different organic solvents and their mixtures were used. Rheological characteristics of PSU-Sepiolite solvent mixtures were analyzed, the solubility of nanocomposite content in those mixtures were studied.Keywords: nanocomposite, polysulfone, rheology, sepiolite, solution mixing
Procedia PDF Downloads 4246431 Effect of Fly Ash Fineness on Sorption Properties of Geopolymers Based on Liquid Glass
Authors: Miroslava Zelinkova, Marcela Ondova
Abstract:
Fly ash (FA) thanks to the significant presence of SiO2 and Al2O3 as the main components is a potential raw material for geopolymers production. Mechanical activation is a method for improving FA reactivity and also the porosity of final mixture; those parameters can be analysed through sorption properties. They have direct impact on the durability of fly ash based geopolymer mortars. In the paper, effect of FA fineness on sorption properties of geopolymers based on sodium silicate, as well as relationship between fly ash fineness and apparent density, compressive and flexural strength of geopolymers are presented. The best results in the evaluated area reached the sample H1, which contents the highest portion of particle under 20μm (100% of GFA). The interdependence of individual tested properties was confirmed for geopolymer mixtures corresponding to those in the cement based mixtures: higher is portion of fine particles < 20μm, higher is strength, density and lower are sorption properties. The compressive strength as well as sorption parameters of the geopolymer can be reasonably controlled by grinding process and also ensured by the higher share of fine particle (to 20μm) in total mass of the material.Keywords: alkali activation, geopolymers, fly ash, particle fineness
Procedia PDF Downloads 2216430 Development of Standard Evaluation Technique for Car Carpet Floor
Authors: In-Sung Lee, Un-Hwan Park, Jun-Hyeok Heo, Tae-Hyeon Oh, Dae-Gyu Park
Abstract:
Statistical Energy Analysis is to be the most effective CAE Method for air-born noise analysis in the Automotive area. This study deals with a method to predict the noise level inside of the car under the steady-state condition using the SEA model of car for air-born noise analysis. We can identify weakened part due to the acoustic material properties using it. Therefore, it is useful for the material structural design.Keywords: air-born noise, material structural design, acoustic material properties, absorbing
Procedia PDF Downloads 4236429 Nonlinear Analysis of Torsionally Loaded Steel Fibred Self-Compacted Concrete Beams Reinforced by GFRP Bars
Authors: Khaled Saad Eldin Mohamed Ragab
Abstract:
This paper investigates analytically the torsion behavior of steel fibered high strength self compacting concrete beams reinforced by GFRP bars. Nonlinear finite element analysis on 12 beams specimens was achieved by using ANSYS software. The nonlinear finite element analysis program ANSYS is utilized owing to its capabilities to predict either the response of reinforced concrete beams in the post elastic range or the ultimate strength of a reinforced concrete beams produced from steel fiber reinforced self compacting concrete (SFRSCC) and reinforced by GFRP bars. A general description of the finite element method, theoretical modeling of concrete and reinforcement are presented. In order to verify the analytical model used in this research using test results of the experimental data, the finite element analysis were performed. Then, a parametric study of the effect ratio of volume fraction of steel fibers in ordinary strength concrete, the effect ratio of volume fraction of steel fibers in high strength concrete, and the type of reinforcement of stirrups were investigated. A comparison between the experimental results and those predicted by the existing models are presented. Results and conclusions thyat may be useful for designers have been raised and represented.Keywords: nonlinear analysis, torsionally loaded, self compacting concrete, steel fiber reinforced self compacting concrete (SFRSCC), GFRP bars and sheets
Procedia PDF Downloads 4536428 An Experimental Investigation on Banana and Pineapple Natural Fibers Reinforced with Polypropylene Composite by Impact Test and SEM Analysis
Authors: D. Karibasavaraja, Ramesh M.R., Sufiyan Ahmed, Noyonika M.R., Sameeksha A. V., Mamatha J., Samiksha S. Urs
Abstract:
This research paper gives an overview of the experimental analysis of natural fibers with polymer composite. The whole world is concerned about conserving the environment. Henceforth, the demand for natural and decomposable materials is increasing. The application of natural fibers is widely used in aerospace for manufacturing aircraft bodies, and ship construction in navy fields. Based on the literature review, researchers and scientists are replacing synthetic fibers with natural fibers. The selection of these fibers mainly depends on lightweight, easily available, and economical and has its own physical and chemical properties and many other properties that make them a fine quality fiber. The pineapple fiber has desirable properties of good mechanical strength, high cellulose content, and fiber length. Hybrid composite was prepared using different proportions of pineapple fiber and banana fiber, and their ratios were varied in 90% polypropylene mixed with 5% banana fiber and 5% pineapple fiber, 85% polypropylene mixed with 7.5% banana fiber and 7.5% pineapple fiber and 80% polypropylene mixed with 10% banana fiber and 10% pineapple fiber. By impact experimental analysis, we concluded that the combination of 90% polypropylene and 5% banana fiber and 5% pineapple fiber exhibits a higher toughness value with mechanical strength. We also conducted scanning electron microscopy (SEM) analysis which showed better fiber orientation bonding between the banana and pineapple fibers with polypropylene composites. The main aim of the present research is to evaluate the properties of pineapple fiber and banana fiber reinforced with hybrid polypropylene composites.Keywords: toughness, fracture, impact strength, banana fibers, pineapple fibers, tensile strength, SEM analysis
Procedia PDF Downloads 1566427 The Structural Behavior of Fiber Reinforced Lightweight Concrete Beams: An Analytical Approach
Authors: Jubee Varghese, Pouria Hafiz
Abstract:
Increased use of lightweight concrete in the construction industry is mainly due to its reduction in the weight of the structural elements, which in turn reduces the cost of production, transportation, and the overall project cost. However, the structural application of these lightweight concrete structures is limited due to its reduced density. Hence, further investigations are in progress to study the effect of fiber inclusion in improving the mechanical properties of lightweight concrete. Incorporating structural steel fibers, in general, enhances the performance of concrete and increases its durability by minimizing its potential to cracking and providing crack arresting mechanism. In this research, Geometric and Materially Non-linear Analysis (GMNA) was conducted for Finite Element Modelling using a software known as ABAQUS, to investigate the structural behavior of lightweight concrete with and without the addition of steel fibers and shear reinforcement. 21 finite element models of beams were created to study the effect of steel fibers based on three main parameters; fiber volume fraction (Vf = 0, 0.5 and 0.75%), shear span to depth ratio (a/d of 2, 3 and 4) and ratio of area of shear stirrups to spacing (As/s of 0.7, 1 and 1.6). The models created were validated with the previous experiment conducted by H.K. Kang et al. in 2011. It was seen that the lightweight fiber reinforcement can replace the use of fiber reinforced normal weight concrete as structural elements. The effect of an increase in steel fiber volume fraction is dominant for beams with higher shear span to depth ratio than for lower ratios. The effect of stirrups in the presence of fibers was very negligible; however; it provided extra confinement to the cracks by reducing the crack propagation and extra shear resistance than when compared to beams with no stirrups.Keywords: ABAQUS, beams, fiber-reinforced concrete, finite element, light weight, shear span-depth ratio, steel fibers, steel-fiber volume fraction
Procedia PDF Downloads 1076426 Bridge Damage Detection and Stiffness Reduction Using Vibration Data: Experimental Investigation on a Small Scale Steel Bridge
Authors: Mirco Tarozzi, Giacomo Pignagnoli, Andrea Benedetti
Abstract:
The design of planning maintenance of civil structures often requires the evaluation of their level of safety in order to be able to choose which structure, and in which measure, it needs a structural retrofit. This work deals with the evaluation of the stiffness reduction of a scaled steel deck due to the presence of localized damages. The dynamic tests performed on it have shown the variability of its main frequencies linked to the gradual reduction of its rigidity. This deck consists in a steel grillage of four secondary beams and three main beams linked to a concrete slab. This steel deck is 6 m long and 3 m wide and it rests on two abutments made of concrete. By processing the signals of the accelerations due to a random excitation of the deck, the main natural frequencies of this bridge have been extracted. In order to assign more reliable parameters to the numerical model of the deck, some load tests have been performed and the mechanical property of the materials and the supports have been obtained. The two external beams have been cut at one third of their length and the structural strength has been restored by the design of a bolted plate. The gradual loss of the bolts and the plates removal have made the simulation of localized damage possible. In order to define the relationship between frequency variation and loss in stiffness, the identification of its natural frequencies has been performed, before and after the occurrence of the damage, corresponding to each step. The study of the relationship between stiffness losses and frequency shifts has been reported in this paper: the square of the frequency variation due to the presence of the damage is proportional to the ratio between the rigidities. This relationship can be used to quantify the loss in stiffness of a real scale bridge in an efficient way.Keywords: damage detection, dynamic test, frequency shifts, operational modal analysis, steel bridge
Procedia PDF Downloads 1606425 Comparative Study on the Effect of Compaction Energy and Moisture Content on the Strength Properties of Lateritic Soil
Authors: Ahmad Idris, O.A. Uche, Ado Y Abdulfatah
Abstract:
Lateritic soils are found in abundance and are the most common types of soils used in construction of roads and embankments in Nigeria. Strength properties of the soils depend on the amount of compaction applied and the amount of water available in the soil at the time of compaction. In this study, the influence of the compactive effort and that of the amount of water in the soil in the determination of the shear strength properties of lateritic soil was investigated. Lateritic soil sample was collected from an existing borrow pit in Kano, Nigeria and its basic characteristics were determined and the soil was classified according to AASHTO classification method. The soil was then compacted under various compactive efforts and at wide range of moisture contents. The maximum dry density (MDD) and optimum moisture content (OMC) at each compactive effort was determined. Unconfined undrained triaxial test was carried out to determine the shear strength properties of the soil under various conditions of moisture and energy. Preliminary results obtained indicated that the soil is an A-7-5 soil. The final results obtained shows that as the compaction energy is increased, both the cohesion and friction angle increased irrespective of the moisture content used in the compaction. However, when the amount of water in the soil was increased and compaction effort kept constant, only the cohesion of the soil increases while the friction angle shows no any pattern of variation. It was also found that the highest values for cohesion and friction angle were obtained when the soil was compacted at the highest energy and at OMC.Keywords: laterite, OMC, compaction energy, moisture content
Procedia PDF Downloads 4076424 Experimental Investigation of Low Strength Concrete (LSC) Beams Using Carbon Fiber Reinforce Polymer (CFRP) Wrap
Authors: Furqan Farooq, Arslan Akbar, Sana Gul
Abstract:
Inadequate design of seismic structures and use of Low Strength Concrete (LSC) remains the major aspect of structure failure. Parametric investigation (LSC) beams based on experimental work using externally applied Carbon Fiber Reinforce Polymer (CFRP) warp in flexural behavior is studied. The ambition is to know the behavior of beams under loading condition, and its strengthening enhancement after inducing crack is studied, Moreover comparison of results using abacus software is studied. Results show significant enhancement in load carrying capacity, experimental work is compared with abacus software. The research is based on the conclusion that various existing structure but inadequacy in seismic design could increase the load carrying capacity by applying CFRP techniques, which not only strengthened but also provide them to resist even larger potential earthquake by improving its strength as well as ductility.Keywords: seismic design, carbon fiber, strengthening, ductility
Procedia PDF Downloads 2026423 Design, Spectroscopic, Structural Characterization, and Biological Studies for New Complexes via Charge Transfer Interaction of Ciprofloxacin Drug With π Acceptors
Authors: Khaled Alshammari
Abstract:
Ciprofloxacin (CIP) is a common antibiotic drug used as a strudy electron donor that interacts with dynamic π -acceptors such as 2,3-dinitrosalsylic acid (HDNS) and Tetracyanoethylene (TCNE) for synthesizing a new model of charge transfer (CT) complexes. The synthesized complexes were identified using diverse analytical methods such as UV–vis spectra, photometric titration measurements, FT-IR, HNMR Spectroscopy, and thermogravimetric analysis techniques (TGA/DTA). The stoichiometries for all the formed complexes were found to be a 1:1 M ratio between the reactants. The characteristic spectroscopic properties such as transition dipole moment (µ), oscillator strength (f), formation constant (KCT), ionization potential (ID), standard free energy (∆G), and energy of interaction (ECT) for the CT-complexes were collected. The developed CT complexes were tested for their toxicity on main organs, antimicrobial activity, antioxidant activity, and biofilm formation.Keywords: biological, biofilm, toxicity, thermal analysis, charge transfer, spectroscopy
Procedia PDF Downloads 576422 Influence of Sodium Lauryl Ether Sulfate and Curing Temperature on Behaviors of Lightweight Kaolinite-Based Geopolymer
Authors: W. Sornlar, S. Supothina, A. Wannagon
Abstract:
Lightweight geopolymer can be prepared by using some foaming agents, such as metal powders or hydrogen peroxide; however, it is difficult to control the generated cell size due to the high reactivity of the system. This study aims to investigate the influence of Sodium Lauryl Ether Sulfate (SLES) foam addition and curing temperature on the physical, mechanical, thermal, and microstructure behaviors of the lightweight kaolinite-based geopolymer. To provide porous structure, the geopolymer paste was mixed with 0-15 wt% of SLES foam before casting into the mold. Testing and characterizations were carried out after 28 days. The results showed that SLES foam generated the regular and spherical macropores, which were well distributed in the geopolymer samples. The total porosity increased as SLES foam increased, similarly as the apparent porosity and water absorption. On the other hand, the bulk density and mechanical strength decreased as SLES foam increased. Curing temperature was studied simultaneously due to it strongly affects the mechanical strength of geopolymer. In this study, rising of curing temperature from 27 to 50°C (at 75% relative humidity) improved the compressive strength of samples but deteriorated after curing at 60°C. Among them, the composition of 15 wt% SLES foam (NF15) presented the highest porosity (70.51-72.89%), the lowest density (0.68-0.73 g/cm³), and very low thermal conductivity (0.172-0.197 W/mK). It had the proper compressive strength of 4.21-4.74 MPa that can be applied for the thermal insulation.Keywords: lightweight, kaolinite-based geopolymer, curing temperature, foaming agent, thermal conductivity
Procedia PDF Downloads 1816421 Development of a New Method for T-Joint Specimens Testing under Shear Loading
Authors: Radek Doubrava, Roman Ruzek
Abstract:
Nonstandard tests are necessary for analyses and verification of new developed structural and technological solutions with application of composite materials. One of the most critical primary structural parts of a typical aerospace structure is T-joint. This structural element is loaded mainly in shear, bending, peel and tension. The paper is focused on the shear loading simulations. The aim of the work is to obtain a representative uniform distribution of shear loads along T-joint during the mechanical testing is. A new design of T-joint test procedure, numerical simulation and optimization of representative boundary conditions are presented. The different conditions and inaccuracies both in simulations and experiments are discussed. The influence of different parameters on stress and strain distributions is demonstrated on T-joint made of CFRP (carbon fiber reinforced plastic). A special test rig designed by VZLU (Aerospace Research and Test Establishment) for T-shear test procedure is presented.Keywords: T-joint, shear, composite, mechanical testing, finite element analysis, methodology
Procedia PDF Downloads 4426420 Fabrication, Testing and Machinability Evaluation of Glass Fiber Reinforced Epoxy Composites
Authors: S. S. Panda, Arkesh Chouhan, Yogesh Deshpande
Abstract:
The present paper deals with designing and fabricating an apparatus for the speedy and accurate manufacturing of fiber reinforced composite lamina of different orientation, thickness and stacking sequences for testing. Properties derived through an analytical approach are verified through measuring the elastic modulus, ultimate tensile strength, flexural modulus and flexural strength of the samples. The 00 orientation ply looks stiffer compared to the 900 ply. Similarly, the flexural strength of 00 ply is higher than to the 900 ply. Sample machinability has been studied by conducting numbers of drilling based on Taguchi Design experiments. Multi Responses (Delamination and Damage grading) is obtained using the desirability approach and optimum cutting condition (spindle speed, feed and drill diameter), at which responses are minimized is obtained thereafter. Delamination increases nonlinearly with the increase in spindle speed. Similarly, the influence of the drill diameter on delamination is higher than the spindle speed and feed rate.Keywords: delamination, FRP composite, Taguchi design, multi response optimization
Procedia PDF Downloads 2726419 Pushover Analysis of Masonry Infilled Reinforced Concrete Frames for Performance Based Design for near Field Earthquakes
Authors: Alok Madan, Ashok Gupta, Arshad K. Hashmi
Abstract:
Non-linear dynamic time history analysis is considered as the most advanced and comprehensive analytical method for evaluating the seismic response and performance of multi-degree-of-freedom building structures under the influence of earthquake ground motions. However, effective and accurate application of the method requires the implementation of advanced hysteretic constitutive models of the various structural components including masonry infill panels. Sophisticated computational research tools that incorporate realistic hysteresis models for non-linear dynamic time-history analysis are not popular among the professional engineers as they are not only difficult to access but also complex and time-consuming to use. And, commercial computer programs for structural analysis and design that are acceptable to practicing engineers do not generally integrate advanced hysteretic models which can accurately simulate the hysteresis behavior of structural elements with a realistic representation of strength degradation, stiffness deterioration, energy dissipation and ‘pinching’ under cyclic load reversals in the inelastic range of behavior. In this scenario, push-over or non-linear static analysis methods have gained significant popularity, as they can be employed to assess the seismic performance of building structures while avoiding the complexities and difficulties associated with non-linear dynamic time-history analysis. “Push-over” or non-linear static analysis offers a practical and efficient alternative to non-linear dynamic time-history analysis for rationally evaluating the seismic demands. The present paper is based on the analytical investigation of the effect of distribution of masonry infill panels over the elevation of planar masonry infilled reinforced concrete (R/C) frames on the seismic demands using the capacity spectrum procedures implementing nonlinear static analysis (pushover analysis) in conjunction with the response spectrum concept. An important objective of the present study is to numerically evaluate the adequacy of the capacity spectrum method using pushover analysis for performance based design of masonry infilled R/C frames for near-field earthquake ground motions.Keywords: nonlinear analysis, capacity spectrum method, response spectrum, seismic demand, near-field earthquakes
Procedia PDF Downloads 4036418 Microstructure Characterization of the Ball Milled Fe50Al30Ni20 (%.wt) Powder
Authors: C. Nakib, N. Ammouchi, A. Otmani, A. Djekoun, J. M. Grenèche
Abstract:
B2-structured FeAl was synthesized by an abrupt reaction during mechanical alloying (MA) of the elemental powders of Fe, Al and Ni. The structural, microstructural and morphological changes occurring in the studied material during MA were investigated by X-ray diffraction (XRD) and scanning electron microscopy (SEM). Two crystalline phases were found, the major one corresponding to FeAl bcc phase with a crystallite size less than 10 nm, a lattice strain up to 1.6% and a dislocation density of about 2.3 1016m-2. The other phase in low proportion was corresponding to Fe (Al,Ni) solid solution. SEM images showed an irregular morphology of powder particles.Keywords: mechanical alloying, ternary composition, dislocation density, structural properties
Procedia PDF Downloads 2766417 Challenges in Experimental Testing of a Stiff, Overconsolidated Clay
Authors: Maria Konstadinou, Etienne Alderlieste, Anderson Peccin da Silva, Ben Arntz, Leonard van der Bijl, Wouter Verschueren
Abstract:
The shear strength and compression properties of stiff Boom clay from Belgium at the depth of about 30 m has been investigated by means of cone penetration and laboratory testing. The latter consisted of index classification, constant rate of strain, direct, simple shear, and unconfined compression tests. The Boom clay samples exhibited strong swelling tendencies. The suction pressure was measured via different procedures and has been compared to the expected in-situ stress. The undrained shear strength and OCR profile determined from CPTs is not compatible with the experimental measurements, which gave significantly lower values. The observed response can be attributed to the presence of pre-existing discontinuities, as shown in microscale CT scans of the samples. The results of this study demonstrate that the microstructure of the clay prior to testing has an impact on the mechanical behaviour and can cause inconsistencies in the comparison of the laboratory test results with in-situ data.Keywords: boom clay, laboratory testing, overconsolidation ratio, stress-strain response, swelling, undrained shear strength
Procedia PDF Downloads 1466416 Hydraulic Conductivity Prediction of Cement Stabilized Pavement Base Incorporating Recycled Plastics and Recycled Aggregates
Authors: Md. Shams Razi Shopnil, Tanvir Imtiaz, Sabrina Mahjabin, Md. Sahadat Hossain
Abstract:
Saturated hydraulic conductivity is one of the most significant attributes of pavement base course. Determination of hydraulic conductivity is a routine procedure for regular aggregate base courses. However, in many cases, a cement-stabilized base course is used with compromised drainage ability. Traditional hydraulic conductivity testing procedure is a readily available option which leads to two consequential drawbacks, i.e., the time required for the specimen to be saturated and extruding the sample after completion of the laboratory test. To overcome these complications, this study aims at formulating an empirical approach to predicting hydraulic conductivity based on Unconfined Compressive Strength test results. To do so, this study comprises two separate experiments (Constant Head Permeability test and Unconfined Compressive Strength test) conducted concurrently on a specimen having the same physical credentials. Data obtained from the two experiments were then used to devise a correlation between hydraulic conductivity and unconfined compressive strength. This correlation in the form of a polynomial equation helps to predict the hydraulic conductivity of cement-treated pavement base course, bypassing the cumbrous process of traditional permeability and less commonly used horizontal permeability tests. The correlation was further corroborated by a different set of data, and it has been found that the derived polynomial equation is deemed to be a viable tool to predict hydraulic conductivity.Keywords: hydraulic conductivity, unconfined compressive strength, recycled plastics, recycled concrete aggregates
Procedia PDF Downloads 906415 Review of Comparison of Subgrade Soil Stabilised with Natural, Synthetic, and Waste Fibers
Authors: Jacqueline Michella Anak Nathen
Abstract:
Subgrade soil is an essential component in the design of road structures as it provides lateral support to the pavement. One of the main reasons for the failure of the pavement is the settlement of the subgrade and the high susceptibility to moisture, which leads to a loss of strength of the subgrade. Construction over weak or soft subgrade affects the performance of the pavement and causes instability of the pavement. If the mechanical properties of the subgrade soils are lower than those required, the soil stabilisation method can be an option to improve the soil properties of the weak subgrade. Soil stabilisation is one of the most popular techniques for improving poor subgrade soils, resulting in a significant improvement in the subgrade soil’s tensile strength, shear strength, and bearing capacity. Soil stabilisation encompasses the various methods used to alter the properties of soil to improve its engineering properties. Soil stabilisation can be broadly divided into four types: thermal, electrical, mechanical, and chemical. The most common method of improving the physical and mechanical properties of soils is stabilisation using binders such as cement and lime. However, soil stabilisation with conventional methods using cement and lime has become uneconomical in recent years, so there is a need to look for an alternative, such as fiber. Although not a new technique, adding fiber is a very practical alternative to soil stabilisation. Various types of fibers, such as natural, synthetic, and waste fibers, have been used as stabilising agents to improve the strength and durability of subgrade soils. This review provides a comprehensive comparison of the effectiveness of natural, synthetic, and waste fibers in stabilising subgrade soils.Keywords: subgrade, soil stabilisation, pavement, fiber, stabiliser
Procedia PDF Downloads 986414 Experimental Investigations on Setting Behavior and Compreesive Strength of Flyash Based Geopolymer
Authors: Ishan Tank, Ashmita Rupal, Sanjay Kumar Sharma
Abstract:
Concrete, a widely used building material, has cement as its main constituent. An excessive amount of emissions are released into the atmosphere during the manufacture of cement, which is detrimental to the environment. To minimize this problem, innovative materials like geopolymer mortar (GPM) seem to be a better alternative. By using fly ash-based geopolymer instead of standard cement mortar as a binding ingredient, this concept has been successfully applied to the building sector. The advancement of this technology significantly reduces greenhouse gas emissions and helps in source reduction, thereby minimizing pollution of the environment. In order to produce mortar and use this geopolymer mortar in the development of building materials, the current investigation is properly introducing this geopolymeric material, namely fly ash, as a binder in place of standard cement. In the domain of the building material industry, fly ash based geopolymer is a new and optimistic replacement for traditional binding materials because it is both environmentally sustainable and has good durability. The setting behaviour and strength characteristics of fly ash, when mixed with alkaline activator solution with varied concentration of sodium hydroxide solution, alkaline liquids mix ratio, and curing temperature, must be investigated, though, in order to determine its suitability and application in comparison with the traditional binding material, by activating the raw materials, which include various elements of silica and alumina, finer material known as geopolymer mortar is created. The concentration of the activator solution has an impact on the compressive strength of the geopolymer concrete formed. An experimental examination of compressive strength after 7, 14, and 28 days of fly ash-based geopolymer concrete is presented in this paper. Furthermore, the process of geopolymerization largely relies on the curing temperature. So, the setting time of Geopolymer mortar due to different curing temperatures has been studied and discussed in this paper.Keywords: geopolymer mortar, setting time, flyash, compressive strength, binder material
Procedia PDF Downloads 716413 Study of Drape and Seam Strength of Fabric and Garment in Relation to Weave Design and Comparison of 2D and 3D Drape Properties
Authors: Shagufta Riaz, Ayesha Younus, Munir Ashraf, Tanveer Hussain
Abstract:
Aesthetic and performance are two most important considerations along with quality, durability, comfort and cost that affect the garment credibility. Fabric drape is perhaps the most important clothing characteristics that distinguishes fabric from the sheet, paper, steel or other film materials. It enables the fabric to mold itself under its own weight into desired and required shape when only part of it is directly sustained. The fabric has the ability to be crumpled charmingly in bent folds of single or double curvature due to its drapeability to produce a smooth flowing i.e. ‘the sinusoidal-type folds of a curtain or skirt’. Drape and seam strength are two parameters that are considered for aesthetic and performance of fabric for both apparel and home textiles. Until recently, no such study have been conducted in which effect of weave designs on drape and seam strength of fabric and garment is inspected. Therefore, the aim of this study was to measure seam strength and drape of fabric and garment objectively by changing weave designs and quality of the fabric. Also, the comparison of 2-D drape and 3-D drape was done to find whether a fabric behaves in same manner or differently when sewn and worn on the body. Four different cotton weave designs were developed and pr-treatment was done. 2-D Drape of the fabric was measured by drapemeter attached with digital camera and a supporting disc to hang the specimen on it. Drape coefficient value (DC %) has negative relation with drape. It is the ratio of draped sample’s projected shadow area to the area of undraped (flat) sample expressed as percentage. Similarly, 3-D drape was measured by hanging the A-line skirts for developed weave designs. BS 3356 standard test method was followed for bending length examination. It is related to the angle that the fabric makes with its horizontal axis. Seam strength was determined by following ASTM test standard. For sewn fabric, stitch density of seam was found by magnifying glass according to standard ASTM test method. In this research study, from the experimentation and evaluation it was investigated that drape and seam strength were significantly affected by change of weave design and quality of fabric (PPI & yarn count). Drapeability increased as the number of interlacement or contact point deceased between warp and weft yarns. As the weight of fabric, bending length, and density of fabric had indirect relationship with drapeability. We had concluded that 2-D drape was higher than 3-D drape even though the garment was made of the same fabric construction. Seam breakage strength decreased with decrease in picks density and yarn count.Keywords: drape coefficient, fabric, seam strength, weave
Procedia PDF Downloads 2636412 Soap Film Enneper Minimal Surface Model
Authors: Yee Hooi Min, Mohdnasir Abdul Hadi
Abstract:
Tensioned membrane structure in the form of Enneper minimal surface can be considered as a sustainable development for the green environment and technology, it also can be used to support the effectiveness used of energy and the structure. Soap film in the form of Enneper minimal surface model has been studied. The combination of shape and internal forces for the purpose of stiffness and strength is an important feature of membrane surface. For this purpose, form-finding using soap film model has been carried out for Enneper minimal surface models with variables u=v=0.6 and u=v=1.0. Enneper soap film models with variables u=v=0.6 and u=v=1.0 provides an alternative choice for structural engineers to consider the tensioned membrane structure in the form of Enneper minimal surface applied in the building industry. It is expected to become an alternative building material to be considered by the designer.Keywords: Enneper, minimal surface, soap film, tensioned membrane structure
Procedia PDF Downloads 5536411 Dynamical Models for Enviromental Effect Depuration for Structural Health Monitoring of Bridges
Authors: Francesco Morgan Bono, Simone Cinquemani
Abstract:
This research aims to enhance bridge monitoring by employing innovative techniques that incorporate exogenous factors into the modeling of sensor signals, thereby improving long-term predictability beyond traditional static methods. Using real datasets from two different bridges equipped with Linear Variable Displacement Transducer (LVDT) sensors, the study investigates the fundamental principles governing sensor behavior for more precise long-term forecasts. Additionally, the research evaluates performance on noisy and synthetically damaged data, proposing a residual-based alarm system to detect anomalies in the bridge. In summary, this novel approach combines advanced modeling, exogenous factors, and anomaly detection to extend prediction horizons and improve preemptive damage recognition, significantly advancing structural health monitoring practices.Keywords: structural health monitoring, dynamic models, sindy, railway bridges
Procedia PDF Downloads 386410 Study of the Effect of Using Corn-Cob Ash on Mortar and Concrete Properties: Case Study of Sudan
Authors: Taghried I. M. Abdel-Magid, Gheida T. A. Al-Khelifa, Ahmed O. Adam, Esra G. A. Mohamed, Saeed M. S. Saeed
Abstract:
The use of pozzolanic materials in concrete industry is facing challenges due to unpredictable behavior of natural materials. Corncob ash (CCA) is considered to be one of the promising plant-based materials that possess cementitious properties. Corn is one of the major planted crops in Sudan. Corncob is considered as waste and normally thrown away or burnt. The main purpose of this research was to test the hypothesis that CCA can sufficiently replace cement in a concrete mixture or a cement mortar. In this study, CCA was used to replace cement in mortar in three percentages: 0, 20, and 25%. The effect of this replacement was found to be positive in terms of long-term compressive strength, while not as such in short-term compressive strength. In the concrete mix, the introduction of CCA was found to have a positive impact on the slump test characteristics, whereas the early and late compressive strengths deteriorated by approximately 30%. More research is needed in this area to upgrade the efficient use of CCA in cement mortar and concrete properties.Keywords: cementitious materials, compressive strength, corncob ash, pozzolanic materials
Procedia PDF Downloads 2406409 Factors Affecting the Formation of Architectural Space and Construction Systems in the Jordanian Vernacular Architecture
Authors: Mohannad Tarrad
Abstract:
The research deals with the beginnings of the vernacular Jordanian architecture since the establishment of the Jordanian state in the early nineteenth century until now, where the Jordanian architecture was based on the interactions of the Jordanian society with the surrounding environment, where the local materials available in the construction area were used, and the construction systems inherited from previous civilizations were used. The builders in Jordan relied on exchanging knowledge and transferring it from one generation to another, where they were able to formulate a construction style capable of responding to the requirement of architectural spaces, and each region of Jordan has its own way of building, as there are various geographical areas in Jordan, including agricultural, mountainous and desert areas. Then the research touched on a historical study of the architectural space and identifying the value of the architectural space in the Jordanian social life, which is related to the customs and traditions of a society influenced by the Arab Islamic civilization, and then the construction, the structural structure, its characteristics and the constituent elements of the building were defined in the vernacular l Jordanian architecture. From the structural point of view, and then to identify the structural materials used in the structural structure and the impact of the structural structure on the design from several aspects, leading to the interior space and the factors affecting it. The research aims to explain and clarify the interconnected design and construction solutions in the vernacular Jordanian architecture in a manner that respects the environmental context, taking into account the material cost of the building, where the financial situation of the home owner plays an important role in choosing the building material and construction method. Case studies from heritage buildings from several Jordanian regions will be analyzed to illustrate the idea of the research.Keywords: construction systems, architectural space, environmental context, Jordanian architecture
Procedia PDF Downloads 2036408 First Principles Study of Structural and Elastic Properties of BaWO4 Scheelite Phase Structure under Pressure
Authors: Abdennour Benmakhlouf, Abdelouahab Bentabet
Abstract:
In this paper, we investigated the athermal pressure behavior of the structural and elastic properties of scheelite BaWO4 phase up to 7 GPa using the ab initio pseudo-potential method. The calculated lattice parameters pressure relation have been compared with the experimental values and found to be in good agreement with these results. Moreover, we present for the first time the investigation of the elastic properties of this compound using the density functional perturbation theory (DFPT). It is shown that this phase is mechanically stable up to 7 GPa after analyzing the calculated elastic constants. Other relevant quantities such as bulk modulus, pressure derivative of bulk modulus, shear modulus; Young’s modulus, Poisson’s ratio, anisotropy factors, Debye temperature and sound velocity have been calculated. The obtained results, which are reported for the first time to the best of the author’s knowledge, can facilitate assessment of possible applications of the title material.Keywords: pseudo-potential method, pressure, structural and elastic properties, scheelite BaWO4 phase
Procedia PDF Downloads 4396407 Development of Recycled-Modified Asphalt Using Basalt Aggregate
Authors: Dong Wook Lee, Seung Hyun Kim, Jeongho Oh
Abstract:
With the strengthened regulation on the mandatory use of recycled aggregate, development of construction materials using recycled aggregate has recently increased. This study aimed to secure the performance of asphalt concrete mixture by developing recycled-modified asphalt using recycled basalt aggregate from the Jeju area. The strength of the basalt aggregate from the Jeju area used in this study was similar to that of general aggregate, while the specific surface area was larger due to the development of pores. Modified asphalt was developed using a general aggregate-recycled aggregate ratio of 7:3, and the results indicated that the Marshall stability increased by 27% compared to that of asphalt concrete mixture using only general aggregate, and the flow values showed similar levels. Also, the indirect tensile strength increased by 79%, and the toughness increased by more than 100%. In addition, the TSR for examining moisture resistance was 0.95 indicating that the reduction in the indirect tensile strength due to moisture was very low (5% level), and the developed recycled-modified asphalt could satisfy all the quality standards of asphalt concrete mixture.Keywords: asphalt concrete mixture, performance grade, recycled basalt aggregate, recycled-modified asphalt
Procedia PDF Downloads 3586406 Practical Design Procedures of 3D Reinforced Concrete Shear Wall-Frame Structure Based on Structural Optimization Method
Authors: H. Nikzad, S. Yoshitomi
Abstract:
This study investigates and develops the structural optimization method. The effect of size constraints on practical solution of reinforced concrete (RC) building structure with shear wall is proposed. Cross-sections of beam and column, and thickness of shear wall are considered as design variables. The objective function to be minimized is total cost of the structure by using a simple and efficient automated MATLAB platform structural optimization methodology. With modification of mathematical formulations, the result is compared with optimal solution without size constraints. The most suitable combination of section sizes is selected as for the final design application based on linear static analysis. The findings of this study show that defining higher value of upper bound of sectional sizes significantly affects optimal solution, and defining of size constraints play a vital role in finding of global and practical solution during optimization procedures. The result and effectiveness of proposed method confirm the ability and efficiency of optimal solutions for 3D RC shear wall-frame structure.Keywords: structural optimization, linear static analysis, ETABS, MATLAB, RC shear wall-frame structures
Procedia PDF Downloads 3756405 Gluability of Bambusa balcooa and Bambusa vulgaris for Development of Laminated Panels
Authors: Daisy Biswas, Samar Kanti Bose, M. Mozaffar Hossain
Abstract:
The development of value added composite products from bamboo with the application of gluing technology can play a vital role in economic development and also in forest resource conservation of any country. In this study, the gluability of Bambusa balcooa and Bambusa vulgaris, two locally grown bamboo species of Bangladesh was assessed. As the culm wall thickness of bamboos decreases from bottom to top, a culm portion of up to 5.4 m and 3.6 m were used from the base of B. balcooa and B. vulgaris, respectively, to get rectangular strips of uniform thickness. The color of the B. vulgaris strips was yellowish brown and that of B. balcooa was reddish brown. The strips were treated in borax-boric, bleaching and carbonization for extending the service life of the laminates. The preservative treatments changed the color of the strips. Borax–boric acid treated strips were reddish brown. When bleached with hydrogen peroxide, the color of the strips turned into whitish yellow. Carbonization produced dark brownish strips having coffee flavor. Chemical constituents for untreated and treated strips were determined. B. vulgaris was more acidic than B. balcooa. Then the treated strips were used to develop three-layered bamboo laminated panel. Urea formaldehyde (UF) and polyvinyl acetate (PVA) were used as binder. The shear strength and abrasive resistance of the panel were evaluated. It was found that the shear strength of the UF-panel was higher than the PVA-panel for all treatments. Between the species, gluability of B. vulgaris was better and in some cases better than hardwood species. The abrasive resistance of B. balcooa is slightly higher than B. vulgaris; however, the latter was preferred as it showed well gluability. The panels could be used as structural panel, floor tiles, flat pack furniture component, and wall panel etc. However, further research on durability and creep behavior of the product in service condition is warranted.Keywords: Bambusa balcooa, Bambusa vulgaris, polyvinyl acetate, urea formaldehyde
Procedia PDF Downloads 2626404 Particle Size Dependent Enhancement of Compressive Strength and Carbonation Efficiency in Steel Slag Cementitious Composites
Authors: Jason Ting Jing Cheng, Lee Foo Wei, Yew Ming Kun, Chin Ren Jie, Yip Chun Chieh
Abstract:
The utilization of industrial by-products, such as steel slag in cementitious materials, not only mitigates environmental impact but also enhances material properties. This study investigates the dual influence of steel slag particle size on the compressive strength and carbonation efficiency of cementitious composites. Through a systematic experimental approach, steel slag particles were incorporated into cement at varying sizes, and the resulting composites were subjected to mechanical and carbonation tests. Scanning electron microscopy (SEM) and energy-dispersive X-ray spectroscopy (EDX) are conducted in this paper. The findings reveal a positive correlation between increased particle size and compressive strength, attributed to the improved interfacial transition zone and packing density. Conversely, smaller particle sizes exhibited enhanced carbonation efficiency, likely due to the increased surface area facilitating the carbonation reaction. The presence of higher silica and calcium content in finer particles was confirmed by EDX, which contributed to the accelerated carbonation process. This study underscores the importance of particle size optimization in designing sustainable cementitious materials with balanced mechanical performance and carbon sequestration potential. The insights gained from the advanced analytical techniques offer a comprehensive understanding of the mechanisms at play, paving the way for the strategic use of steel slag in eco-friendly construction practices.Keywords: steel slag, carbonation efficiency, particle size enhancement, compressive strength
Procedia PDF Downloads 616403 Effect of Strength Class of Concrete and Curing Conditions on Capillary Absorption of Self-Compacting and Conventional Concrete
Authors: Emine Ebru Demirci, Remzi Şahin
Abstract:
The purpose of this study is to compare Self Compacting Concrete (SCC) and Conventional Concrete (CC), which are used in beams with dense reinforcement, in terms of their capillary absorption. During the comparison of SCC and CC, the effects of two different factors were also investigated: concrete strength class and curing condition. In the study, both SCC and CC were produced in three different concrete classes (C25, C50 and C70) and the other parameter (i.e curing condition) was determined as two levels: moisture and air curing. Beam dimensions were determined to be 200 x 250 x 3000 mm. Reinforcements of the beams were calculated and placed as 2ø12 for the top and 3ø12 for the bottom. Stirrups with dimension 8 mm were used as lateral rebar and stirrup distances were chosen as 10 cm in the confinement zone and 15 cm at the central zone. In this manner, densification of rebars in lateral cross-sections of beams and handling of SCC in real conditions were aimed. Concrete covers of the rebars were chosen to be equal in all directions as 25 mm. The capillary absorption measurements were performed on core samples taken from the beams. Core samples of ø8x16 cm were taken from the beginning (0-100 cm), middle (100-200 cm) and end (200-300 cm) region of the beams according to the casting direction of SCC. However core samples were taken from lateral surface of the beams. In the study, capillary absorption experiments were performed according to Turkish Standard TS EN 13057. It was observed that, for both curing environments and all strength classes of concrete, SCC’s had lower capillary absorption values than that of CC’s. The capillary absorption values of C25 class of SCC are 11% and 16% lower than that of C25 class of CC for air and moisture conditions, respectively. For C50 class, these decreases were 6% and 18%, while for C70 class, they were 16% and 9%, respectively. It was also detected that, for both SCC and CC, capillary absorption values of samples kept in moisture curing are significantly lower than that of samples stored in air curing. For CC’s; C25, C50 and C70 class moisture-cured samples were found to have 26%, 12% and 31% lower capillary absorption values, respectively, when compared to the air-cured ones. For SCC’s; these values were 30%, 23% and 24%, respectively. Apart from that, it was determined that capillary absorption values for both SCC and CC decrease with increasing strength class of concrete for both curing environments. It was found that, for air cured CC, C50 and C70 class of concretes had 39% and 63% lower capillary absorption values compared to the C25 class of concrete. For the same type of concrete samples cured in the moisture environment, these values were found to be 27% and 66%. It was found that for SCC samples, capillary absorption value of C50 and C70 concretes, which were kept in air curing, were 35% and 65% lower than that of C25, while for moisture-cured samples these values were 29% and 63%, respectively. When standard deviations of the capillary absorption values are compared for core samples obtained from the beginning, middle and end of the CC and SCC beams, it was found that, in all three strength classes of concrete, the variation is much smaller for SCC than CC. This demonstrated that SCC’s had more uniform character than CC’s.Keywords: self compacting concrete, reinforced concrete beam, capillary absorption, strength class, curing condition
Procedia PDF Downloads 370