Search results for: satellite tracking
575 Analysis of High Resolution Seismic Reflection Data to Identify Different Regional Lithologies of the Zaria Batholith Located in the Basement Complex of North Central Nigeria
Authors: Collins C. Chiemeke, A. Onugba, P. Sule
Abstract:
High resolution seismic reflection has recently been carried out on Zaria batholith, with the aim of characterizing the granitic Zaria batholiths in terms of its lithology. The geology of the area has revealed that the older granite outcrops in the vicinity of Zaria are exposures of a syntectonics to late-tectonic granite batholiths which intruded a crystalline gneissic basement during the Pan-African Orogeny. During the data acquisition the geophone were placed at interval of 1 m, variable offset of 1 and 10 m was used. The common midpoint (CMP) method with 12 fold coverage was employed for the survey. Analysis of the generated 3D surface of the p wave velocities from different profiles for densities and bulk modulus revealed that the rock material is more consolidated in South East part of the batholith and less consolidated in the North Western part. This was in conformity with earlier identified geology of the area, with the South Eastern part majorly of granitic outcrop, while the North Western part is characterized with the exposure of gneisses and thick overburden cover. The difference in lithology was also confirmed by the difference in seismic sections and Arial satellite photograph. Hence two major lithologies were identified, the granitic and gneisses complex which are characterized by gradational boundaries.Keywords: basement complex, batholith, high resolution, lithologies, seismic reflection
Procedia PDF Downloads 294574 Determination of Surface Deformations with Global Navigation Satellite System Time Series
Authors: Ibrahim Tiryakioglu, Mehmet Ali Ugur, Caglar Ozkaymak
Abstract:
The development of GNSS technology has led to increasingly widespread and successful applications of GNSS surveys for monitoring crustal movements. However, multi-period GPS survey solutions have not been applied in monitoring vertical surface deformation. This study uses long-term GNSS time series that are required to determine vertical deformations. In recent years, the surface deformations that are parallel and semi-parallel to Bolvadin fault have occurred in Western Anatolia. These surface deformations have continued to occur in Bolvadin settlement area that is located mostly on alluvium ground. Due to these surface deformations, a number of cracks in the buildings located in the residential areas and breaks in underground water and sewage systems have been observed. In order to determine the amount of vertical surface deformations, two continuous GNSS stations have been established in the region. The stations have been operating since 2015 and 2017, respectively. In this study, GNSS observations from the mentioned two GNSS stations were processed with GAMIT/GLOBK (GNSS Analysis Massachusetts Institute of Technology/GLOBal Kalman) program package to create a coordinate time series. With the time series analyses, the GNSS stations’ behavior models (linear, periodical, etc.), the causes of these behaviors, and mathematical models were determined. The study results from the time series analysis of these two 2 GNSS stations shows approximately 50-80 mm/yr vertical movement.Keywords: Bolvadin fault, GAMIT, GNSS time series, surface deformations
Procedia PDF Downloads 164573 Home/Personal Budgeting: Implications for Financial Wellbeing of University Staffers in Ogun State Nigeria
Authors: Ben-Caleb Egbide, Egharevba Mathew, Achugamonu Uzoma, Faboyede Samuel
Abstract:
The importance of budgeting in government and corporate entities as medium for the efficient management of scarce resources is self-evident. But when it comes to home or personal budgeting, there seem to be lingering misconceptions as regards its relevance. While most people view personal budgeting merely as a tool for tracking expenses and schedule for paying bills and indebtedness, very few consider it as one of the most important device for sound financial planning, money management instrument and/or wealth-creation mechanism. This paper is conceptualised to investigate the association between personal budgeting and financial well-being among staffers of tertiary institution in the South West Nigeria. Underpinned by the individualistic/cultural theory of well-being and the adoption of a survey research design, a structured questionnaire was used to gather data from a cross section of staff of tertiary Institutions in Ogun State. A Spearman Rank Correlation was utilised for analysis of data. The result indicates a high positive relationship between personal budgeting and tendencies for enhanced financial well-being among staff. The paper established that a change of value and behavioural pattern by individuals and household, especially in the areas of personal spending and budgeting could drastically reduce the incidence of the severity of financial stress, hence, enhanced wellness among staff.Keywords: personal budgeting, financial well-being, tertiary institutions staffers, Nigeria
Procedia PDF Downloads 299572 Impacts of Applying Automated Vehicle Location Systems to Public Bus Transport Management
Authors: Vani Chintapally
Abstract:
The expansion of modest and minimized Global Positioning System (GPS) beneficiaries has prompted most Automatic Vehicle Location (AVL) frameworks today depending solely on satellite-based finding frameworks, as GPS is the most stable usage of these. This paper shows the attributes of a proposed framework for following and dissecting open transport in a run of the mill medium-sized city and complexities the qualities of such a framework to those of broadly useful AVL frameworks. Particular properties of the courses broke down by the AVL framework utilized for the examination of open transport in our study incorporate cyclic vehicle courses, the requirement for particular execution reports, and so forth. This paper particularly manages vehicle movement forecasts and the estimation of station landing time, combined with consequently produced reports on timetable conformance and other execution measures. Another side of the watched issue is proficient exchange of information from the vehicles to the control focus. The pervasiveness of GSM bundle information exchange advancements combined with decreased information exchange expenses have brought on today's AVL frameworks to depend predominantly on parcel information exchange administrations from portable administrators as the correspondences channel in the middle of vehicles and the control focus. This methodology brings numerous security issues up in this conceivably touchy application field.Keywords: automatic vehicle location (AVL), expectation of landing times, AVL security, data administrations, wise transport frameworks (ITS), guide coordinating
Procedia PDF Downloads 382571 Improving Temporal Correlations in Empirical Orthogonal Function Expansions for Data Interpolating Empirical Orthogonal Function Algorithm
Authors: Ping Bo, Meng Yunshan
Abstract:
Satellite-derived sea surface temperature (SST) is a key parameter for many operational and scientific applications. However, the disadvantage of SST data is a high percentage of missing data which is mainly caused by cloud coverage. Data Interpolating Empirical Orthogonal Function (DINEOF) algorithm is an EOF-based technique for reconstructing the missing data and has been widely used in oceanographic field. The reconstruction of SST images within a long time series using DINEOF can cause large discontinuities and one solution for this problem is to filter the temporal covariance matrix to reduce the spurious variability. Based on the previous researches, an algorithm is presented in this paper to improve the temporal correlations in EOF expansion. Similar with the previous researches, a filter, such as Laplacian filter, is implemented on the temporal covariance matrix, but the temporal relationship between two consecutive images which is used in the filter is considered in the presented algorithm, for example, two images in the same season are more likely correlated than those in the different seasons, hence the latter one is less weighted in the filter. The presented approach is tested for the monthly nighttime 4-km Advanced Very High Resolution Radiometer (AVHRR) Pathfinder SST for the long-term period spanning from 1989 to 2006. The results obtained from the presented algorithm are compared to those from the original DINEOF algorithm without filtering and from the DINEOF algorithm with filtering but without taking temporal relationship into account.Keywords: data interpolating empirical orthogonal function, image reconstruction, sea surface temperature, temporal filter
Procedia PDF Downloads 323570 Tensile Force Estimation for Real-Size Pre-Stressed Concrete Girder using Embedded Elasto-Magnetic Sensor
Authors: Junkyeong Kim, Jooyoung Park, Aoqi Zhang, Seunghee Park
Abstract:
The tensile force of Pre-Stressed Concrete (PSC) girder is the most important factor for evaluating the performance of PSC girder bridges. To measure the tensile force of PSC girder, several NDT methods were studied. However, conventional NDT method cannot be applied to the real-size PSC girder because the PS tendons could not be approached. To measure the tensile force of real-size PSC girder, this study proposed embedded EM sensor based tensile force estimation method. The embedded EM sensor could be installed inside of PSC girder as a sheath joint before the concrete casting. After curing process, the PS tendons were installed, and the tensile force was induced step by step using hydraulic jacking machine. The B-H loop was measured using embedded EM sensor at each tensile force steps and to compare with actual tensile force, the load cell was installed at each end of girder. The magnetization energy loss, that is the closed area of B-H loop, was decreased according to the increase of tensile force with regular pattern. Thus, the tensile force could be estimated by the tracking the change of magnetization energy loss of PS tendons. Through the experimental result, the proposed method can be used to estimate the tensile force of the in-situ real-size PSC girder bridge.Keywords: tensile force estimation, embedded EM sensor, magnetization energy loss, PSC girder
Procedia PDF Downloads 335569 Performance Evaluation of Construction Projects by Earned Value Management Method, Using Primavera P6 – A Case Study in Istanbul, Turkey
Authors: Mohammad Lemar Zalmai, Osman Hurol Turkakin, Cemil Akcay, Ekrem Manisali
Abstract:
Most of the construction projects are exposed to time and cost overruns due to various factors and this is a major problem. As a solution to this, the Earned Value Management (EVM) method is considered. EVM is a powerful and well-known method used in monitoring and controlling the project. EVM is a technique that project managers use to track the performance of their project against project baselines. EVM gives an early indication that either project is delayed or not, and the project is either over budget or under budget at any particular day by tracking it. Thus, it helps to improve the management control system of a construction project, to detect and control the problems in potential risk areas and to suggest the importance and purpose of monitoring the construction work. This paper explains the main parameters of the EVM system involved in the calculation of time and cost for construction projects. In this study, the project management software Primavera P6 is used to deals with the project monitoring process of a seven-storeyed (G+6) faculty building whose construction is in progress at Istanbul, Turkey. A comparison between the planned progress of construction activities and actual progress is performed, and the analysis results are interpreted. This case study justifies the benefits of using EVM for project cash flow analysis and forecasting.Keywords: earned value management (EVM), construction cost management, construction planning, primavera P6, project management, project scheduling
Procedia PDF Downloads 239568 A Machine Learning Approach for Earthquake Prediction in Various Zones Based on Solar Activity
Authors: Viacheslav Shkuratskyy, Aminu Bello Usman, Michael O’Dea, Saifur Rahman Sabuj
Abstract:
This paper examines relationships between solar activity and earthquakes; it applied machine learning techniques: K-nearest neighbour, support vector regression, random forest regression, and long short-term memory network. Data from the SILSO World Data Center, the NOAA National Center, the GOES satellite, NASA OMNIWeb, and the United States Geological Survey were used for the experiment. The 23rd and 24th solar cycles, daily sunspot number, solar wind velocity, proton density, and proton temperature were all included in the dataset. The study also examined sunspots, solar wind, and solar flares, which all reflect solar activity and earthquake frequency distribution by magnitude and depth. The findings showed that the long short-term memory network model predicts earthquakes more correctly than the other models applied in the study, and solar activity is more likely to affect earthquakes of lower magnitude and shallow depth than earthquakes of magnitude 5.5 or larger with intermediate depth and deep depth.Keywords: k-nearest neighbour, support vector regression, random forest regression, long short-term memory network, earthquakes, solar activity, sunspot number, solar wind, solar flares
Procedia PDF Downloads 71567 Use of Data of the Remote Sensing for Spatiotemporal Analysis Land Use Changes in the Eastern Aurès (Algeria)
Authors: A. Bouzekri, H. Benmassaud
Abstract:
Aurès region is one of the arid and semi-arid areas that have suffered climate crises and overexploitation of natural resources they have led to significant land degradation. The use of remote sensing data allowed us to analyze the land and its spatiotemporal changes in the Aurès between 1987 and 2013, for this work, we adopted a method of analysis based on the exploitation of the images satellite Landsat TM 1987 and Landsat OLI 2013, from the supervised classification likelihood coupled with field surveys of the mission of May and September of 2013. Using ENVI EX software by the superposition of the ground cover maps from 1987 and 2013, one can extract a spatial map change of different land cover units. The results show that between 1987 and 2013 vegetation has suffered negative changes are the significant degradation of forests and steppe rangelands, and sandy soils and bare land recorded a considerable increase. The spatial change map land cover units between 1987 and 2013 allows us to understand the extensive or regressive orientation of vegetation and soil, this map shows that dense forests give his place to clear forests and steppe vegetation develops from a degraded forest vegetation and bare, sandy soils earn big steppe surfaces that explain its remarkable extension. The analysis of remote sensing data highlights the profound changes in our environment over time and quantitative monitoring of the risk of desertification.Keywords: remote sensing, spatiotemporal, land use, Aurès
Procedia PDF Downloads 333566 Multisource (RF and Solar) Energy Harvesting for Internet of Things (IoT)
Authors: Emmanuel Ekwueme, Anwar Ali
Abstract:
As the Internet of Things (IoT) continues to expand, the demand for battery-free devices is increasing, which is crucial for the efficiency of 5G networks and eco-friendly industrial systems. The solution is a device that operates indefinitely, requires no maintenance, and has no negative impact on the ambient environment. One promising approach to achieve this is energy harvesting, which involves capturing energy from the ambient environment and transferring it to power devices. This method can revolutionize industries. Such as manufacturing, agriculture, and healthcare by enabling real-time data collection and analysis, reducing maintenance costs, improving efficiency, and contributing to a future with lower carbon emissions. This research explores various energy harvesting techniques, focusing on radio frequencies (RF) and multiple energy sources. It examines RF-based and solar methods for powering battery-free sensors, low-power circuits, and IoT devices. The study investigates a hybrid RF-solar harvesting circuit designed for remote sensing devices. The proposed system includes distinct RF and solar energy harvester circuits, with the RF harvester operating at 2.45GHz and the solar harvester utilizing a maximum power point tracking (MPPT) algorithm to maximize efficiency.Keywords: radio frequency, energy harvesting, Internet of Things (IoT), multisource, solar energy
Procedia PDF Downloads 3565 Deliberation of Daily Evapotranspiration and Evaporative Fraction Based on Remote Sensing Data
Authors: J. Bahrawi, M. Elhag
Abstract:
Estimation of evapotranspiration is always a major component in water resources management. Traditional techniques of calculating daily evapotranspiration based on field measurements are valid only for local scales. Earth observation satellite sensors are thus used to overcome difficulties in obtaining daily evapotranspiration measurements on regional scale. The Surface Energy Balance System (SEBS) model was adopted to estimate daily evapotranspiration and relative evaporation along with other land surface energy fluxes. The model requires agro-climatic data that improve the model outputs. Advance Along Track Scanning Radiometer (AATSR) and Medium Spectral Resolution Imaging Spectrometer (MERIS) imageries were used to estimate the daily evapotranspiration and relative evaporation over the entire Nile Delta region in Egypt supported by meteorological data collected from six different weather stations located within the study area. Daily evapotranspiration maps derived from SEBS model show a strong agreement with actual ground-truth data taken from 92 points uniformly distributed all over the study area. Moreover, daily evapotranspiration and relative evaporation are strongly correlated. The reliable estimation of daily evapotranspiration supports the decision makers to review the current land use practices in terms of water management, while enabling them to propose proper land use changes.Keywords: daily evapotranspiration, relative evaporation, SEBS, AATSR, MERIS, Nile Delta
Procedia PDF Downloads 258564 Accuracy of Autonomy Navigation of Unmanned Aircraft Systems through Imagery
Authors: Sidney A. Lima, Hermann J. H. Kux, Elcio H. Shiguemori
Abstract:
The Unmanned Aircraft Systems (UAS) usually navigate through the Global Navigation Satellite System (GNSS) associated with an Inertial Navigation System (INS). However, GNSS can have its accuracy degraded at any time or even turn off the signal of GNSS. In addition, there is the possibility of malicious interferences, known as jamming. Therefore, the image navigation system can solve the autonomy problem, because if the GNSS is disabled or degraded, the image navigation system would continue to provide coordinate information for the INS, allowing the autonomy of the system. This work aims to evaluate the accuracy of the positioning though photogrammetry concepts. The methodology uses orthophotos and Digital Surface Models (DSM) as a reference to represent the object space and photograph obtained during the flight to represent the image space. For the calculation of the coordinates of the perspective center and camera attitudes, it is necessary to know the coordinates of homologous points in the object space (orthophoto coordinates and DSM altitude) and image space (column and line of the photograph). So if it is possible to automatically identify in real time the homologous points the coordinates and attitudes can be calculated whit their respective accuracies. With the methodology applied in this work, it is possible to verify maximum errors in the order of 0.5 m in the positioning and 0.6º in the attitude of the camera, so the navigation through the image can reach values equal to or higher than the GNSS receivers without differential correction. Therefore, navigating through the image is a good alternative to enable autonomous navigation.Keywords: autonomy, navigation, security, photogrammetry, remote sensing, spatial resection, UAS
Procedia PDF Downloads 187563 Performance Analysis of Geophysical Database Referenced Navigation: The Combination of Gravity Gradient and Terrain Using Extended Kalman Filter
Authors: Jisun Lee, Jay Hyoun Kwon
Abstract:
As an alternative way to compensate the INS (inertial navigation system) error in non-GNSS (Global Navigation Satellite System) environment, geophysical database referenced navigation is being studied. In this study, both gravity gradient and terrain data were combined to complement the weakness of sole geophysical data as well as to improve the stability of the positioning. The main process to compensate the INS error using geophysical database was constructed on the basis of the EKF (Extended Kalman Filter). In detail, two type of combination method, centralized and decentralized filter, were applied to check the pros and cons of its algorithm and to find more robust results. The performance of each navigation algorithm was evaluated based on the simulation by supposing that the aircraft flies with precise geophysical DB and sensors above nine different trajectories. Especially, the results were compared to the ones from sole geophysical database referenced navigation to check the improvement due to a combination of the heterogeneous geophysical database. It was found that the overall navigation performance was improved, but not all trajectories generated better navigation result by the combination of gravity gradient with terrain data. Also, it was found that the centralized filter generally showed more stable results. It is because that the way to allocate the weight for the decentralized filter could not be optimized due to the local inconsistency of geophysical data. In the future, switching of geophysical data or combining different navigation algorithm are necessary to obtain more robust navigation results.Keywords: Extended Kalman Filter, geophysical database referenced navigation, gravity gradient, terrain
Procedia PDF Downloads 347562 Robust Recognition of Locomotion Patterns via Data-Driven Machine Learning in the Cloud Environment
Authors: Shinoy Vengaramkode Bhaskaran, Kaushik Sathupadi, Sandesh Achar
Abstract:
Human locomotion recognition is important in a variety of sectors, such as robotics, security, healthcare, fitness tracking and cloud computing. With the increasing pervasiveness of peripheral devices, particularly Inertial Measurement Units (IMUs) sensors, researchers have attempted to exploit these advancements in order to precisely and efficiently identify and categorize human activities. This research paper introduces a state-of-the-art methodology for the recognition of human locomotion patterns in a cloud environment. The methodology is based on a publicly available benchmark dataset. The investigation implements a denoising and windowing strategy to deal with the unprocessed data. Next, feature extraction is adopted to abstract the main cues from the data. The SelectKBest strategy is used to abstract optimal features from the data. Furthermore, state-of-the-art ML classifiers are used to evaluate the performance of the system, including logistic regression, random forest, gradient boosting and SVM have been investigated to accomplish precise locomotion classification. Finally, a detailed comparative analysis of results is presented to reveal the performance of recognition models.Keywords: artificial intelligence, cloud computing, IoT, human locomotion, gradient boosting, random forest, neural networks, body-worn sensors
Procedia PDF Downloads 7561 Research of Control System for Space Intelligent Robot Based on Vision Servo
Authors: Changchun Liang, Xiaodong Zhang, Xin Liu, Pengfei Sun
Abstract:
Space intelligent robotic systems are expected to play an increasingly important role in the future. The robotic on-orbital service, whose key is the tracking and capturing technology, becomes research hot in recent years. In this paper, the authors propose a vision servo control system for target capturing. Robotic manipulator will be an intelligent robotic system with large-scale movement, functional agility, and autonomous ability, and it can be operated by astronauts in the space station or be controlled by the ground operator in the remote operation mode. To realize the autonomous movement and capture mission of SRM, a kind of autonomous programming strategy based on multi-camera vision fusion is designed and the selection principle of object visual position and orientation measurement information is defined for the better precision. Distributed control system hierarchy is designed and reliability is considering to guarantee the abilities of control system. At last, a ground experiment system is set up based on the concept of robotic control system. With that, the autonomous target capturing experiments are conducted. The experiment results validate the proposed algorithm, and demonstrates that the control system can fulfill the needs of function, real-time and reliability.Keywords: control system, on-orbital service, space robot, vision servo
Procedia PDF Downloads 418560 DFIG-Based Wind Turbine with Shunt Active Power Filter Controlled by Double Nonlinear Predictive Controller
Authors: Abderrahmane El Kachani, El Mahjoub Chakir, Anass Ait Laachir, Abdelhamid Niaaniaa, Jamal Zerouaoui, Tarik Jarou
Abstract:
This paper presents a wind turbine based on the doubly fed induction generator (DFIG) connected to the utility grid through a shunt active power filter (SAPF). The whole system is controlled by a double nonlinear predictive controller (DNPC). A Taylor series expansion is used to predict the outputs of the system. The control law is calculated by optimization of the cost function. The first nonlinear predictive controller (NPC) is designed to ensure the high performance tracking of the rotor speed and regulate the rotor current of the DFIG, while the second one is designed to control the SAPF in order to compensate the harmonic produces by the three-phase diode bridge supplied by a passive circuit (rd, Ld). As a result, we obtain sinusoidal waveforms of the stator voltage and stator current. The proposed nonlinear predictive controllers (NPCs) are validated via simulation on a 1.5 MW DFIG-based wind turbine connected to an SAPF. The results obtained appear to be satisfactory and promising.Keywords: wind power, doubly fed induction generator, shunt active power filter, double nonlinear predictive controller
Procedia PDF Downloads 414559 High Performance of Direct Torque and Flux Control of a Double Stator Induction Motor Drive with a Fuzzy Stator Resistance Estimator
Authors: K. Kouzi
Abstract:
In order to have stable and high performance of direct torque and flux control (DTFC) of double star induction motor drive (DSIM), proper on-line adaptation of the stator resistance is very important. This is inevitably due to the variation of the stator resistance during operating conditions, which introduces error in estimated flux position and the magnitude of the stator flux. Error in the estimated stator flux deteriorates the performance of the DTFC drive. Also, the effect of error in estimation is very important especially at low speed. Due to this, our aim is to overcome the sensitivity of the DTFC to the stator resistance variation by proposing on-line fuzzy estimation stator resistance. The fuzzy estimation method is based on an on-line stator resistance correction through the variations of the stator current estimation error and its variations. The fuzzy logic controller gives the future stator resistance increment at the output. The main advantage of the suggested algorithm control is to avoid the drive instability that may occur in certain situations and ensure the tracking of the actual stator resistance. The validity of the technique and the improvement of the whole system performance are proved by the results.Keywords: direct torque control, dual stator induction motor, Fuzzy Logic estimation, stator resistance adaptation
Procedia PDF Downloads 325558 Estimation of Soil Moisture at High Resolution through Integration of Optical and Microwave Remote Sensing and Applications in Drought Analyses
Authors: Donglian Sun, Yu Li, Paul Houser, Xiwu Zhan
Abstract:
California experienced severe drought conditions in the past years. In this study, the drought conditions in California are analyzed using soil moisture anomalies derived from integrated optical and microwave satellite observations along with auxiliary land surface data. Based on the U.S. Drought Monitor (USDM) classifications, three typical drought conditions were selected for the analysis: extreme drought conditions in 2007 and 2013, severe drought conditions in 2004 and 2009, and normal conditions in 2005 and 2006. Drought is defined as negative soil moisture anomaly. To estimate soil moisture at high spatial resolutions, three approaches are explored in this study: the universal triangle model that estimates soil moisture from Normalized Difference Vegetation Index (NDVI) and Land Surface Temperature (LST); the basic model that estimates soil moisture under different conditions with auxiliary data like precipitation, soil texture, topography, and surface types; and the refined model that uses accumulated precipitation and its lagging effects. It is found that the basic model shows better agreements with the USDM classifications than the universal triangle model, while the refined model using precipitation accumulated from the previous summer to current time demonstrated the closest agreements with the USDM patterns.Keywords: soil moisture, high resolution, regional drought, analysis and monitoring
Procedia PDF Downloads 133557 Factor Study Affecting Visual Awareness on Dynamic Object Monitoring
Authors: Terry Liang Khin Teo, Sun Woh Lye, Kai Lun Brendon Goh
Abstract:
As applied to dynamic monitoring situations, the prevailing approach to situation awareness (SA) assumes that the relevant areas of interest (AOI) be perceived before that information can be processed further to affect decision-making and, thereafter, action. It is not entirely clear whether this is the case. This study seeks to investigate the monitoring of dynamic objects through matching eye fixations with the relevant AOIs in boundary-crossing scenarios. By this definition, a match is where a fixation is registered on the AOI. While many factors may affect monitoring characteristics, traffic simulations were designed in this study to explore two factors, namely: the number of inbounds/outbound traffic transfers and the number of entry and/or exit points in a radar monitoring sector. These two factors were graded into five levels of difficulty ranging from low to high traffic flow numbers. Combined permutation in terms of levels of difficulty of these two factors yielded a total of thirty scenarios. Through this, results showed that changes in the traffic flow numbers on transfer resulted in greater variations having match limits ranging from 29%-100%, as compared to the number of sector entry/exit points of range limit from 80%-100%. The subsequent analysis is able to determine the type and combination of traffic scenarios where imperfect matching is likely to occur.Keywords: air traffic simulation, eye-tracking, visual monitoring, focus attention
Procedia PDF Downloads 56556 Automated Human Balance Assessment Using Contactless Sensors
Authors: Justin Tang
Abstract:
Balance tests are frequently used to diagnose concussions on the sidelines of sporting events. Manual scoring, however, is labor intensive and subjective, and many concussions go undetected. This study institutes a novel approach to conducting the Balance Error Scoring System (BESS) more quantitatively using Microsoft’s gaming system Kinect, which uses a contactless sensor and several cameras to receive data and estimate body limb positions. Using a machine learning approach, Visual Gesture Builder, and a deterministic approach, MATLAB, we tested whether the Kinect can differentiate between “correct” and erroneous stances of the BESS. We created the two separate solutions by recording test videos to teach the Kinect correct stances and by developing a code using Java. Twenty-two subjects were asked to perform a series of BESS tests while the Kinect was collecting data. The Kinect recorded the subjects and mapped key joints onto their bodies to obtain angles and measurements that are interpreted by the software. Through VGB and MATLAB, the videos are analyzed to enumerate the number of errors committed during testing. The resulting statistics demonstrate a high correlation between manual scoring and the Kinect approaches, indicating the viability of the use of remote tracking devices in conducting concussion tests.Keywords: automated, concussion detection, contactless sensors, microsoft kinect
Procedia PDF Downloads 316555 Path Planning for Unmanned Aerial Vehicles in Constrained Environments for Locust Elimination
Authors: Aadiv Shah, Hari Nair, Vedant Mittal, Alice Cheeran
Abstract:
Present-day agricultural practices such as blanket spraying not only lead to excessive usage of pesticides but also harm the overall crop yield. This paper introduces an algorithm to optimize the traversal of an unmanned aerial vehicle (UAV) in constrained environments. The proposed system focuses on the agricultural application of targeted spraying for locust elimination. Given a satellite image of a farm, target zones that are prone to locust swarm formation are detected through the calculation of the normalized difference vegetation index (NDVI). This is followed by determining the optimal path for traversal of a UAV through these target zones using the proposed algorithm in order to perform pesticide spraying in the most efficient manner possible. Unlike the classic travelling salesman problem involving point-to-point optimization, the proposed algorithm determines an optimal path for multiple regions, independent of its geometry. Finally, the paper explores the idea of implementing reinforcement learning to model complex environmental behaviour and make the path planning mechanism for UAVs agnostic to external environment changes. This system not only presents a solution to the enormous losses incurred due to locust attacks but also an efficient way to automate agricultural practices across the globe in order to improve farmer ergonomics.Keywords: locust, NDVI, optimization, path planning, reinforcement learning, UAV
Procedia PDF Downloads 246554 A Review on Control of a Grid Connected Permanent Magnet Synchronous Generator Based Variable Speed Wind Turbine
Authors: Eman M. Eissa, Hany M. Hasanin, Mahmoud Abd-Elhamid, S. M. Muyeen, T. Fernando, H. H. C. Iu
Abstract:
Among all available wind energy conversion systems (WECS), the direct driven permanent magnet synchronous generator integrated with power electronic interfaces is becoming popular due to its capability of extracting optimal energy capture, reduced mechanical stresses, no need to external excitation current, meaning less losses, and more compact size. Simple structure, low maintenance cost; and its decoupling control performance is much less sensitive to the parameter variations of the generator. This paper attempts to present a review of the control and optimization strategies of WECS based on permanent magnet synchronous generator (PMSG) and overview the most recent research trends in this field. The main aims of this review include; the generalized overall WECS starting from turbines, generators, and control strategies including converters, maximum power point tracking (MPPT), ending with DC-link control. The optimization methods of the controller parameters necessary to guarantee the operation of the system efficiently and safely, especially when connected to the power grid are also presented.Keywords: control and optimization techniques, permanent magnet synchronous generator, variable speed wind turbines, wind energy conversion system
Procedia PDF Downloads 221553 Effect of Capillary Forces on Wet Granular Avalanches
Authors: Ahmed Jarray, Vanessa Magnanimo, Stefan Luding
Abstract:
Granular avalanches are ubiquitous in nature and occur in numerous industrial processes associated with particulate systems. When a small amount of liquid is added to a pile of particles, pendular bridges form and the particles are attracted by capillary forces, creating complex structure and flow behavior. We have performed an extensive series of experiments to investigate the effect of capillary force and particle size on wet granular avalanches, and we established a methodology that ensures the control of the granular flow in a rotating drum. The velocity of the free surface and the angle of repose of the particles in the rotating drum are determined using particle tracking method. The capillary force between the particles is significantly reduced by making the glass beads hydrophobic via chemical silanization. We show that the strength of the capillary forces between two adjacent particles can be deliberately manipulated through surface modification of the glass beads, thus, under the right conditions; we demonstrate that the avalanche dynamics can be controlled. The results show that the avalanche amplitude decreases when increasing the capillary force. We also find that liquid-induced cohesion increases the width of the gliding layer and the dynamic angle of repose, however, it decreases the velocity of the free surface.Keywords: avalanche dynamics, capillary force, granular material, granular flow
Procedia PDF Downloads 273552 Variability of the Snowline Altitude at Different Region in the Eastern Tibetan Plateau in Recent 20 Years
Authors: Zhen Li, Chang Liu, Ping Zhang
Abstract:
These Glaciers are thought of as natural water reservoirs and are of vital importance to hydrological models and industrial production, and glacial changes act as significant indicators of climate change. The glacier snowline can be used as an indicator of the equilibrium line, which may be a key parameter to study the effect of climate change on glaciers. Using Google Earth Engine, we select optical satellite imageries and implement the Otsu thresholding method on a near-infrared band to detect snowline altitudes (SLAs) of 26 glaciers in three regions of the eastern Tibetan Plateau. Three different study regions in the eastern Tibetan Plateau have different climate regimes, which are Sepu Kangri (SK, maritime glacier), Bu’Gyai Kangri (BK, continental glacier) and west of Qiajajima (WQ, continental glacier), along a latitudinal transect from south to north. We analyzed the effects of climatic factors on the SLA changes from 1995 to 2016. SLAs are fluctuating upward, and the rising values are 100 m, 60 m, and 34 m from south to north during the 22 years. We also observed that the climatic factor that affects the variability of SLA gradually changes from precipitation to temperature from south to north. The northern continental glaciers are mainly affected by temperature, and the southern maritime glaciers affected by precipitation. Owing to the influence of primary climatic factors, continental glaciers are found to have higher SLAs on the south slope, while maritime glaciers have higher SLAs on the north slope.Keywords: climate change, glacier, snowline altitude, tibetan plateau
Procedia PDF Downloads 149551 Study of the Middle and Upper Atmosphere during Sudden Stratospheric Warming Episodes
Authors: Jinee Gogoi, Som K. Sharma, Kalyan Bhuyan
Abstract:
The atmospheric layers are coupled to each other with the different dynamical, electrical, radiative and chemical processes. A large scale thermodynamical phenomenon in winter polar regions which affects the middle atmosphere vigorously is Sudden Stratospheric Warming (SSW). Two major SSW events were occurred during 1998-1999; one in December 1998 which is associated with vortex displacement and another in February- March 1999 associated with vortex splitting. Lidar study of these two major events from Mt. Abu (24.36⁰N, 72.45⁰E, ~1670 m amsl) has shown that though SSWs are mostly observed over high and mid latitudes, their effects can also be seen over India. We have studied ionospheric variations (primarily fₒF₂, h’F and hpF₂) over Ahmedabad (23.1⁰N, 72.58⁰E) during these events. Ionospheric disturbances have been found after four-five days of peak temperature. An increase (decrease) in critical frequency (fₒF₂) during morning (afternoon) has been noticed which may be in response to the updrift (down drift). Effects are stronger during displacement event (1998) than during the splitting event (1999). We have also studied some recent events occurred during 2006 (January), 2009 (January) and 2013 (January) using temperature data from Sounding of Atmosphere using Broadband Emission Radiometry (SABER) satellite. Though some modeling work supports the hypothesis that planetary waves are responsible for atmosphere-ionosphere coupling, there is still more significant works to do to understand how exactly the coupling can take place.Keywords: sudden stratospheric warming (SSW), polar vortex, ionosphere, critical frequency
Procedia PDF Downloads 247550 Investigation of Bubble Growth During Nucleate Boiling Using CFD
Authors: K. Jagannath, Akhilesh Kotian, S. S. Sharma, Achutha Kini U., P. R. Prabhu
Abstract:
Boiling process is characterized by the rapid formation of vapour bubbles at the solid–liquid interface (nucleate boiling) with pre-existing vapour or gas pockets. Computational fluid dynamics (CFD) is an important tool to study bubble dynamics. In the present study, CFD simulation has been carried out to determine the bubble detachment diameter and its terminal velocity. Volume of fluid method is used to model the bubble and the surrounding by solving single set of momentum equations and tracking the volume fraction of each of the fluids throughout the domain. In the simulation, bubble is generated by allowing water-vapour to enter a cylinder filled with liquid water through an inlet at the bottom. After the bubble is fully formed, the bubble detaches from the surface and rises up during which the bubble accelerates due to the net balance between buoyancy force and viscous drag. Finally when these forces exactly balance each other, it attains a constant terminal velocity. The bubble detachment diameter and the terminal velocity of the bubble are captured by the monitor function provided in FLUENT. The detachment diameter and the terminal velocity obtained is compared with the established results based on the shape of the bubble. A good agreement is obtained between the results obtained from simulation and the equations in comparison with the established results.Keywords: bubble growth, computational fluid dynamics, detachment diameter, terminal velocity
Procedia PDF Downloads 383549 The Impact of Vertical Velocity Parameter Conditions and Its Relationship with Weather Parameters in the Hail Event
Authors: Nadine Ayasha
Abstract:
Hail happened in Sukabumi (August 23, 2020), Sekadau (August 22, 2020), and Bogor (September 23, 2020), where this extreme weather phenomenon occurred in the dry season. This study uses the ERA5 reanalysis model data, it aims to examine the vertical velocity impact on the hail occurrence in the dry season, as well as its relation to other weather parameters such as relative humidity, streamline, and wind velocity. Moreover, HCAI product satellite data is used as supporting data for the convective cloud development analysis. Based on the results of graphs, contours, and Hovmoller vertical cut from ERA5 modeling, the vertical velocity values in the 925 Mb-300 Mb layer in Sukabumi, Sekadau, and Bogor before the hail event ranged between -1.2-(-0.2), -1.5-(-0.2), -1-0 Pa/s. A negative value indicates that there is an upward motion from the air mass that trigger the convective cloud growth, which produces hail. It is evidenced by the presence of Cumulonimbus cloud on HCAI product when the hail falls. Therefore, the vertical velocity has significant effect on the hail event. In addition, the relative humidity in the 850-700 Mb layer is quite wet, which ranges from 80-90%. Meanwhile, the streamline and wind velocity in the three regions show the convergence with slowing wind velocity ranging from 2-4 knots. These results show that the upward motion of the vertical velocity is enough to form the wet atmospheric humidity and form a convergence for the growth of the convective cloud, which produce hail in the dry season.Keywords: hail, extreme weather, vertical velocity, relative humidity, streamline
Procedia PDF Downloads 157548 Landslide Vulnerability Assessment in Context with Indian Himalayan
Authors: Neha Gupta
Abstract:
Landslide vulnerability is considered as the crucial parameter for the assessment of landslide risk. The term vulnerability defined as the damage or degree of elements at risk of different dimensions, i.e., physical, social, economic, and environmental dimensions. Himalaya region is very prone to multi-hazard such as floods, forest fires, earthquakes, and landslides. With the increases in fatalities rates, loss of infrastructure, and economy due to landslide in the Himalaya region, leads to the assessment of vulnerability. In this study, a methodology to measure the combination of vulnerability dimension, i.e., social vulnerability, physical vulnerability, and environmental vulnerability in one framework. A combined result of these vulnerabilities has rarely been carried out. But no such approach was applied in the Indian Scenario. The methodology was applied in an area of east Sikkim Himalaya, India. The physical vulnerability comprises of building footprint layer extracted from remote sensing data and Google Earth imaginary. The social vulnerability was assessed by using population density based on land use. The land use map was derived from a high-resolution satellite image, and for environment vulnerability assessment NDVI, forest, agriculture land, distance from the river were assessed from remote sensing and DEM. The classes of social vulnerability, physical vulnerability, and environment vulnerability were normalized at the scale of 0 (no loss) to 1 (loss) to get the homogenous dataset. Then the Multi-Criteria Analysis (MCA) was used to assign individual weights to each dimension and then integrate it into one frame. The final vulnerability was further classified into four classes from very low to very high.Keywords: landslide, multi-criteria analysis, MCA, physical vulnerability, social vulnerability
Procedia PDF Downloads 299547 3D Liver Segmentation from CT Images Using a Level Set Method Based on a Shape and Intensity Distribution Prior
Authors: Nuseiba M. Altarawneh, Suhuai Luo, Brian Regan, Guijin Tang
Abstract:
Liver segmentation from medical images poses more challenges than analogous segmentations of other organs. This contribution introduces a liver segmentation method from a series of computer tomography images. Overall, we present a novel method for segmenting liver by coupling density matching with shape priors. Density matching signifies a tracking method which operates via maximizing the Bhattacharyya similarity measure between the photometric distribution from an estimated image region and a model photometric distribution. Density matching controls the direction of the evolution process and slows down the evolving contour in regions with weak edges. The shape prior improves the robustness of density matching and discourages the evolving contour from exceeding liver’s boundaries at regions with weak boundaries. The model is implemented using a modified distance regularized level set (DRLS) model. The experimental results show that the method achieves a satisfactory result. By comparing with the original DRLS model, it is evident that the proposed model herein is more effective in addressing the over segmentation problem. Finally, we gauge our performance of our model against matrices comprising of accuracy, sensitivity and specificity.Keywords: Bhattacharyya distance, distance regularized level set (DRLS) model, liver segmentation, level set method
Procedia PDF Downloads 312546 Neural Network Based Fluctuation Frequency Control in PV-Diesel Hybrid Power System
Authors: Heri Suryoatmojo, Adi Kurniawan, Feby A. Pamuji, Nursalim, Syaffaruddin, Herbert Innah
Abstract:
Photovoltaic (PV) system hybrid with diesel system is utilized widely for electrification in remote area. PV output power fluctuates due to uncertainty condition of temperature and sun irradiance. When the penetration of PV power is large, the reliability of the power utility will be disturbed and seriously impact the unstable frequency of system. Therefore, designing a robust frequency controller in PV-diesel hybrid power system is very important. This paper proposes new method of frequency control application in hybrid PV-diesel system based on artificial neural network (ANN). This method can minimize the frequency deviation without smoothing PV output power that controlled by maximum power point tracking (MPPT) method. The neural network algorithm controller considers average irradiance, change of irradiance and frequency deviation. In order the show the effectiveness of proposed algorithm, the addition of battery as energy storage system is also presented. To validate the proposed method, the results of proposed system are compared with the results of similar system using MPPT only. The simulation results show that the proposed method able to suppress frequency deviation smaller compared to the results of system using MPPT only.Keywords: energy storage system, frequency deviation, hybrid power generation, neural network algorithm
Procedia PDF Downloads 499