Search results for: network system
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 20682

Search results for: network system

19632 Advancing UAV Operations with Hybrid Mobile Network and LoRa Communications

Authors: Annika J. Meyer, Tom Piechotta

Abstract:

Unmanned Aerial Vehicles (UAVs) have increasingly become vital tools in various applications, including surveillance, search and rescue, and environmental monitoring. One common approach to ensure redundant communication systems when flying beyond visual line of sight is for UAVs to employ multiple mobile data modems by different providers. Although widely adopted, this approach suffers from several drawbacks, such as high costs, added weight and potential increases in signal interference. In light of these challenges, this paper proposes a communication framework intermeshing mobile networks and LoRa (Long Range) technology—a low-power, long-range communication protocol. LoRaWAN (Long Range Wide Area Network) is commonly used in Internet of Things applications, relying on stationary gateways and Internet connectivity. This paper, however, utilizes the underlying LoRa protocol, taking advantage of the protocol’s low power and long-range capabilities while ensuring efficiency and reliability. Conducted in collaboration with the Potsdam Fire Department, the implementation of mobile network technology in combination with the LoRa protocol in small UAVs (take-off weight < 0.4 kg), specifically designed for search and rescue and area monitoring missions, is explored. This research aims to test the viability of LoRa as an additional redundant communication system during UAV flights as well as its intermeshing with the primary, mobile network-based controller. The methodology focuses on direct UAV-to-UAV and UAV-to-ground communications, employing different spreading factors optimized for specific operational scenarios—short-range for UAV-to-UAV interactions and long-range for UAV-to-ground commands. This explored use case also dramatically reduces one of the major drawbacks of LoRa communication systems, as a line of sight between the modules is necessary for reliable data transfer. Something that UAVs are uniquely suited to provide, especially when deployed as a swarm. Additionally, swarm deployment may enable UAVs that have lost contact with their primary network to reestablish their connection through another, better-situated UAV. The experimental setup involves multiple phases of testing, starting with controlled environments to assess basic communication capabilities and gradually advancing to complex scenarios involving multiple UAVs. Such a staged approach allows for meticulous adjustment of parameters and optimization of the communication protocols to ensure reliability and effectiveness. Furthermore, due to the close partnership with the Fire Department, the real-world applicability of the communication system is assured. The expected outcomes of this paper include a detailed analysis of LoRa's performance as a communication tool for UAVs, focusing on aspects such as signal integrity, range, and reliability under different environmental conditions. Additionally, the paper seeks to demonstrate the cost-effectiveness and operational efficiency of using a single type of communication technology that reduces UAV payload and power consumption. By shifting from traditional cellular network communications to a more robust and versatile cellular and LoRa-based system, this research has the potential to significantly enhance UAV capabilities, especially in critical applications where reliability is paramount. The success of this paper could pave the way for broader adoption of LoRa in UAV communications, setting a new standard for UAV operational communication frameworks.

Keywords: LoRa communication protocol, mobile network communication, UAV communication systems, search and rescue operations

Procedia PDF Downloads 42
19631 An Accurate Computer-Aided Diagnosis: CAD System for Diagnosis of Aortic Enlargement by Using Convolutional Neural Networks

Authors: Mahdi Bazarganigilani

Abstract:

Aortic enlargement, also known as an aortic aneurysm, can occur when the walls of the aorta become weak. This disease can become deadly if overlooked and undiagnosed. In this paper, a computer-aided diagnosis (CAD) system was introduced to accurately diagnose aortic enlargement from chest x-ray images. An enhanced convolutional neural network (CNN) was employed and then trained by transfer learning by using three different main areas from the original images. The areas included the left lung, heart, and right lung. The accuracy of the system was then evaluated on 1001 samples by using 4-fold cross-validation. A promising accuracy of 90% was achieved in terms of the F-measure indicator. The results showed using different areas from the original image in the training phase of CNN could increase the accuracy of predictions. This encouraged the author to evaluate this method on a larger dataset and even on different CAD systems for further enhancement of this methodology.

Keywords: computer-aided diagnosis systems, aortic enlargement, chest X-ray, image processing, convolutional neural networks

Procedia PDF Downloads 160
19630 PSS®E Based Modelling, Simulation and Synchronous Interconnection of Eastern Grid and North-Eastern Regional Grid of India

Authors: Toushik Maiti, Saibal Chatterjee, Kamaljyoti Gogoi, Arijit Basuray

Abstract:

Eastern Regional(ER) Grid and North Eastern Regional (NER) Grid are two major grids of Eastern Part of India. Both of the grid consists of voltage level 765kV, 400 kV, 220 kV and numerous buses at lower voltage range. Eastern Regional Grid and North Eastern Regional Grid are not only connected among themselves but are also connected to various other grids of India. ER and NER Grid having various HVDC lines or back to back systems which form the total network. The studied system comprises of 340 buses of different voltage levels and transmission lines running over a length of 32089 km. The validation of load flow has been done using IEEE STANDARD 30 bus system. The power flow simulation analysis has been performed after synchronizing both the Eastern Grid and North-Eastern Regional Grid of India using Power System Simulators for Engineering (PSS®E) Important inferences has been drawn from the study.

Keywords: HVDC, load flow, PSS®E, unsymmetrical and symmetrical faults

Procedia PDF Downloads 381
19629 A Collective Intelligence Approach to Safe Artificial General Intelligence

Authors: Craig A. Kaplan

Abstract:

If AGI proves to be a “winner-take-all” scenario where the first company or country to develop AGI dominates, then the first AGI must also be the safest. The safest, and fastest, path to Artificial General Intelligence (AGI) may be to harness the collective intelligence of multiple AI and human agents in an AGI network. This approach has roots in seminal ideas from four of the scientists who founded the field of Artificial Intelligence: Allen Newell, Marvin Minsky, Claude Shannon, and Herbert Simon. Extrapolating key insights from these founders of AI, and combining them with the work of modern researchers, results in a fast and safe path to AGI. The seminal ideas discussed are: 1) Society of Mind (Minsky), 2) Information Theory (Shannon), 3) Problem Solving Theory (Newell & Simon), and 4) Bounded Rationality (Simon). Society of Mind describes a collective intelligence approach that can be used with AI and human agents to create an AGI network. Information theory helps address the critical issue of how an AGI system will increase its intelligence over time. Problem Solving Theory provides a universal framework that AI and human agents can use to communicate efficiently, effectively, and safely. Bounded Rationality helps us better understand not only the capabilities of SuperIntelligent AGI but also how humans can remain relevant in a world where the intelligence of AGI vastly exceeds that of its human creators. Each key idea can be combined with recent work in the fields of Artificial Intelligence, Machine Learning, and Large Language Models to accelerate the development of a working, safe, AGI system.

Keywords: AI Agents, Collective Intelligence, Minsky, Newell, Shannon, Simon, AGI, AGI Safety

Procedia PDF Downloads 87
19628 Artificial Neural Network Model Based Setup Period Estimation for Polymer Cutting

Authors: Zsolt János Viharos, Krisztián Balázs Kis, Imre Paniti, Gábor Belső, Péter Németh, János Farkas

Abstract:

The paper presents the results and industrial applications in the production setup period estimation based on industrial data inherited from the field of polymer cutting. The literature of polymer cutting is very limited considering the number of publications. The first polymer cutting machine is known since the second half of the 20th century; however, the production of polymer parts with this kind of technology is still a challenging research topic. The products of the applying industrial partner must met high technical requirements, as they are used in medical, measurement instrumentation and painting industry branches. Typically, 20% of these parts are new work, which means every five years almost the entire product portfolio is replaced in their low series manufacturing environment. Consequently, it requires a flexible production system, where the estimation of the frequent setup periods' lengths is one of the key success factors. In the investigation, several (input) parameters have been studied and grouped to create an adequate training information set for an artificial neural network as a base for the estimation of the individual setup periods. In the first group, product information is collected such as the product name and number of items. The second group contains material data like material type and colour. In the third group, surface quality and tolerance information are collected including the finest surface and tightest (or narrowest) tolerance. The fourth group contains the setup data like machine type and work shift. One source of these parameters is the Manufacturing Execution System (MES) but some data were also collected from Computer Aided Design (CAD) drawings. The number of the applied tools is one of the key factors on which the industrial partners’ estimations were based previously. The artificial neural network model was trained on several thousands of real industrial data. The mean estimation accuracy of the setup periods' lengths was improved by 30%, and in the same time the deviation of the prognosis was also improved by 50%. Furthermore, an investigation on the mentioned parameter groups considering the manufacturing order was also researched. The paper also highlights the manufacturing introduction experiences and further improvements of the proposed methods, both on the shop floor and on the quotation preparation fields. Every week more than 100 real industrial setup events are given and the related data are collected.

Keywords: artificial neural network, low series manufacturing, polymer cutting, setup period estimation

Procedia PDF Downloads 243
19627 Impact of Neuron with Two Dendrites in Heart Behavior

Authors: Kaouther Selmi, Alaeddine Sridi, Mohamed Bouallegue, Kais Bouallegue

Abstract:

Neurons are the fundamental units of the brain and the nervous system. The variable structure model of neurons consists of a system of differential equations with various parameters. By optimizing these parameters, we can create a unique model that describes the dynamic behavior of a single neuron. We introduce a neural network based on neurons with multiple dendrites employing an activation function with a variable structure. In this paper, we present a model for heart behavior. Finally, we showcase our successful simulation of the heart's ECG diagram using our Variable Structure Neuron Model (VSMN). This result could provide valuable insights into cardiology.

Keywords: neural networks, neuron, dendrites, heart behavior, ECG

Procedia PDF Downloads 84
19626 Intelligent Cooperative Integrated System for Road Safety and Road Infrastructure Maintenance

Authors: Panagiotis Gkekas, Christos Sougles, Dionysios Kehagias, Dimitrios Tzovaras

Abstract:

This paper presents the architecture of the “Intelligent cooperative integrated system for road safety and road infrastructure maintenance towards 2020” (ODOS2020) advanced infrastructure, which implements a number of cooperative ITS applications based on Internet of Things and Infrastructure-to-Vehicle (V2I) technologies with the purpose to enhance the active road safety level of vehicles through the provision of a fully automated V2I environment. The primary objective of the ODOS2020 project is to contribute to increased road safety but also to the optimization of time for maintenance of road infrastructure. The integrated technological solution presented in this paper addresses all types of vehicles and requires minimum vehicle equipment. Thus, the ODOS2020 comprises a low-cost solution, which is one of its main benefits. The system architecture includes an integrated notification system to transmit personalized information on road, traffic, and environmental conditions, in order for the drivers to receive real-time and reliable alerts concerning upcoming critical situations. The latter include potential dangers on the road, such as obstacles or road works ahead, extreme environmental conditions, etc., but also informative messages, such as information on upcoming tolls and their charging policies. At the core of the system architecture lies an integrated sensorial network embedded in special road infrastructures (strips) that constantly collect and transmit wirelessly information about passing vehicles’ identification, type, speed, moving direction and other traffic information in combination with environmental conditions and road wear monitoring and predictive maintenance data. Data collected from sensors is transmitted by roadside infrastructure, which supports a variety of communication technologies such as ITS-G5 (IEEE-802.11p) wireless network and Internet connectivity through cellular networks (3G, LTE). All information could be forwarded to both vehicles and Traffic Management Centers (TMC) operators, either directly through the ITS-G5 network, or to smart devices with Internet connectivity, through cloud-based services. Therefore, through its functionality, the system could send personalized notifications/information/warnings and recommendations for upcoming events to both road users and TMC operators. In the course of the ODOS2020 project pilot operation has been conducted to allow drivers of both C-ITS equipped and non-equipped vehicles to experience the provided added value services. For non-equipped vehicles, the provided information is transmitted to a smartphone application. Finally, the ODOS2020 system and infrastructure is appropriate for installation on both urban, rural, and highway environments. The paper presents the various parts of the system architecture and concludes by outlining the various challenges that had to be overcome during its design, development, and deployment in a real operational environment. Acknowledgments: Work presented in this paper was co-financed by the European Regional Development Fund of the European Union and Greek national funds through the Operational Program Competitiveness, Entrepreneurship and Innovation (call RESEARCH–CREATE–INNOVATE) under contract no. Τ1EDK-03081 (project ODOS2020).

Keywords: infrastructure to vehicle, intelligent transportation systems, internet of things, road safety

Procedia PDF Downloads 120
19625 5G Future Hyper-Dense Networks: An Empirical Study and Standardization Challenges

Authors: W. Hashim, H. Burok, N. Ghazaly, H. Ahmad Nasir, N. Mohamad Anas, A. F. Ismail, K. L. Yau

Abstract:

Future communication networks require devices that are able to work on a single platform but support heterogeneous operations which lead to service diversity and functional flexibility. This paper proposes two cognitive mechanisms termed cognitive hybrid function which is applied in multiple broadband user terminals in order to maintain reliable connectivity and preventing unnecessary interferences. By employing such mechanisms especially for future hyper-dense network, we can observe their performances in terms of optimized speed and power saving efficiency. Results were obtained from several empirical laboratory studies. It was found that selecting reliable network had shown a better optimized speed performance up to 37% improvement as compared without such function. In terms of power adjustment, our evaluation of this mechanism can reduce the power to 5dB while maintaining the same level of throughput at higher power performance. We also discuss the issues impacting future telecommunication standards whenever such devices get in place.

Keywords: dense network, intelligent network selection, multiple networks, transmit power adjustment

Procedia PDF Downloads 376
19624 Simulation of Flow through Dam Foundation by FEM and ANN Methods Case Study: Shahid Abbaspour Dam

Authors: Mehrdad Shahrbanozadeh, Gholam Abbas Barani, Saeed Shojaee

Abstract:

In this study, a finite element (Seep3D model) and an artificial neural network (ANN) model were developed to simulate flow through dam foundation. Seep3D model is capable of simulating three-dimensional flow through a heterogeneous and anisotropic, saturated and unsaturated porous media. Flow through the Shahid Abbaspour dam foundation has been used as a case study. The FEM with 24960 triangular elements and 28707 nodes applied to model flow through foundation of this dam. The FEM being made denser in the neighborhood of the curtain screen. The ANN model developed for Shahid Abbaspour dam is a feedforward four layer network employing the sigmoid function as an activator and the back-propagation algorithm for the network learning. The water level elevations of the upstream and downstream of the dam have been used as input variables and the piezometric heads as the target outputs in the ANN model. The two models are calibrated and verified using the Shahid Abbaspour’s dam piezometric data. Results of the models were compared with those measured by the piezometers which are in good agreement. The model results also revealed that the ANN model performed as good as and in some cases better than the FEM.

Keywords: seepage, dam foundation, finite element method, neural network, seep 3D model

Procedia PDF Downloads 469
19623 Cooperative Sensing for Wireless Sensor Networks

Authors: Julien Romieux, Fabio Verdicchio

Abstract:

Wireless Sensor Networks (WSNs), which sense environmental data with battery-powered nodes, require multi-hop communication. This power-demanding task adds an extra workload that is unfairly distributed across the network. As a result, nodes run out of battery at different times: this requires an impractical individual node maintenance scheme. Therefore we investigate a new Cooperative Sensing approach that extends the WSN operational life and allows a more practical network maintenance scheme (where all nodes deplete their batteries almost at the same time). We propose a novel cooperative algorithm that derives a piecewise representation of the sensed signal while controlling approximation accuracy. Simulations show that our algorithm increases WSN operational life and spreads communication workload evenly. Results convey a counterintuitive conclusion: distributing workload fairly amongst nodes may not decrease the network power consumption and yet extend the WSN operational life. This is achieved as our cooperative approach decreases the workload of the most burdened cluster in the network.

Keywords: cooperative signal processing, signal representation and approximation, power management, wireless sensor networks

Procedia PDF Downloads 389
19622 Simulation Study on Comparison of Thermal Comfort during Heating with All-Air System and Radiant Floor System

Authors: Shiyun Liu

Abstract:

Radiant heating systems work fundamentally differently from air systems by taking advantage of both radiant and convective heat transfer to remove space heating load. There are rare studies on differences of heating systems between all-air system and radiant floor system. This paper uses the method of simulation based on state-space to calculate the indoor temperature and wall temperature of each system and shows how the dynamic heat transfer in rooms conditioned by a radiant system is different from an air system. Then this paper analyses the changes of indoor temperature of these two systems, finding out the differences between all-air heating system and radiant floor heating system to help the designer choose a more suitable heating system.

Keywords: radiant floor, all-air system, thermal comfort, simulation, heating system

Procedia PDF Downloads 163
19621 Active Disturbance Rejection Control for Wind System Based on a DFIG

Authors: R. Chakib, A. Essadki, M. Cherkaoui

Abstract:

This paper proposes the study of a robust control of the doubly fed induction generator (DFIG) used in a wind energy production. The proposed control is based on the linear active disturbance rejection control (ADRC) and it is applied to the control currents rotor of the DFIG, the DC bus voltage and active and reactive power exchanged between the DFIG and the network. The system under study and the proposed control are simulated using MATLAB/SIMULINK.

Keywords: doubly fed induction generator (DFIG), active disturbance rejection control (ADRC), vector control, MPPT, extended state observer, back-to-back converter, wind turbine

Procedia PDF Downloads 482
19620 'Call Drop': A Problem for Handover Minimizing the Call Drop Probability Using Analytical and Statistical Method

Authors: Anshul Gupta, T. Shankar

Abstract:

In this paper, we had analyzed the call drop to provide a good quality of service to user. By optimizing it we can increase the coverage area and also the reduction of interference and congestion created in a network. Basically handover is the transfer of call from one cell site to another site during a call. Here we have analyzed the whole network by two method-statistic model and analytic model. In statistic model we have collected all the data of a network during busy hour and normal 24 hours and in analytic model we have the equation through which we have to find the call drop probability. By avoiding unnecessary handovers we can increase the number of calls per hour. The most important parameter is co-efficient of variation on which the whole paper discussed.

Keywords: coefficient of variation, mean, standard deviation, call drop probability, handover

Procedia PDF Downloads 489
19619 Designing a Method to Control and Determine the Financial Performance of the Real Cost Sub-System in the Information Management System of Construction Projects

Authors: Alireza Ghaffari, Hassan Saghi

Abstract:

Project management is more complex than managing the day-to-day affairs of an organization. When the project dimensions are broad and multiple projects have to be monitored in different locations, the integrated management becomes even more complicated. One of the main concerns of project managers is the integrated project management, which is mainly rooted in the lack of accurate and accessible information from different projects in various locations. The collection of dispersed information from various parts of the network, their integration and finally the selective reporting of this information is among the goals of integrated information systems. It can help resolve the main problem, which is bridging the information gap between executives and senior managers in the organization. Therefore, the main objective of this study is to design and implement an important subset of a project management information system in order to successfully control the cost of construction projects so that its results can be used to design raw software forms and proposed relationships between different project units for the collection of necessary information.

Keywords: financial performance, cost subsystem, PMIS, project management

Procedia PDF Downloads 107
19618 Urban Networks as Model of Sustainable Design

Authors: Agryzkov Taras, Oliver Jose L., Tortosa Leandro, Vicent Jose

Abstract:

This paper aims to demonstrate how the consideration of cities as a special kind of complex network, called urban network, may lead to the use of design tools coming from network theories which, in fact, results in a quite sustainable approach. There is no doubt that the irruption in contemporary thought of Gaia as an essential political agent proposes a narrative that has been extended to the field of creative processes in which, of course, the activity of Urban Design is found. The rationalist paradigm is put in crisis, and from the so-called sciences of complexity, its way of describing reality and of intervening in it is questioned. Thus, a new way of understanding reality surges, which has to do with a redefinition of the human being's own place in what is now understood as a delicate and complex network. In this sense, we know that in these systems of connected and interdependent elements, the influences generated by them originate emergent properties and behaviors for the whole that, individually studied, would not make sense. We believe that the design of cities cannot remain oblivious to these principles, and therefore this research aims to demonstrate the potential that they have for decision-making in the urban environment. Thus, we will see an example of action in the field of public mobility, another example in the design of commercial areas, and a third example in the field of redensification of sprawl areas, in which different aspects of network theory have been applied to change the urban design. We think that even though these actions have been developed in European cities, and more specifically in the Mediterranean area in Spain, the reflections and tools could have a broader scope of action.

Keywords: graphs, complexity sciences, urban networks, urban design

Procedia PDF Downloads 153
19617 Network Mobility Support in Content-Centric Internet

Authors: Zhiwei Yan, Jong-Hyouk Lee, Yong-Jin Park, Xiaodong Lee

Abstract:

In this paper, we analyze NEtwork MObility (NEMO) supporting problems in Content-Centric Networking (CCN), and propose the CCN-NEMO which can well support the deployment of the content-centric paradigm in large-scale mobile Internet. The CCN-NEMO extends the signaling message of the basic CCN protocol, to support the mobility discovery and fast trigger of Interest re-issuing during the network mobility. Besides, the Mobile Router (MR) is extended to optimize the content searching and relaying in the local subnet. These features can be employed by the nested NEMO to maximize the advantages of content retrieving with CCN. Based on the analysis, we compare the performance on handover latency between the basic CCN and our proposed CCN-NEMO. The results show that our scheme can facilitate the content-retrieving in the NEMO scenario with improved performance.

Keywords: NEMO, CCN, mobility, handover latency

Procedia PDF Downloads 468
19616 Evaluation of National Research Motivation Evolution with Improved Social Influence Network Theory Model: A Case Study of Artificial Intelligence

Authors: Yating Yang, Xue Zhang, Chengli Zhao

Abstract:

In the increasingly interconnected global environment brought about by globalization, it is crucial for countries to timely grasp the development motivations in relevant research fields of other countries and seize development opportunities. Motivation, as the intrinsic driving force behind actions, is abstract in nature, making it difficult to directly measure and evaluate. Drawing on the ideas of social influence network theory, the research motivations of a country can be understood as the driving force behind the development of its science and technology sector, which is simultaneously influenced by both the country itself and other countries/regions. In response to this issue, this paper improves upon Friedkin's social influence network theory and applies it to motivation description, constructing a dynamic alliance network and hostile network centered around the United States and China, as well as a sensitivity matrix, to remotely assess the changes in national research motivations under the influence of international relations. Taking artificial intelligence as a case study, the research reveals that the motivations of most countries/regions are declining, gradually shifting from a neutral attitude to a negative one. The motivation of the United States is hardly influenced by other countries/regions and remains at a high level, while the motivation of China has been consistently increasing in recent years. By comparing the results with real data, it is found that this model can reflect, to some extent, the trends in national motivations.

Keywords: influence network theory, remote assessment, relation matrix, dynamic sensitivity matrix

Procedia PDF Downloads 66
19615 Investigating the Viability of Ultra-Low Parameter Count Networks for Real-Time Football Detection

Authors: Tim Farrelly

Abstract:

In recent years, AI-powered object detection systems have opened the doors for innovative new applications and products, especially those operating in the real world or ‘on edge’ – namely, in sport. This paper investigates the viability of an ultra-low parameter convolutional neural network specially designed for the detection of footballs on ‘on the edge’ devices. The main contribution of this paper is the exploration of integrating new design features (depth-wise separable convolutional blocks and squeezed and excitation modules) into an ultra-low parameter network and demonstrating subsequent improvements in performance. The results show that tracking the ball from Full HD images with negligibly high accu-racy is possible in real-time.

Keywords: deep learning, object detection, machine vision applications, sport, network design

Procedia PDF Downloads 143
19614 Estimating Cyclone Intensity Using INSAT-3D IR Images Based on Convolution Neural Network Model

Authors: Divvela Vishnu Sai Kumar, Deepak Arora, Sheenu Rizvi

Abstract:

Forecasting a cyclone through satellite images consists of the estimation of the intensity of the cyclone and predicting it before a cyclone comes. This research work can help people to take safety measures before the cyclone comes. The prediction of the intensity of a cyclone is very important to save lives and minimize the damage caused by cyclones. These cyclones are very costliest natural disasters that cause a lot of damage globally due to a lot of hazards. Authors have proposed five different CNN (Convolutional Neural Network) models that estimate the intensity of cyclones through INSAT-3D IR images. There are a lot of techniques that are used to estimate the intensity; the best model proposed by authors estimates intensity with a root mean squared error (RMSE) of 10.02 kts.

Keywords: estimating cyclone intensity, deep learning, convolution neural network, prediction models

Procedia PDF Downloads 124
19613 Parallel Self Organizing Neural Network Based Estimation of Archie’s Parameters and Water Saturation in Sandstone Reservoir

Authors: G. M. Hamada, A. A. Al-Gathe, A. M. Al-Khudafi

Abstract:

Determination of water saturation in sandstone is a vital question to determine the initial oil or gas in place in reservoir rocks. Water saturation determination using electrical measurements is mainly on Archie’s formula. Consequently accuracy of Archie’s formula parameters affects water saturation values rigorously. Determination of Archie’s parameters a, m, and n is proceeded by three conventional techniques, Core Archie-Parameter Estimation (CAPE) and 3-D. This work introduces the hybrid system of parallel self-organizing neural network (PSONN) targeting accepted values of Archie’s parameters and, consequently, reliable water saturation values. This work focuses on Archie’s parameters determination techniques; conventional technique, CAPE technique, and 3-D technique, and then the calculation of water saturation using current. Using the same data, a hybrid parallel self-organizing neural network (PSONN) algorithm is used to estimate Archie’s parameters and predict water saturation. Results have shown that estimated Arche’s parameters m, a, and n are highly accepted with statistical analysis, indicating that the PSONN model has a lower statistical error and higher correlation coefficient. This study was conducted using a high number of measurement points for 144 core plugs from a sandstone reservoir. PSONN algorithm can provide reliable water saturation values, and it can supplement or even replace the conventional techniques to determine Archie’s parameters and thereby calculate water saturation profiles.

Keywords: water saturation, Archie’s parameters, artificial intelligence, PSONN, sandstone reservoir

Procedia PDF Downloads 127
19612 Reconfigurable Intelligent Surfaces (RIS)-Assisted Integrated Leo Satellite and UAV for Non-terrestrial Networks Using a Deep Reinforcement Learning Approach

Authors: Tesfaw Belayneh Abebe

Abstract:

Integrating low-altitude earth orbit (LEO) satellites and unmanned aerial vehicles (UAVs) within a non-terrestrial network (NTN) with the assistance of reconfigurable intelligent surfaces (RIS), we investigate the problem of how to enhance throughput through integrated LEO satellites and UAVs with the assistance of RIS. We propose a method to jointly optimize the associations with the LEO satellite, the 3D trajectory of the UAV, and the phase shifts of the RIS to maximize communication throughput for RIS-assisted integrated LEO satellite and UAV-enabled wireless communications, which is challenging due to the time-varying changes in the position of the LEO satellite, the high mobility of UAVs, an enormous number of possible control actions, and also the large number of RIS elements. Utilizing a multi-agent double deep Q-network (MADDQN), our approach dynamically adjusts LEO satellite association, UAV positioning, and RIS phase shifts. Simulation results demonstrate that our method significantly outperforms baseline strategies in maximizing throughput. Lastly, thanks to the integrated network and the RIS, the proposed scheme achieves up to 65.66x higher peak throughput and 25.09x higher worst-case throughput.

Keywords: integrating low-altitude earth orbit (LEO) satellites, unmanned aerial vehicles (UAVs) within a non-terrestrial network (NTN), reconfigurable intelligent surfaces (RIS), multi-agent double deep Q-network (MADDQN)

Procedia PDF Downloads 45
19611 Cellular Architecture of Future Wireless Communication Networks

Authors: Mohammad Yahaghifar

Abstract:

Nowadays Wireless system designers have been facing the continuously increasing demand for high data rates and mobility required by new wireless applications. Evolving future communication network generation cellular wireless networks are envisioned to overcome the fundamental challenges of existing cellular networks, for example, higher data rates, excellent end-to-end performance, and user coverage in hot-spots and crowded areas with lower latency,energy consumption and cost per information transfer. In this paper we propose a potential cellular architecture that separates indoor and outdoor scenarios and discuss various promising technologies for future wireless communication systemssystems, such as massive MIMO, energy-efficient communications,cognitive radio networks, and visible light communications and we disscuse about 5G that is next generation of wireless networks.

Keywords: future challenges in networks, cellur architecture, visible light communication, 5G wireless technologies, spatial modulation, massiva mimo, cognitive radio network, green communications

Procedia PDF Downloads 486
19610 Design an Expert System to Assess the Hydraulic System in Thermal and Hydrodynamic Aspect

Authors: Ahmad Abdul-Razzak Aboudi Al-Issa

Abstract:

Thermal and Hydrodynamic are basic aspects in any hydraulic system and therefore, they must be assessed with regard to this aspect before constructing the system. This assessment needs a good expertise in this aspect to obtain an efficient hydraulic system. Therefore, this study aims to build an expert system called Hydraulic System Calculations (HSC) to ensure a smooth operation for the hydraulic system. The expert system (HSC) had been designed and coded in an user-friendly interactive program called Microsoft Visual Basic 2010. The suggested code provides the designer with a number of choices to resolve the problem of hydraulic oil overheating which may arise during the continuous operation of the hydraulic unit. As a result, the HSC can minimize the human errors, effort, time and cost of hydraulic machine design.

Keywords: fluid power, hydraulic system, thermal and hydrodynamic, expert system

Procedia PDF Downloads 443
19609 A Network Optimization Study of Logistics for Enhancing Emergency Preparedness in Asia-Pacific

Authors: Giuseppe Timperio, Robert De Souza

Abstract:

The combination of factors such as temperamental climate change, rampant urbanization of risk exposed areas, political and social instabilities, is posing an alarming base for the further growth of number and magnitude of humanitarian crises worldwide. Given the unique features of humanitarian supply chain such as unpredictability of demand in space, time, and geography, spike in the number of requests for relief items in the first days after the calamity, uncertain state of logistics infrastructures, large volumes of unsolicited low-priority items, a proactive approach towards design of disaster response operations is needed to achieve high agility in mobilization of emergency supplies in the immediate aftermath of the event. This paper is an attempt in that direction, and it provides decision makers with crucial strategic insights for a more effective network design for disaster response. Decision sciences and ICT are integrated to analyse the robustness and resilience of a prepositioned network of emergency strategic stockpiles for a real-life case about Indonesia, one of the most vulnerable countries in Asia-Pacific, with the model being built upon a rich set of quantitative data. At this aim, a network optimization approach was implemented, with several what-if scenarios being accurately developed and tested. Findings of this study are able to support decision makers facing challenges related with disaster relief chains resilience, particularly about optimal configuration of supply chain facilities and optimal flows across the nodes, while considering the network structure from an end-to-end in-country distribution perspective.

Keywords: disaster preparedness, humanitarian logistics, network optimization, resilience

Procedia PDF Downloads 172
19608 Cybersecurity Strategies for Protecting Oil and Gas Industrial Control Systems

Authors: Gaurav Kumar Sinha

Abstract:

The oil and gas industry is a critical component of the global economy, relying heavily on industrial control systems (ICS) to manage and monitor operations. However, these systems are increasingly becoming targets for cyber-attacks, posing significant risks to operational continuity, safety, and environmental integrity. This paper explores comprehensive cybersecurity strategies for protecting oil and gas industrial control systems. It delves into the unique vulnerabilities of ICS in this sector, including outdated legacy systems, integration with IT networks, and the increased connectivity brought by the Industrial Internet of Things (IIoT). We propose a multi-layered defense approach that includes the implementation of robust network security protocols, regular system updates and patch management, advanced threat detection and response mechanisms, and stringent access control measures. We illustrate the effectiveness of these strategies in mitigating cyber risks and ensuring the resilient and secure operation of oil and gas industrial control systems. The findings underscore the necessity for a proactive and adaptive cybersecurity framework to safeguard critical infrastructure in the face of evolving cyber threats.

Keywords: cybersecurity, industrial control systems, oil and gas, cyber-attacks, network security, IoT, threat detection, system updates, patch management, access control, cybersecurity awareness, critical infrastructure, resilience, cyber threats, legacy systems, IT integration, multi-layered defense, operational continuity, safety, environmental integrity

Procedia PDF Downloads 41
19607 Multi Criteria Authentication Method in Cognitive Radio Networks

Authors: Shokoufeh Monjezi Kouchak

Abstract:

Cognitive radio network (CRN) is future network .Without this network wireless devices can’t work appropriately in the next decades. Today, wireless devices use static spectrum access methods and these methods don’t use spectrums optimum so we need use dynamic spectrum access methods to solve shortage spectrum challenge and CR is a great device for DSA but first of all its challenges should be solved .security is one of these challenges .In this paper we provided a survey about CR security. You can see this survey in tables 1 to 7 .After that we proposed a multi criteria authentication method in CRN. Our criteria in this method are: sensing results, following sending data rules, position of secondary users and no talk zone. Finally we compared our method with other authentication methods.

Keywords: authentication, cognitive radio, security, radio networks

Procedia PDF Downloads 391
19606 Resilience with Spontaneous Volunteers in Disasters-Coordination Using an It System

Authors: Leo Latasch, Mario Di Gennaro

Abstract:

Introduction: The goal of this project was to increase the resilience of the population as well as rescue organizations to make both quality and time-related improvements in handling crises. A helper network was created for this purpose. Methods: Social questions regarding the structure and purpose of helper networks were considered - specifically with regard to helper motivation, the level of commitment and collaboration between populations and agencies. The exchange of information, the coordinated use of volunteers, and the distribution of available resources will be ensured through defined communication and cooperation routines. Helper smartphones will also be used provide a picture of the situation on the ground. Results: The helper network was established and deployed based on the RESIBES information technology system. It consists of a service platform, a web portal and a smartphone app. The service platform is the central element for collaboration between the various rescue organizations, as well as for persons, associations, and companies from the population offering voluntary aid. The platform was used for: Registering helpers and resources and then requesting and assigning it in case of a disaster. These services allow the population's resources to be organized. The service platform also allows for a secure data exchange between services and external systems. Conclusions: The social and technical work priorities have allowed us to cover a full cycle of advance structural work, gaining an overview, damage management, evaluation, and feedback on experiences. This cycle allows experiences gained while handling the crisis to feed back into the cycle and improve preparations and management strategies.

Keywords: coordination, disaster, resilience, volunteers

Procedia PDF Downloads 142
19605 Protecting the Privacy and Trust of VIP Users on Social Network Sites

Authors: Nidal F. Shilbayeh, Sameh T. Khuffash, Mohammad H. Allymoun, Reem Al-Saidi

Abstract:

There is a real threat on the VIPs personal pages on the Social Network Sites (SNS). The real threats to these pages is violation of privacy and theft of identity through creating fake pages that exploit their names and pictures to attract the victims and spread of lies. In this paper, we propose a new secure architecture that improves the trusting and finds an effective solution to reduce fake pages and possibility of recognizing VIP pages on SNS. The proposed architecture works as a third party that is added to Facebook to provide the trust service to personal pages for VIPs. Through this mechanism, it works to ensure the real identity of the applicant through the electronic authentication of personal information by storing this information within content of their website. As a result, the significance of the proposed architecture is that it secures and provides trust to the VIPs personal pages. Furthermore, it can help to discover fake page, protect the privacy, reduce crimes of personality-theft, and increase the sense of trust and satisfaction by friends and admirers in interacting with SNS.

Keywords: social network sites, online social network, privacy, trust, security and authentication

Procedia PDF Downloads 380
19604 Comparative Performance Analysis of Fiber Delay Line Based Buffer Architectures for Contention Resolution in Optical WDM Networks

Authors: Manoj Kumar Dutta

Abstract:

Wavelength division multiplexing (WDM) technology is the most promising technology for the proper utilization of huge raw bandwidth provided by an optical fiber. One of the key problems in implementing the all-optical WDM network is the packet contention. This problem can be solved by several different techniques. In time domain approach the packet contention can be reduced by incorporating fiber delay lines (FDLs) as optical buffer in the switch architecture. Different types of buffering architectures are reported in literatures. In the present paper a comparative performance analysis of three most popular FDL architectures are presented in order to obtain the best contention resolution performance. The analysis is further extended to consider the effect of different fiber non-linearities on the network performance.

Keywords: WDM network, contention resolution, optical buffering, non-linearity, throughput

Procedia PDF Downloads 450
19603 Cooperative Cross Layer Topology for Concurrent Transmission Scheduling Scheme in Broadband Wireless Networks

Authors: Gunasekaran Raja, Ramkumar Jayaraman

Abstract:

In this paper, we consider CCL-N (Cooperative Cross Layer Network) topology based on the cross layer (both centralized and distributed) environment to form network communities. Various performance metrics related to the IEEE 802.16 networks are discussed to design CCL-N Topology. In CCL-N topology, nodes are classified as master nodes (Master Base Station [MBS]) and serving nodes (Relay Station [RS]). Nodes communities are organized based on the networking terminologies. Based on CCL-N Topology, various simulation analyses for both transparent and non-transparent relays are tabulated and throughput efficiency is calculated. Weighted load balancing problem plays a challenging role in IEEE 802.16 network. CoTS (Concurrent Transmission Scheduling) Scheme is formulated in terms of three aspects – transmission mechanism based on identical communities, different communities and identical node communities. CoTS scheme helps in identifying the weighted load balancing problem. Based on the analytical results, modularity value is inversely proportional to that of the error value. The modularity value plays a key role in solving the CoTS problem based on hop count. The transmission mechanism for identical node community has no impact since modularity value is same for all the network groups. In this paper three aspects of communities based on the modularity value which helps in solving the problem of weighted load balancing and CoTS are discussed.

Keywords: cross layer network topology, concurrent scheduling, modularity value, network communities and weighted load balancing

Procedia PDF Downloads 265