Search results for: model testing
18035 Study on Health Status and Health Promotion Models for Prevention of Cardiovascular Disease in Asylum Seekers at Asylum Seekers Center, Kupang-Indonesia
Authors: Era Dorihi Kale, Sabina Gero, Uly Agustine
Abstract:
Asylum seekers are people who come to other countries to get asylum. In line with that, they also carry the culture and health behavior of their country, which is very different from the new country they currently live in. This situation raises problems, also in the health sector. The approach taken must also be a culturally sensitive approach, where the culture and habits of the refugee's home area are also valued so that the health services provided can be right on target. Some risk factors that already exist in this group are lack of activity, consumption of fast food, smoking, and stress levels that are quite high. Overall this condition will increase the risk of an increased incidence of cardiovascular disease. This research is a descriptive and experimental study. The purpose of this study is to identify health status and develop a culturally sensitive health promotion model, especially related to the risk of cardiovascular disease for asylum seekers in detention homes in the city of Kupang. This research was carried out in 3 stages, stage 1 was conducting a survey of health problems and the risk of asylum seeker cardiovascular disease, Stage 2 developed a health promotion model, and stage 3 conducted a testing model of health promotion carried out. There were 81 respondents involved in this study. The variables measured were: health status, risk of cardiovascular disease and, health promotion models. Method of data collection: Instruments (questionnaires) were distributed to respondents answered for anamnese health status; then, cardiovascular risk measurements were taken. After that, the preparation of information needs and the compilation of booklets on the prevention of cardiovascular disease is carried out. The compiled booklet was then translated into Farsi. After that, the booklet was tested. Respondent characteristics: average lived in Indonesia for 4.38 years, the majority were male (90.1%), and most were aged 15-34 years (90.1%). There are several diseases that are often suffered by asylum seekers, namely: gastritis, headaches, diarrhea, acute respiratory infections, skin allergies, sore throat, cough, and depression. The level of risk for asylum seekers experiencing cardiovascular problems is 4 high risk people, 6 moderate risk people, and 71 low risk people. This condition needs special attention because the number of people at risk is quite high when compared to the age group of refugees. This is very related to the level of stress experienced by the refugees. The health promotion model that can be used is the transactional stress and coping model, using Persian (oral) and English for written information. It is recommended for health practitioners who care for refugees to always pay attention to aspects of culture (especially language) as well as the psychological condition of asylum seekers to make it easier to conduct health care and promotion. As well for further research, it is recommended to conduct research, especially relating to the effect of psychological stress on the risk of cardiovascular disease in asylum seekers.Keywords: asylum seekers, health status, cardiovascular disease, health promotion
Procedia PDF Downloads 10318034 An Extended Inverse Pareto Distribution, with Applications
Authors: Abdel Hadi Ebraheim
Abstract:
This paper introduces a new extension of the Inverse Pareto distribution in the framework of Marshal-Olkin (1997) family of distributions. This model is capable of modeling various shapes of aging and failure data. The statistical properties of the new model are discussed. Several methods are used to estimate the parameters involved. Explicit expressions are derived for different types of moments of value in reliability analysis are obtained. Besides, the order statistics of samples from the new proposed model have been studied. Finally, the usefulness of the new model for modeling reliability data is illustrated using two real data sets with simulation study.Keywords: pareto distribution, marshal-Olkin, reliability, hazard functions, moments, estimation
Procedia PDF Downloads 8018033 Study of Sub-Surface Flow in an Unconfined Carbonate Aquifer in a Tropical Karst Area in Indonesia: A Modeling Approach Using Finite Difference Groundwater Model
Authors: Dua K. S. Y. Klaas, Monzur A. Imteaz, Ika Sudiayem, Elkan M. E. Klaas, Eldav C. M. Klaas
Abstract:
Due to its porous nature, karst terrains – geomorphologically developed from dissolved formations, is vulnerable to water shortage and deteriorated water quality. Therefore, a solid comprehension on sub-surface flow of karst landscape is essential to assess the long-term availability of groundwater resources. In this paper, a single-continuum model using a finite difference model, MODLFOW, was constructed to represent an unconfined carbonate aquifer in a tropical karst island of Rote in Indonesia. The model, spatially discretized in 20 x 20 m grid cells, was calibrated and validated using available groundwater level and atmospheric variables. In the calibration and validation steps, Parameter Estimation (PEST) and geostatistical pilot point methods were employed to estimate hydraulic conductivity and specific yield values. The results show that the model is able to represent the sub-surface flow indicated by good model performances both in calibration and validation steps. The final model can be used as a robust representation of the system for future study on climate and land use scenarios.Keywords: carbonate aquifer, karst, sub-surface flow, groundwater model
Procedia PDF Downloads 14718032 Developing an Advanced Algorithm Capable of Classifying News, Articles and Other Textual Documents Using Text Mining Techniques
Authors: R. B. Knudsen, O. T. Rasmussen, R. A. Alphinas
Abstract:
The reason for conducting this research is to develop an algorithm that is capable of classifying news articles from the automobile industry, according to the competitive actions that they entail, with the use of Text Mining (TM) methods. It is needed to test how to properly preprocess the data for this research by preparing pipelines which fits each algorithm the best. The pipelines are tested along with nine different classification algorithms in the realm of regression, support vector machines, and neural networks. Preliminary testing for identifying the optimal pipelines and algorithms resulted in the selection of two algorithms with two different pipelines. The two algorithms are Logistic Regression (LR) and Artificial Neural Network (ANN). These algorithms are optimized further, where several parameters of each algorithm are tested. The best result is achieved with the ANN. The final model yields an accuracy of 0.79, a precision of 0.80, a recall of 0.78, and an F1 score of 0.76. By removing three of the classes that created noise, the final algorithm is capable of reaching an accuracy of 94%.Keywords: Artificial Neural network, Competitive dynamics, Logistic Regression, Text classification, Text mining
Procedia PDF Downloads 12018031 Social Media Retailing in the Creator Economy
Authors: Julianne Cai, Weili Xue, Yibin Wu
Abstract:
Social media retailing (SMR) platforms have become popular nowadays. It is characterized by a creative combination of content creation and product selling, which differs from traditional e-tailing (TE) with product selling alone. Motivated by real-world practices like social media platforms “TikTok” and douyin.com, we endeavor to study if the SMR model performs better than the TE model in a monopoly setting. By building a stylized economic model, we find that the SMR model does not always outperform the TE model. Specifically, when the SMR platform collects less commission from the seller than the TE platform, the seller, consumers, and social welfare all benefit more from the SMR model. In contrast, the platform benefits more from the SMR model if and only if the creator’s social influence is high enough or the cost of content creation is small enough. For the incentive structure of the content rewards in the SMR model, we found that a strong incentive mechanism (e.g., the quadratic form) is more powerful than a weak one (e.g., the linear form). The previous one will encourage the creator to choose a much higher quality level of content creation and meanwhile allowing the platform, consumers, and social welfare to become better off. Counterintuitively, providing more generous content rewards is not always helpful for the creator (seller), and it may reduce her profit. Our findings will guide the platform to effectively design incentive mechanisms to boost the content creation and retailing in the SMR model and help the influencers efficiently create content, engage their followers (fans), and price their products sold on the SMR platform.Keywords: content creation, creator economy, incentive strategy, platform retailing
Procedia PDF Downloads 11218030 Moving beyond the Social Model of Disability by Engaging in Anti-Oppressive Social Work Practice
Authors: Irene Carter, Roy Hanes, Judy MacDonald
Abstract:
Considering that disability is universal and people with disabilities are part of all societies; that there is a connection between the disabled individual and the societal; and that it is society and social arrangements that disable people with impairments, contemporary disability discourse emphasizes the social model of disability to counter medical and rehabilitative models of disability. However, the social model does not go far enough in addressing the issues of oppression and inclusion. The authors indicate that the social model does not specifically or adequately denote the oppression of persons with disabilities, which is a central component of progressive social work practice with people with disabilities. The social model of disability does not go far enough in deconstructing disability and offering social workers, as well as people with disabilities a way of moving forward in terms of practice anchored in individual, familial and societal change. The social model of disability is expanded by incorporating principles of anti-oppression social work practice. Although the contextual analysis of the social model of disability is an important component there remains a need for social workers to provide service to individuals and their families, which will be illustrated through anti-oppressive practice (AOP). By applying an anti-oppressive model of practice to the above definitions, the authors not only deconstruct disability paradigms but illustrate how AOP offers a framework for social workers to engage with people with disabilities at the individual, familial and community levels of practice, promoting an emancipatory focus in working with people with disabilities. An anti- social- oppression social work model of disability connects the day-to-day hardships of people with disabilities to the direct consequence of oppression in the form of ableism. AOP theory finds many of its basic concepts within social-oppression theory and the social model of disability. It is often the case that practitioners, including social workers and psychologists, define people with disabilities’ as having or being a problem with the focus placed upon adjustment and coping. A case example will be used to illustrate how an AOP paradigm offers social work a more comprehensive and critical analysis and practice model for social work practice with and for people with disabilities than the traditional medical model, rehabilitative and social model approaches.Keywords: anti-oppressive practice, disability, people with disabilities, social model of disability
Procedia PDF Downloads 108218029 Evolving Software Assessment and Certification Models Using Ant Colony Optimization Algorithm
Authors: Saad M. Darwish
Abstract:
Recently, software quality issues have come to be seen as important subject as we see an enormous growth of agencies involved in software industries. However, these agencies cannot guarantee the quality of their products, thus leaving users in uncertainties. Software certification is the extension of quality by means that quality needs to be measured prior to certification granting process. This research participates in solving the problem of software assessment by proposing a model for assessment and certification of software product that uses a fuzzy inference engine to integrate both of process–driven and application-driven quality assurance strategies. The key idea of the on hand model is to improve the compactness and the interpretability of the model’s fuzzy rules via employing an ant colony optimization algorithm (ACO), which tries to find good rules description by dint of compound rules initially expressed with traditional single rules. The model has been tested by case study and the results have demonstrated feasibility and practicability of the model in a real environment.Keywords: software quality, quality assurance, software certification model, software assessment
Procedia PDF Downloads 52118028 Local Image Features Emerging from Brain Inspired Multi-Layer Neural Network
Authors: Hui Wei, Zheng Dong
Abstract:
Object recognition has long been a challenging task in computer vision. Yet the human brain, with the ability to rapidly and accurately recognize visual stimuli, manages this task effortlessly. In the past decades, advances in neuroscience have revealed some neural mechanisms underlying visual processing. In this paper, we present a novel model inspired by the visual pathway in primate brains. This multi-layer neural network model imitates the hierarchical convergent processing mechanism in the visual pathway. We show that local image features generated by this model exhibit robust discrimination and even better generalization ability compared with some existing image descriptors. We also demonstrate the application of this model in an object recognition task on image data sets. The result provides strong support for the potential of this model.Keywords: biological model, feature extraction, multi-layer neural network, object recognition
Procedia PDF Downloads 54018027 Environmental Modeling of Storm Water Channels
Authors: L. Grinis
Abstract:
Turbulent flow in complex geometries receives considerable attention due to its importance in many engineering applications. It has been the subject of interest for many researchers. Some of these interests include the design of storm water channels. The design of these channels requires testing through physical models. The main practical limitation of physical models is the so called “scale effect”, that is, the fact that in many cases only primary physical mechanisms can be correctly represented, while secondary mechanisms are often distorted. These observations form the basis of our study, which centered on problems associated with the design of storm water channels near the Dead Sea, in Israel. To help reach a final design decision we used different physical models. Our research showed good coincidence with the results of laboratory tests and theoretical calculations, and allowed us to study different effects of fluid flow in an open channel. We determined that problems of this nature cannot be solved only by means of theoretical calculation and computer simulation. This study demonstrates the use of physical models to help resolve very complicated problems of fluid flow through baffles and similar structures. The study applies these models and observations to different construction and multiphase water flows, among them, those that include sand and stone particles, a significant attempt to bring to the testing laboratory a closer association with reality.Keywords: open channel, physical modeling, baffles, turbulent flow
Procedia PDF Downloads 28318026 Simulation of Optimal Runoff Hydrograph Using Ensemble of Radar Rainfall and Blending of Runoffs Model
Authors: Myungjin Lee, Daegun Han, Jongsung Kim, Soojun Kim, Hung Soo Kim
Abstract:
Recently, the localized heavy rainfall and typhoons are frequently occurred due to the climate change and the damage is becoming bigger. Therefore, we may need a more accurate prediction of the rainfall and runoff. However, the gauge rainfall has the limited accuracy in space. Radar rainfall is better than gauge rainfall for the explanation of the spatial variability of rainfall but it is mostly underestimated with the uncertainty involved. Therefore, the ensemble of radar rainfall was simulated using error structure to overcome the uncertainty and gauge rainfall. The simulated ensemble was used as the input data of the rainfall-runoff models for obtaining the ensemble of runoff hydrographs. The previous studies discussed about the accuracy of the rainfall-runoff model. Even if the same input data such as rainfall is used for the runoff analysis using the models in the same basin, the models can have different results because of the uncertainty involved in the models. Therefore, we used two models of the SSARR model which is the lumped model, and the Vflo model which is a distributed model and tried to simulate the optimum runoff considering the uncertainty of each rainfall-runoff model. The study basin is located in Han river basin and we obtained one integrated runoff hydrograph which is an optimum runoff hydrograph using the blending methods such as Multi-Model Super Ensemble (MMSE), Simple Model Average (SMA), Mean Square Error (MSE). From this study, we could confirm the accuracy of rainfall and rainfall-runoff model using ensemble scenario and various rainfall-runoff model and we can use this result to study flood control measure due to climate change. Acknowledgements: This work is supported by the Korea Agency for Infrastructure Technology Advancement(KAIA) grant funded by the Ministry of Land, Infrastructure and Transport (Grant 18AWMP-B083066-05).Keywords: radar rainfall ensemble, rainfall-runoff models, blending method, optimum runoff hydrograph
Procedia PDF Downloads 27918025 Application Difference between Cox and Logistic Regression Models
Authors: Idrissa Kayijuka
Abstract:
The logistic regression and Cox regression models (proportional hazard model) at present are being employed in the analysis of prospective epidemiologic research looking into risk factors in their application on chronic diseases. However, a theoretical relationship between the two models has been studied. By definition, Cox regression model also called Cox proportional hazard model is a procedure that is used in modeling data regarding time leading up to an event where censored cases exist. Whereas the Logistic regression model is mostly applicable in cases where the independent variables consist of numerical as well as nominal values while the resultant variable is binary (dichotomous). Arguments and findings of many researchers focused on the overview of Cox and Logistic regression models and their different applications in different areas. In this work, the analysis is done on secondary data whose source is SPSS exercise data on BREAST CANCER with a sample size of 1121 women where the main objective is to show the application difference between Cox regression model and logistic regression model based on factors that cause women to die due to breast cancer. Thus we did some analysis manually i.e. on lymph nodes status, and SPSS software helped to analyze the mentioned data. This study found out that there is an application difference between Cox and Logistic regression models which is Cox regression model is used if one wishes to analyze data which also include the follow-up time whereas Logistic regression model analyzes data without follow-up-time. Also, they have measurements of association which is different: hazard ratio and odds ratio for Cox and logistic regression models respectively. A similarity between the two models is that they are both applicable in the prediction of the upshot of a categorical variable i.e. a variable that can accommodate only a restricted number of categories. In conclusion, Cox regression model differs from logistic regression by assessing a rate instead of proportion. The two models can be applied in many other researches since they are suitable methods for analyzing data but the more recommended is the Cox, regression model.Keywords: logistic regression model, Cox regression model, survival analysis, hazard ratio
Procedia PDF Downloads 45218024 Comparison of Wake Oscillator Models to Predict Vortex-Induced Vibration of Tall Chimneys
Authors: Saba Rahman, Arvind K. Jain, S. D. Bharti, T. K. Datta
Abstract:
The present study compares the semi-empirical wake-oscillator models that are used to predict vortex-induced vibration of structures. These models include those proposed by Facchinetti, Farshidian, and Dolatabadi, and Skop and Griffin. These models combine a wake oscillator model resembling the Van der Pol oscillator model and a single degree of freedom oscillation model. In order to use these models for estimating the top displacement of chimneys, the first mode vibration of the chimneys is only considered. The modal equation of the chimney constitutes the single degree of freedom model (SDOF). The equations of the wake oscillator model and the SDOF are simultaneously solved using an iterative procedure. The empirical parameters used in the wake-oscillator models are estimated using a newly developed approach, and response is compared with experimental data, which appeared comparable. For carrying out the iterative solution, the ode solver of MATLAB is used. To carry out the comparative study, a tall concrete chimney of height 210m has been chosen with the base diameter as 28m, top diameter as 20m, and thickness as 0.3m. The responses of the chimney are also determined using the linear model proposed by E. Simiu and the deterministic model given in Eurocode. It is observed from the comparative study that the responses predicted by the Facchinetti model and the model proposed by Skop and Griffin are nearly the same, while the model proposed by Fashidian and Dolatabadi predicts a higher response. The linear model without considering the aero-elastic phenomenon provides a less response as compared to the non-linear models. Further, for large damping, the prediction of the response by the Euro code is relatively well compared to those of non-linear models.Keywords: chimney, deterministic model, van der pol, vortex-induced vibration
Procedia PDF Downloads 21918023 Multi-Criteria Test Case Selection Using Ant Colony Optimization
Authors: Niranjana Devi N.
Abstract:
Test case selection is to select the subset of only the fit test cases and remove the unfit, ambiguous, redundant, unnecessary test cases which in turn improve the quality and reduce the cost of software testing. Test cases optimization is the problem of finding the best subset of test cases from a pool of the test cases to be audited. It will meet all the objectives of testing concurrently. But most of the research have evaluated the fitness of test cases only on single parameter fault detecting capability and optimize the test cases using a single objective. In the proposed approach, nine parameters are considered for test case selection and the best subset of parameters for test case selection is obtained using Interval Type-2 Fuzzy Rough Set. Test case selection is done in two stages. The first stage is the fuzzy entropy-based filtration technique, used for estimating and reducing the ambiguity in test case fitness evaluation and selection. The second stage is the ant colony optimization-based wrapper technique with a forward search strategy, employed to select test cases from the reduced test suite of the first stage. The results are evaluated using the Coverage parameters, Precision, Recall, F-Measure, APSC, APDC, and SSR. The experimental evaluation demonstrates that by this approach considerable computational effort can be avoided.Keywords: ant colony optimization, fuzzy entropy, interval type-2 fuzzy rough set, test case selection
Procedia PDF Downloads 66718022 On Differential Growth Equation to Stochastic Growth Model Using Hyperbolic Sine Function in Height/Diameter Modeling of Pines
Authors: S. O. Oyamakin, A. U. Chukwu
Abstract:
Richard's growth equation being a generalized logistic growth equation was improved upon by introducing an allometric parameter using the hyperbolic sine function. The integral solution to this was called hyperbolic Richard's growth model having transformed the solution from deterministic to a stochastic growth model. Its ability in model prediction was compared with the classical Richard's growth model an approach which mimicked the natural variability of heights/diameter increment with respect to age and therefore provides a more realistic height/diameter predictions using the coefficient of determination (R2), Mean Absolute Error (MAE) and Mean Square Error (MSE) results. The Kolmogorov-Smirnov test and Shapiro-Wilk test was also used to test the behavior of the error term for possible violations. The mean function of top height/Dbh over age using the two models under study predicted closely the observed values of top height/Dbh in the hyperbolic Richard's nonlinear growth models better than the classical Richard's growth model.Keywords: height, Dbh, forest, Pinus caribaea, hyperbolic, Richard's, stochastic
Procedia PDF Downloads 47818021 Development of a Predictive Model to Prevent Financial Crisis
Authors: Tengqin Han
Abstract:
Delinquency has been a crucial factor in economics throughout the years. Commonly seen in credit card and mortgage, it played one of the crucial roles in causing the most recent financial crisis in 2008. In each case, a delinquency is a sign of the loaner being unable to pay off the debt, and thus may cause a lost of property in the end. Individually, one case of delinquency seems unimportant compared to the entire credit system. China, as an emerging economic entity, the national strength and economic strength has grown rapidly, and the gross domestic product (GDP) growth rate has remained as high as 8% in the past decades. However, potential risks exist behind the appearance of prosperity. Among the risks, the credit system is the most significant one. Due to long term and a large amount of balance of the mortgage, it is critical to monitor the risk during the performance period. In this project, about 300,000 mortgage account data are analyzed in order to develop a predictive model to predict the probability of delinquency. Through univariate analysis, the data is cleaned up, and through bivariate analysis, the variables with strong predictive power are detected. The project is divided into two parts. In the first part, the analysis data of 2005 are split into 2 parts, 60% for model development, and 40% for in-time model validation. The KS of model development is 31, and the KS for in-time validation is 31, indicating the model is stable. In addition, the model is further validation by out-of-time validation, which uses 40% of 2006 data, and KS is 33. This indicates the model is still stable and robust. In the second part, the model is improved by the addition of macroeconomic economic indexes, including GDP, consumer price index, unemployment rate, inflation rate, etc. The data of 2005 to 2010 is used for model development and validation. Compared with the base model (without microeconomic variables), KS is increased from 41 to 44, indicating that the macroeconomic variables can be used to improve the separation power of the model, and make the prediction more accurate.Keywords: delinquency, mortgage, model development, model validation
Procedia PDF Downloads 22618020 An Effective Preventive Program of HIV/AIDS among Hill Tribe Youth, Thailand
Authors: Tawatchai Apidechkul
Abstract:
This operational research was conducted and divided into two phases: the first phase aimed to determine the risk behaviors used a cross-sectional study design, following by the community participatory research design to develop the HIV/AIDS preventive model among the Akha youths. The instruments were composed of completed questionnaires and assessment forms that were tested for validity and reliability before use. Study setting was Jor Pa Ka and Saen Suk Akha villages, Mae Chan District, Chiang Rai, Thailand. Study sample were the Akha youths lived in the villages. Means and chi-square test were used for the statistical testing. Results: Akha youths in the population mobilization villages live in agricultural families with low income and circumstance of narcotic drugs. The average age was 16 (50.00%), 51.52% Christian, 48.80% completed secondary school, 43.94% had annual family income of 30,000-40,000 baht. Among males, 54.54% drank, 39.39% smoked, 7.57% used amphetamine, first sexual intercourse reported at 14 years old, 50.00% had 2-5 partners, 62.50% had unprotected sex (no-condom). Reasons of unprotected sex included not being able to find condom, unawareness of need to use condoms, and dislike. 28.79% never been received STI related information, 6.06% had STI. Among females, 15.15% drank, 28.79% had sexual intercourse and had first sexual intercourse less than 15 year old. 40.00% unprotected sex (no-condom), 10.61% never been received STI related information, and 4.54% had STI. The HIV/AIDS preventive model contained two components. Peer groups among the youths were built around interests in sports. Improving knowledge would empower their capability and lead to choices that would result in HIV/AIDS prevention. The empowering model consisted of 4 courses: a. human reproductive system and its hygiene, b. risk-avoid skills, family planning, and counseling techniques, c. HIV/AIDS and other STIs, d. drugs and related laws and regulations. The results of the activities found that youths had a greater of knowledge and attitude levels for HIV/AIDS prevention with statistical significance (χ2-τεστ= 12.87, p-value= 0.032 and χ2-τεστ= 9.31, p-value<0.001 respectively). A continuous and initiative youths capability development program is the appropriate process to reduce the spread of HIV/AIDS in youths, particularly in the population who have the specific of language and culture.Keywords: AIV/AIDS, preventive program, effective, hill tribe
Procedia PDF Downloads 36918019 Proactive WPA/WPA2 Security Using DD-WRT Firmware
Authors: Mustafa Kamoona, Mohamed El-Sharkawy
Abstract:
Although the latest Wireless Local Area Network technology Wi-Fi 802.11i standard addresses many of the security weaknesses of the antecedent Wired Equivalent Privacy (WEP) protocol, there are still scenarios where the network security are still vulnerable. The first security model that 802.11i offers is the Personal model which is very cheap and simple to install and maintain, yet it uses a Pre Shared Key (PSK) and thus has a low to medium security level. The second model that 802.11i provide is the Enterprise model which is highly secured but much more expensive and difficult to install/maintain and requires the installation and maintenance of an authentication server that will handle the authentication and key management for the wireless network. A central issue with the personal model is that the PSK needs to be shared with all the devices that are connected to the specific Wi-Fi network. This pre-shared key, unless changed regularly, can be cracked using offline dictionary attacks within a matter of hours. The key is burdensome to change in all the connected devices manually unless there is some kind of algorithm that coordinate this PSK update. The key idea of this paper is to propose a new algorithm that proactively and effectively coordinates the pre-shared key generation, management, and distribution in the cheap WPA/WPA2 personal security model using only a DD-WRT router.Keywords: Wi-Fi, WPS, TLS, DD-WRT
Procedia PDF Downloads 23318018 Forecasting Age-Specific Mortality Rates and Life Expectancy at Births for Malaysian Sub-Populations
Authors: Syazreen N. Shair, Saiful A. Ishak, Aida Y. Yusof, Azizah Murad
Abstract:
In this paper, we forecast age-specific Malaysian mortality rates and life expectancy at births by gender and ethnic groups including Malay, Chinese and Indian. Two mortality forecasting models are adopted the original Lee-Carter model and its recent modified version, the product ratio coherent model. While the first forecasts the mortality rates for each subpopulation independently, the latter accounts for the relationship between sub-populations. The evaluation of both models is performed using the out-of-sample forecast errors which are mean absolute percentage errors (MAPE) for mortality rates and mean forecast errors (MFE) for life expectancy at births. The best model is then used to perform the long-term forecasts up to the year 2030, the year when Malaysia is expected to become an aged nation. Results suggest that in terms of overall accuracy, the product ratio model performs better than the original Lee-Carter model. The association of lower mortality group (Chinese) in the subpopulation model can improve the forecasts of high mortality groups (Malay and Indian).Keywords: coherent forecasts, life expectancy at births, Lee-Carter model, product-ratio model, mortality rates
Procedia PDF Downloads 21618017 Robustness of Steel Beam to Column Moment Resisting Joints
Authors: G. Culache, M. P. Byfield, N. S. Ferguson, A. Tyas
Abstract:
Steel joints in building structures represent a weak link in the case of accidental transient loading. This type of loading can occur due to blast effects or impact with moving vehicles and will result in large deformations in the material as well as large rotations. This paper addresses the lack of experimental investigations into the response of moment resisting connections subjected to such loading. The current design philosophy was used to create test specimens with flush and extended end plates. The specimens were tested in a specially designed testing rig capable of delivering the sustained loading even beyond the point of failure. Types of failure that the authors attempted to obtain were bolt fracture, flange crushing and end plate fracture. Experimental data is presented, described and analyzed. The tests show that the strength and ductility can be significantly improved by replacing ordinary mild-steel bolts with their stainless steel equivalents. This minor modification is demonstrated to significantly improve the robustness when subjected to loading that results in high deformations and rotation, where loading is maintained during failure. Conclusions are drawn about the wider implications of this research and recommendations made on the direction of future research in this field.Keywords: steel moment connections, high strain rates, dynamic loading, experimental testing
Procedia PDF Downloads 32118016 Using Econometric Methods to Explore Obesity Stigma and Avoidance of Breast and Cervical Cancer Screening
Authors: Stephanie A. Schauder, Gosia Sylwestrzak
Abstract:
Overweight and obese women report avoiding preventive care due to fear of weight-related bias from medical professionals. Gynecological exams, due to their sensitive and personally invasive nature, are especially susceptible to avoidance. This research investigates the association between body mass index (BMI) and screening rates for breast and cervical cancer using claims data from 1.3 million members of a large health insurance company. Because obesity is associated with increased cancer risk, screenings for these cancers should increase as BMI increases. However, this paper finds that the distribution of cancer screening rates by BMI take an inverted U-shape with underweight and obese members having the lowest screening rates. For cervical cancer screening, those in the target population with a BMI of 23 have the highest screening rate at 68%, while Obese Class III members have a screening rate of 50%. Those in the underweight category have a screening rate of 58%. This relationship persists even after controlling for health and demographic covariates in regression analysis. Interestingly, there is no association between BMI and BRCA (BReast CAncer gene) genetic testing. This is consistent with the narrative that stigma causes avoidance because genetic testing does not involve any assessment of a person’s body. More work must be done to determine how to increase cancer screening rates in those who may feel stigmatized due to their weight.Keywords: cancer screening, cervical cancer, breast cancer, weight stigma, avoidance of care
Procedia PDF Downloads 20018015 Modular Harmonic Cancellation in a Multiplier High Voltage Direct Current Generator
Authors: Ahmad Zahran, Ahmed Herzallah, Ahmad Ahmad, Mahran Quraan
Abstract:
Generation of high DC voltages is necessary for testing the insulation material of high voltage AC transmission lines with long lengths. The harmonic and ripple contents of the output DC voltage supplied by high voltage DC circuits require the use of costly capacitors to smooth the output voltage after rectification. This paper proposes a new modular multiplier high voltage DC generator with embedded Cockcroft-Walton circuits that achieve a negligible harmonic and ripple contents of the output DC voltage without the need for costly filters to produce a nearly constant output voltage. In this new topology, Cockcroft-Walton modules are connected in series to produce a high DC output voltage. The modules are supplied by low input AC voltage sources that have the same magnitude and frequency and shifted from each other by a certain angle to eliminate the harmonics from the output voltage. The small ripple factor is provided by the smoothing column capacitors and the phase shifted input voltages of the cascaded modules. The constituent harmonics within each module are determined using Fourier analysis. The viability of the proposed DC generator for testing purposes and the effectiveness of the cascaded connection are confirmed by numerical simulations using MATLAB/Simulink.Keywords: Cockcroft-Walton circuit, harmonics, ripple factor, HVDC generator
Procedia PDF Downloads 36518014 Efficient Sampling of Probabilistic Program for Biological Systems
Authors: Keerthi S. Shetty, Annappa Basava
Abstract:
In recent years, modelling of biological systems represented by biochemical reactions has become increasingly important in Systems Biology. Biological systems represented by biochemical reactions are highly stochastic in nature. Probabilistic model is often used to describe such systems. One of the main challenges in Systems biology is to combine absolute experimental data into probabilistic model. This challenge arises because (1) some molecules may be present in relatively small quantities, (2) there is a switching between individual elements present in the system, and (3) the process is inherently stochastic on the level at which observations are made. In this paper, we describe a novel idea of combining absolute experimental data into probabilistic model using tool R2. Through a case study of the Transcription Process in Prokaryotes we explain how biological systems can be written as probabilistic program to combine experimental data into the model. The model developed is then analysed in terms of intrinsic noise and exact sampling of switching times between individual elements in the system. We have mainly concentrated on inferring number of genes in ON and OFF states from experimental data.Keywords: systems biology, probabilistic model, inference, biology, model
Procedia PDF Downloads 34618013 Machine Learning Model Applied for SCM Processes to Efficiently Determine Its Impacts on the Environment
Authors: Elena Puica
Abstract:
This paper aims to investigate the impact of Supply Chain Management (SCM) on the environment by applying a Machine Learning model while pointing out the efficiency of the technology used. The Machine Learning model was used to derive the efficiency and optimization of technology used in SCM and the environmental impact of SCM processes. The model applied is a predictive classification model and was trained firstly to determine which stage of the SCM has more outputs and secondly to demonstrate the efficiency of using advanced technology in SCM instead of recuring to traditional SCM. The outputs are the emissions generated in the environment, the consumption from different steps in the life cycle, the resulting pollutants/wastes emitted, and all the releases to air, land, and water. This manuscript presents an innovative approach to applying advanced technology in SCM and simultaneously studies the efficiency of technology and the SCM's impact on the environment. Identifying the conceptual relationships between SCM practices and their impact on the environment is a new contribution to the research. The authors can take a forward step in developing recent studies in SCM and its effects on the environment by applying technology.Keywords: machine-learning model in SCM, SCM processes, SCM and the environmental impact, technology in SCM
Procedia PDF Downloads 11518012 Model Tests on Geogrid-Reinforced Sand-Filled Embankments with a Cover Layer under Cyclic Loading
Authors: Ma Yuan, Zhang Mengxi, Akbar Javadi, Chen Longqing
Abstract:
The structure of sand-filled embankment with cover layer is treated with tipping clay modified with lime on the outside of the packing, and the geotextile is placed between the stuffing and the clay. The packing is usually river sand, and the improved clay protects the sand core against rainwater erosion. The sand-filled embankment with cover layer has practical problems such as high filling embankment, construction restriction, and steep slope. The reinforcement can be applied to the sand-filled embankment with cover layer to solve the complicated problems such as irregular settlement caused by poor stability of the embankment. At present, the research on the sand-filled embankment with cover layer mainly focuses on the sand properties, construction technology, and slope stability, and there are few studies in the experimental field, the deformation characteristics and stability of reinforced sand-filled embankment need further study. In addition, experimental research is relatively rare when the cyclic load is considered in tests. A subgrade structure of geogrid-reinforced sand-filled embankment with cover layer was proposed. The mechanical characteristics, the deformation properties, reinforced behavior and the ultimate bearing capacity of the embankment structure under cyclic loading were studied. For this structure, the geogrids in the sand and the tipping soil are through the geotextile which is arranged in sections continuously so that the geogrids can cross horizontally. Then, the Unsaturated/saturated Soil Triaxial Test System of Geotechnical Consulting and Testing Systems (GCTS), USA was modified to form the loading device of this test, and strain collector was used to measuring deformation and earth pressure of the embankment. A series of cyclic loading model tests were conducted on the geogrid-reinforced sand-filled embankment with a cover layer under a different number of reinforcement layers, the length of reinforcement and thickness of the cover layer. The settlement of the embankment, the normal cumulative deformation of the slope and the earth pressure were studied under different conditions. Besides cyclic loading model tests, model experiments of embankment subjected cyclic-static loading was carried out to analyze ultimate bearing capacity with different loading. The experiment results showed that the vertical cumulative settlement under long-term cyclic loading increases with the decrease of the number of reinforcement layers, length of the reinforcement arrangement and thickness of the tipping soil. Meanwhile, these three factors also have an influence on the decrease of the normal deformation of the embankment slope. The earth pressure around the loading point is significantly affected by putting geogrid in a model embankment. After cyclic loading, the decline of ultimate bearing capacity of the reinforced embankment can be effectively reduced, which is contrary to the unreinforced embankment.Keywords: cyclic load; geogrid; reinforcement behavior; cumulative deformation; earth pressure
Procedia PDF Downloads 12118011 Methods of Variance Estimation in Two-Phase Sampling
Authors: Raghunath Arnab
Abstract:
The two-phase sampling which is also known as double sampling was introduced in 1938. In two-phase sampling, samples are selected in phases. In the first phase, a relatively large sample of size is selected by some suitable sampling design and only information on the auxiliary variable is collected. During the second phase, a sample of size is selected either from, the sample selected in the first phase or from the entire population by using a suitable sampling design and information regarding the study and auxiliary variable is collected. Evidently, two phase sampling is useful if the auxiliary information is relatively easy and cheaper to collect than the study variable as well as if the strength of the relationship between the variables and is high. If the sample is selected in more than two phases, the resulting sampling design is called a multi-phase sampling. In this article we will consider how one can use data collected at the first phase sampling at the stages of estimation of the parameter, stratification, selection of sample and their combinations in the second phase in a unified setup applicable to any sampling design and wider classes of estimators. The problem of the estimation of variance will also be considered. The variance of estimator is essential for estimating precision of the survey estimates, calculation of confidence intervals, determination of the optimal sample sizes and for testing of hypotheses amongst others. Although, the variance is a non-negative quantity but its estimators may not be non-negative. If the estimator of variance is negative, then it cannot be used for estimation of confidence intervals, testing of hypothesis or measure of sampling error. The non-negativity properties of the variance estimators will also be studied in details.Keywords: auxiliary information, two-phase sampling, varying probability sampling, unbiased estimators
Procedia PDF Downloads 58618010 The Effect of Action Potential Duration and Conduction Velocity on Cardiac Pumping Efficacy: Simulation Study
Authors: Ana Rahma Yuniarti, Ki Moo Lim
Abstract:
Slowed myocardial conduction velocity (CV) and shortened action potential duration (APD) due to some reason are associated with an increased risk of re-entrant excitation, predisposing to cardiac arrhythmia. That is because both of CV reduction and APD shortening induces shortening of wavelength. In this study, we investigated quantitatively the cardiac mechanical responses under various CV and APD using multi-scale computational model of the heart. The model consisted of electrical model coupled with the mechanical contraction model together with a lumped model of the circulatory system. The electrical model consisted of 149.344 numbers of nodes and 183.993 numbers of elements of tetrahedral mesh, whereas the mechanical model consisted of 356 numbers of nodes and 172 numbers of elements of hexahedral mesh with hermite basis. We performed the electrical simulation with two scenarios: 1) by varying the CV values with constant APD and 2) by varying the APD values with constant CV. Then, we compared the electrical and mechanical responses for both scenarios. Our simulation showed that faster CV and longer APD induced largest resultants wavelength and generated better cardiac pumping efficacy by increasing the cardiac output and consuming less energy. This is due to the long wave propagation and faster conduction generated more synchronous contraction of whole ventricle.Keywords: conduction velocity, action potential duration, mechanical contraction model, circulatory model
Procedia PDF Downloads 20218009 The Moderating Effect of Pathological Narcissism in the Relationship between Victim Justice Sensitivity and Anger Rumination
Authors: Isil Coklar-Okutkan, Miray Akyunus
Abstract:
Victim sensitivity is a form of justice sensitivity that reflects the tendency to perceive injustice to one’s disadvantage. Victim sensitivity is considered as a dysfunctional trait that predicts anger, aggression, uncooperative behavior, depression and anxiety. Indeed, exploring the mechanism of association between victim sensitivity and anger is clinically important since it can lead to externalizing and internalizing problems. This study aims to investigate the moderating role of pathological narcissism in the relationship between victim sensitivity and anger rumination. Through testing different models where subtypes of narcissism and anger rumination components are included independently, the specific mechanism of different ruminative processes in anger is investigated. The sample consisted of 311 undergraduate students from Turkey, 107 of whom were males, and 204 were females. Participants completed Justice Sensitivity Inventory-Victim Subscale, Pathological Narcissism Inventory and Anger Rumination Scale. In the proposed double moderation model, vulnerable and grandiose narcissism was the moderators in the relationship between victim justice sensitivity and anger rumination. Four separate models were tested where one of the four components of anger rumination (angry afterthoughts, thoughts of revenge, angry memories, understanding of causes) were the dependent variable in each model. Results revealed that two of the moderation models are significant. Firstly, grandiose narcissism is the only moderator in the relationship between victim sensitivity and thoughts of revenge. Secondly, vulnerable narcissism is the only moderator in the relationship between victim sensitivity and understanding causes. Accordingly, grandiose narcissism is positively associated with the thoughts of revenge, and vulnerable narcissism is positively associated with understanding causes, only when the level of victim sensitivity is high. To summarize, increased victim sensitivity leads to ruminative thoughts of revenge in individuals with grandiose narcissism, whereas it leads to rumination on causes of the incident in individuals with vulnerable narcissism. The clinical implications of the findings are discussed.Keywords: anger rumination, victim sensitivity, grandiose narcissism, vulnerable narcissism
Procedia PDF Downloads 20118008 Heart Attack Prediction Using Several Machine Learning Methods
Authors: Suzan Anwar, Utkarsh Goyal
Abstract:
Heart rate (HR) is a predictor of cardiovascular, cerebrovascular, and all-cause mortality in the general population, as well as in patients with cardio and cerebrovascular diseases. Machine learning (ML) significantly improves the accuracy of cardiovascular risk prediction, increasing the number of patients identified who could benefit from preventive treatment while avoiding unnecessary treatment of others. This research examines relationship between the individual's various heart health inputs like age, sex, cp, trestbps, thalach, oldpeaketc, and the likelihood of developing heart disease. Machine learning techniques like logistic regression and decision tree, and Python are used. The results of testing and evaluating the model using the Heart Failure Prediction Dataset show the chance of a person having a heart disease with variable accuracy. Logistic regression has yielded an accuracy of 80.48% without data handling. With data handling (normalization, standardscaler), the logistic regression resulted in improved accuracy of 87.80%, decision tree 100%, random forest 100%, and SVM 100%.Keywords: heart rate, machine learning, SVM, decision tree, logistic regression, random forest
Procedia PDF Downloads 13618007 SVM-Based Modeling of Mass Transfer Potential of Multiple Plunging Jets
Authors: Surinder Deswal, Mahesh Pal
Abstract:
The paper investigates the potential of support vector machines based regression approach to model the mass transfer capacity of multiple plunging jets, both vertical (θ = 90°) and inclined (θ = 60°). The data set used in this study consists of four input parameters with a total of eighty eight cases. For testing, tenfold cross validation was used. Correlation coefficient values of 0.971 and 0.981 (root mean square error values of 0.0025 and 0.0020) were achieved by using polynomial and radial basis kernel functions based support vector regression respectively. Results suggest an improved performance by radial basis function in comparison to polynomial kernel based support vector machines. The estimated overall mass transfer coefficient, by both the kernel functions, is in good agreement with actual experimental values (within a scatter of ±15 %); thereby suggesting the utility of support vector machines based regression approach.Keywords: mass transfer, multiple plunging jets, support vector machines, ecological sciences
Procedia PDF Downloads 46218006 Joint Modeling of Bottle Use, Daily Milk Intake from Bottles, and Daily Energy Intake in Toddlers
Authors: Yungtai Lo
Abstract:
The current study follows an educational intervention on bottle-weaning to simultaneously evaluate the effect of the bottle-weaning intervention on reducing bottle use, daily milk intake from bottles, and daily energy intake in toddlers aged 11 to 13 months. A shared parameter model and a random effects model are used to jointly model bottle use, daily milk intake from bottles, and daily energy intake. We show in the two joint models that the bottle-weaning intervention promotes bottleweaning, and reduces daily milk intake from bottles in toddlers not off bottles and daily energy intake. We also show that the odds of drinking from a bottle were positively associated with the amount of milk intake from bottles and increased daily milk intake from bottles was associated with increased daily energy intake. The effect of bottle use on daily energy intake is through its effect on increasing daily milk intake from bottles that in turn increases daily energy intake.Keywords: two-part model, semi-continuous variable, joint model, gamma regression, shared parameter model, random effects model
Procedia PDF Downloads 286