Search results for: mixed finite elements
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 8171

Search results for: mixed finite elements

7121 Wear and Mechanical Properties of Nodular Iron Modified with Copper

Authors: J. Ramos, V. Gil, A. F. Torres

Abstract:

The nodular iron is a material that has shown great advantages respect to other materials (steel and gray iron) in the production of machine elements. The engineering industry, especially automobile, are potential users of this material. As it is known, the alloying elements modify the properties of steels and castings. Copper has been investigated as a structural modifier of nodular iron, but studies of its mechanical and tribological implications still need to be addressed for industrial use. With the aim of improving the mechanical properties of nodular iron, alloying elements (Mn, Si, and Cu) are added in order to increase their pearlite (or ferrite) structure according to the percentage of the alloying element. In this research (using induction furnace process) nodular iron with three different percentages of copper (residual, 0,5% and 1,2%) was obtained. Chemical analysis was performed by optical emission spectrometry and microstructures were characterized by Optical Microscopy (ASTM E3) and Scanning Electron Microscopy (SEM). The study of mechanical behavior was carried out in a mechanical test machine (ASTM E8) and a Pin on disk tribometer (ASTM G99) was used to assess wear resistance. It is observed that copper increases the pearlite structure improving the wear behavior; tension behavior. This improvement is observed in higher proportion with 0,5% due to the fact that too much increase of pearlite leads to ductility loss.

Keywords: copper, mechanical properties, nodular iron, pearlite structure, wear

Procedia PDF Downloads 377
7120 Modelling and Maping Malnutrition Toddlers in Bojonegoro Regency with Mixed Geographically Weighted Regression Approach

Authors: Elvira Mustikawati P.H., Iis Dewi Ratih, Dita Amelia

Abstract:

Bojonegoro has proclaimed a policy of zero malnutrition. Therefore, as an effort to solve the cases of malnutrition children in Bojonegoro, this study used the approach geographically Mixed Weighted Regression (MGWR) to determine the factors that influence the percentage of malnourished children under five in which factors can be divided into locally influential factor in each district and global factors that influence throughout the district. Based on the test of goodness of fit models, R2 and AIC values in GWR models are better than MGWR models. R2 and AIC values in MGWR models are 84.37% and 14.28, while the GWR models respectively are 91.04% and -62.04. Based on the analysis with GWR models, District Sekar, Bubulan, Gondang, and Dander is a district with three predictor variables (percentage of vitamin A, the percentage of births assisted health personnel, and the percentage of clean water) that significantly influence the percentage of malnourished children under five.

Keywords: GWR, MGWR, R2, AIC

Procedia PDF Downloads 289
7119 Elements of Usability and Sociability in Activity Management System for e-Masjid

Authors: Hidayah bt Rahmalan, Marhazli Kipli, Muhammad Suffian Sikandar Ghani, Maisarah Abu, Muhammad Faisal Ashaari, Norlizam Md Sukiban

Abstract:

This study presents an example of activity management system for e-Masjid implementing elements of usability and sociability. It is expected to resolve the shortcomings of the most e-Masjid that provide lot of activities to their community. However, the data on handling a lot of activities or events in which involve a lot of people will be difficult to manipulate. Thus, this paper presents the usability and sociability element on an activity management system that not only eases the job for the user but being practical for future when the community join any events. For the time being, this activity management system was only applied for Sayyidina Abu Bakar Mosque in Utem, Malacca.

Keywords: e-masjid, usability, sociability, activity management system

Procedia PDF Downloads 355
7118 Innovative Dissipative Bracings for Seismic-Resistant Automated Rack Supported Warehouses

Authors: Agnese Natali, Francesco Morelli, Walter Salvatore

Abstract:

Automated Rack Supported Warehouses (ARSWs) are storage buildings whose structure is made of the same racks where goods are placed. The possibility of designing dissipative seismic-resistant ARSWs is investigated. Diagonals are the dissipative elements, arranged as tense-only X bracings. Local optimization is numerically performed to satisfy the over-resistant connection request for the dissipative element, that is hard to be reached due the geometrical limits of the thin-walled diagonals and must be balanced with resistance, the limit of slenderness, and ductility requests.

Keywords: steel racks, thin-walled cold-formed elements, structural optimization, hierarchy rules, dog-bone philosophy

Procedia PDF Downloads 154
7117 Field Saturation Flow Measurement Using Dynamic Passenger Car Unit under Mixed Traffic Condition

Authors: Ramesh Chandra Majhi

Abstract:

Saturation flow is a very important input variable for the design of signalized intersections. Saturation flow measurement is well established for homogeneous traffic. However, saturation flow measurement and modeling is a challenging task in heterogeneous characterized by multiple vehicle types and non-lane based movement. Present study focuses on proposing a field procedure for Saturation flow measurement and the effect of typical mixed traffic behavior at the signal as far as non-lane based traffic movement is concerned. Data collected during peak and off-peak hour from five intersections with varying approach width is used for validating the saturation flow model. The insights from the study can be used for modeling saturation flow and delay at signalized intersection in heterogeneous traffic conditions.

Keywords: optimization, passenger car unit, saturation flow, signalized intersection

Procedia PDF Downloads 319
7116 An Assessment of Different Blade Tip Timing (BTT) Algorithms Using an Experimentally Validated Finite Element Model Simulator

Authors: Mohamed Mohamed, Philip Bonello, Peter Russhard

Abstract:

Blade Tip Timing (BTT) is a technology concerned with the estimation of both frequency and amplitude of rotating blades. A BTT system comprises two main parts: (a) the arrival time measurement system, and (b) the analysis algorithms. Simulators play an important role in the development of the analysis algorithms since they generate blade tip displacement data from the simulated blade vibration under controlled conditions. This enables an assessment of the performance of the different algorithms with respect to their ability to accurately reproduce the original simulated vibration. Such an assessment is usually not possible with real engine data since there is no practical alternative to BTT for blade vibration measurement. Most simulators used in the literature are based on a simple spring-mass-damper model to determine the vibration. In this work, a more realistic experimentally validated simulator based on the Finite Element (FE) model of a bladed disc (blisk) is first presented. It is then used to generate the necessary data for the assessment of different BTT algorithms. The FE modelling is validated using both a hammer test and two firewire cameras for the mode shapes. A number of autoregressive methods, fitting methods and state-of-the-art inverse methods (i.e. Russhard) are compared. All methods are compared with respect to both synchronous and asynchronous excitations with both single and simultaneous frequencies. The study assesses the applicability of each method for different conditions of vibration, amount of sampling data, and testing facilities, according to its performance and efficiency under these conditions.

Keywords: blade tip timing, blisk, finite element, vibration measurement

Procedia PDF Downloads 299
7115 Modeling and Simulation of Ship Structures Using Finite Element Method

Authors: Javid Iqbal, Zhu Shifan

Abstract:

The development in the construction of unconventional ships and the implementation of lightweight materials have shown a large impulse towards finite element (FE) method, making it a general tool for ship design. This paper briefly presents the modeling and analysis techniques of ship structures using FE method for complex boundary conditions which are difficult to analyze by existing Ship Classification Societies rules. During operation, all ships experience complex loading conditions. These loads are general categories into thermal loads, linear static, dynamic and non-linear loads. General strength of the ship structure is analyzed using static FE analysis. FE method is also suitable to consider the local loads generated by ballast tanks and cargo in addition to hydrostatic and hydrodynamic loads. Vibration analysis of a ship structure and its components can be performed using FE method which helps in obtaining the dynamic stability of the ship. FE method has developed better techniques for calculation of natural frequencies and different mode shapes of ship structure to avoid resonance both globally and locally. There is a lot of development towards the ideal design in ship industry over the past few years for solving complex engineering problems by employing the data stored in the FE model. This paper provides an overview of ship modeling methodology for FE analysis and its general application. Historical background, the basic concept of FE, advantages, and disadvantages of FE analysis are also reported along with examples related to hull strength and structural components.

Keywords: dynamic analysis, finite element methods, ship structure, vibration analysis

Procedia PDF Downloads 126
7114 Numerical Analysis of the Response of Thin Flexible Membranes to Free Surface Water Flow

Authors: Mahtab Makaremi Masouleh, Günter Wozniak

Abstract:

This work is part of a major research project concerning the design of a light temporary installable textile flood control structure. The motivation for this work is the great need of applying light structures for the protection of coastal areas from detrimental effects of rapid water runoff. The prime objective of the study is the numerical analysis of the interaction among free surface water flow and slender shaped pliable structures, playing a key role in safety performance of the intended system. First, the behavior of down scale membrane is examined under hydrostatic pressure by the Abaqus explicit solver, which is part of the finite element based commercially available SIMULIA software. Then the procedure to achieve a stable and convergent solution for strongly coupled media including fluids and structures is explained. A partitioned strategy is imposed to make both structures and fluids be discretized and solved with appropriate formulations and solvers. In this regard, finite element method is again selected to analyze the structural domain. Moreover, computational fluid dynamics algorithms are introduced for solutions in flow domains by means of a commercial package of Star CCM+. Likewise, SIMULIA co-simulation engine and an implicit coupling algorithm, which are available communication tools in commercial package of the Star CCM+, enable powerful transmission of data between two applied codes. This approach is discussed for two different cases and compared with available experimental records. In one case, the down scale membrane interacts with open channel flow, where the flow velocity increases with time. The second case illustrates, how the full scale flexible flood barrier behaves when a massive flotsam is accelerated towards it.

Keywords: finite element formulation, finite volume algorithm, fluid-structure interaction, light pliable structure, VOF multiphase model

Procedia PDF Downloads 176
7113 Dam Break Model Using Navier-Stokes Equation

Authors: Alireza Lohrasbi, Alireza Lavaei, Mohammadali M. Shahlaei

Abstract:

The liquid flow and the free surface shape during the initial stage of dam breaking are investigated. A numerical scheme is developed to predict the wave of an unsteady, incompressible viscous flow with free surface. The method involves a two dimensional finite element (2D), in a vertical plan. The Naiver-Stokes equations for conservation of momentum and mass for Newtonian fluids, continuity equation, and full nonlinear kinematic free-surface equation were used as the governing equations. The mapping developed to solve highly deformed free surface problems common in waves formed during wave propagation, transforms the run up model from the physical domain to a computational domain with Arbitrary Lagrangian Eulerian (ALE) finite element modeling technique.

Keywords: dam break, Naiver-Stokes equations, free-surface flows, Arbitrary Lagrangian-Eulerian

Procedia PDF Downloads 323
7112 Numerical Study of Laminar Natural Flow Transitions in Rectangular Cavity

Authors: Sabrina Nouri, Abderahmane Ghezal, Said Abboudi, Pierre Spiteri

Abstract:

This paper deals with the numerical study of heat and mass transfer of laminar flow transition at low Prandtl numbers. The model includes the two-directional momentum, the energy and mass transfer equations. These equations are discretized by the finite volume method and solved by a self-made simpler like Fortran code. The effect of governing parameters, namely the Lewis and Prandtl numbers, on the transition of the flow and solute distribution is studied for positive and negative thermal and solutal buoyancy forces ratio. Nusselt and Sherwood numbers are derived for of Prandtl [10⁻²-10¹] and Lewis numbers [1-10⁴]. The results show unicell and multi-cell flow. Solute and flow boundary layers appear for low Prandtl number.

Keywords: natural convection, low Prandtl number, heat and mass transfer, finite volume method

Procedia PDF Downloads 193
7111 Buckling Analysis of Composite Shells under Compression and Torsional Loads: Numerical and Analytical Study

Authors: Güneş Aydın, Razi Kalantari Osgouei, Murat Emre Öztürk, Ahmad Partovi Meran, Ekrem Tüfekçi

Abstract:

Advanced lightweight laminated composite shells are increasingly being used in all types of modern structures, for enhancing their structural efficiency and performance. Such thin-walled structures are susceptible to buckling when subjected to various loading. This paper focuses on the buckling of cylindrical shells under axial compression and torsional loads. Effects of fiber orientation on the maximum buckling load of carbon fiber reinforced polymer (CFRP) shells are optimized. Optimum fiber angles have been calculated analytically by using MATLAB program. Numerical models have been carried out by using Finite Element Method program ABAQUS. Results from analytical and numerical analyses are also compared.

Keywords: buckling, composite, cylindrical shell, finite element, compression, torsion, MATLAB, optimization

Procedia PDF Downloads 579
7110 Identification of the Usage of Some Special Places in the Prehistoric Site of Tapeh Zagheh through Multi-Elemental Chemical Analysis of the Soil Samples

Authors: Iraj Rezaei, Kamal Al Din Niknami

Abstract:

Tapeh Zagheh is an important prehistoric site located in the central plateau of Iran, which has settlement layers of the Neolithic and Chalcolithic periods. For this research, 38 soil samples were collected from different parts of the site, as well as two samples from its outside as witnesses. Then the samples were analyzed by XRF. The purpose of this research was to identify some places with special usage for human activities in Tapeh Zagheh by measuring the amount of some special elements in the soil. The result of XRF analysis shows a significant amount of P and K in samples No.3 (fourth floor) and No.4 (third floor), probably due to certain activities such as food preparation and consumption. Samples No.9 and No.10 can be considered suitable examples of the hearths of the prehistoric period in the central plateau of Iran. The color of these samples was completely darkened due to the presence of ash, charcoal, and burnt materials. According to the XRF results, the soil of these hearths has very high amounts of elements such as P, Ca, Mn, S, K, and significant amounts of Ti, Fe, and Na. In addition, the elemental composition of sample No. 14, which was taken from a home waster, also has very high amounts of P, Mn, Mg, Ti, and Fe and high amounts of K and Ca. Sample No. 11, which is related to soil containing large amounts of waster of the kiln, along with a very strong increase in Cl and Na, the amount of elements such as K, Mg, and S has also increased significantly. It seems that the reason for the increase of elements such as Ti and Fe in some Tapeh Zagheh floors (for example, samples number 1, 2, 3, 4, 5) was the use of materials such as ocher mud or fire ash in the composition of these floors. Sample No. 13, which was taken from an oven located in the FIX trench, has very high amounts of Mn, Ti, and Fe and high amounts of P and Ca. Sample No. 15, which is related to House No. VII (probably related to a pen or a place where animals were kept) has much more phosphate compared to the control samples, which is probably due to the addition of animal excrement and urine to the soil. Sample No. 29 was taken from the north of the industrial area of Zagheh village (place of pottery kilns). The very low amount of index elements in sample No. 29 shows that the industrial activities did not extend to the mentioned point, and therefore, the range of this point can be considered as the boundary between the residential part of the Zagheh village and its industrial part.

Keywords: prehistory, multi-elemental analysis, Tapeh Zagheh, XRF

Procedia PDF Downloads 86
7109 The Effect of Choke on the Efficiency of Coaxial Antenna for Percutaneous Microwave Coagulation Therapy for Hepatic Tumor

Authors: Surita Maini

Abstract:

There are many perceived advantages of microwave ablation have driven researchers to develop innovative antennas to effectively treat deep-seated, non-resectable hepatic tumors. In this paper a coaxial antenna with a miniaturized sleeve choke has been discussed for microwave interstitial ablation therapy, in order to reduce backward heating effects irrespective of the insertion depth into the tissue. Two dimensional Finite Element Method (FEM) is used to simulate and measure the results of miniaturized sleeve choke antenna. This paper emphasizes the importance of factors that can affect simulation accuracy, which include mesh resolution, surface heating and reflection coefficient. Quarter wavelength choke effectiveness has been discussed by comparing it with the unchoked antenna with same dimensions.

Keywords: microwave ablation, tumor, finite element method, coaxial slot antenna, coaxial dipole antenna

Procedia PDF Downloads 348
7108 Assessment of Sustainability Initiatives at Applied Science University in Bahrain

Authors: Bayan Ahmed Alsaffar

Abstract:

The aim of this study is to assess the sustainability initiatives at Applied Sciences University (ASU) in Bahrain using a mixed-methods approach based on students, staff, and faculty perceptions. The study involves a literature review, interviews with faculty members and students, and a survey of ASU's level of sustainability in education, research, operations, administration, and finance that depended on the Sustainability Tracking, Assessment & Rating System (STARS). STARS is a tool used to evaluate the sustainability performance of higher education institutions. The study concludes that a mixed-methods approach can provide a powerful tool for assessing sustainability initiatives at ASU and ultimately lead to insights that can inform effective strategies for improving sustainability efforts. The current study contributes to the field of sustainability in universities and highlights the importance of user engagement and awareness for achieving sustainability goals.

Keywords: environment, initiatives, society, sustainability, STARS, university

Procedia PDF Downloads 72
7107 Lead and Cadmium Residue Determination in Spices Available in Tripoli City Markets (Libya)

Authors: Mohamed Ziyaina, Ahlam Rajab, Khadija Alkhweldi, Wafia Algami, Omer Al. Toumi, Barbara Rasco1

Abstract:

In recent years, there has been a growing interest in monitoring heavy metal contamination in food products. Spices can improve the taste of food and can also be a source of many bioactive compounds but can unfortunately, also be contaminated with dangerous materials, potentially heavy metals. This study was conducted to investigate lead (Pb) and cadmium (Cd) contamination in selected spices commonly consumed in Libya including Capsicum frutescens (chili pepper) Piper nigrum, (black pepper), Curcuma longa (turmeric), and mixed spices (HRARAT) which consist of a combination of: Alpinia officinarum, Zingiber officinale and Cinnamomum zeylanicum. Spices were analyzed by atomic absorption spectroscopy after digestion with nitric acid/hydrogen peroxide. The highest level of lead (Pb) was found in Curcuma longa and Capsicum frutescens in wholesale markets (1.05 ± 0.01 mg/kg, 0.96 ± 0.06 mg/kg). Cadmium (Cd) levels exceeded FAO/WHO permissible limit. Curcuma longa and Piper nigrum sold in retail markets had a high concentration of Cd (0.36 ± 0.09, 0.35 ± 0.07 mg/kg, respectively) followed by (0.32 ± 0.04 mg/kg) for Capsicum frutescens. Mixed spices purchased from wholesale markets also had high levels of Cd (0.31 ± 0.08 mg/kg). Curcuma longa and Capsicum frutescens may pose a food safety risk due to high levels of lead and cadmium. Cadmium levels exceeded FAO/WHO recommendations (0.2 ppm) for Piper nigrum, Curcuma longa, and mixed spices (HRARAT).

Keywords: heavy metals, lead, cadmium determination, spice

Procedia PDF Downloads 631
7106 Three-Dimensional Finite Element Analysis of Geogrid-Reinforced Piled Embankments on Soft Clay

Authors: Mahmoud Y. Shokry, Rami M. El-Sherbiny

Abstract:

This paper aims to highlight the role of some parameters that may be of a noticeable impact on numerical analysis/design of embankments. It presents the results of a three-dimensional (3-D) finite element analysis of a monitored earth embankment that was constructed on soft clay formation stabilized by cast in-situ piles using software PLAXIS 3D. A comparison between the predicted and the monitored responses is presented to assess the adequacy of the adopted numerical model. The model was used in the targeted parametric study. Moreover, a comparison was performed between the results of the 3-D analyses and the analytical solutions. This paper concluded that the effect of using mono pile caps led to decrease both the total and differential settlement and increased the efficiency of the piled embankment system. The study of using geogrids revealed that it can contribute in decreasing the settlement and maximizing the part of the embankment load transferred to piles. Moreover, it was found that increasing the stiffness of the geogrids provides higher values of tensile forces and hence has more effective influence on embankment load carried by piles rather than using multi-number of layers with low values of geogrid stiffness. The efficiency of the piled embankments system was also found to be greater when higher embankments are used rather than the low height embankments. The comparison between the numerical 3-D model and the theoretical design methods revealed that many analytical solutions are conservative and non-accurate rather than the 3-D finite element numerical models.

Keywords: efficiency, embankment, geogrids, soft clay

Procedia PDF Downloads 316
7105 Optimization of Three Phase Squirrel Cage Induction Motor

Authors: Tunahan Sapmaz, Harun Etçi, İbrahim Şenol, Yasemin Öner

Abstract:

Rotor bar dimensions have a great influence on the air-gap magnetic flux density. Therefore, poor selection of this parameter during the machine design phase causes the air-gap magnetic flux density to be distorted. Thus, it causes noise, torque fluctuation, and losses in the induction motor. On the other hand, the change in rotor bar dimensions will change the resistance of the conductor, so the current will be affected. Therefore, the increase and decrease of rotor bar current affect operation, starting torque, and efficiency. The aim of this study is to examine the effect of rotor bar dimensions on the electromagnetic performance criteria of the induction motor. Modeling of the induction motor is done by the finite element method (FEM), which is a very powerful tool. In FEM, the results generally focus on performance criteria such as torque, torque fluctuation, efficiency, and current.

Keywords: induction motor, finite element method, optimization, rotor bar

Procedia PDF Downloads 118
7104 Design and Simulation of a Double-Stator Linear Induction Machine with Short Squirrel-Cage Mover

Authors: David Rafetseder, Walter Bauer, Florian Poltschak, Wolfgang Amrhein

Abstract:

A flat double-stator linear induction machine (DSLIM) with a short squirrel-cage mover is designed for high thrust force at moderate speed < 5m/s. The performance and motor parameters are determined on the basis of a 2D time-transient simulation with the finite element (FE) software Maxwell 2015. Design guidelines and transformation rules for space vector theory of the LIM are presented. Resulting thrust calculated by flux and current vectors is compared with the FE results showing good coherence and reduced noise. The parameters of the equivalent circuit model are obtained.

Keywords: equivalent circuit model, finite element model, linear induction motor, space vector theory

Procedia PDF Downloads 557
7103 Effectiveness of Earthing System in Vertical Configurations

Authors: S. Yunus, A. Suratman, N. Mohamad Nor, M. Othman

Abstract:

This paper presents the measurement and simulation results by Finite Element Method (FEM) for earth resistance (RDC) for interconnected vertical ground rod configurations. The soil resistivity was measured using the Wenner four-pin Method, and RDC was measured using the Fall of Potential (FOP) method, as outlined in the standard. Genetic Algorithm (GA) is employed to interpret the soil resistivity to that of a 2-layer soil model. The same soil resistivity data that were obtained by Wenner four-pin method were used in FEM for simulation. This paper compares the results of RDC obtained by FEM simulation with the real measurement at field site. A good agreement was seen for RDC obtained by measurements and FEM. This shows that FEM is a reliable software to be used for design of earthing systems. It is also found that the parallel rod system has a better performance compared to a similar setup using a grid layout.

Keywords: earthing system, earth electrodes, finite element method, genetic algorithm, earth resistances

Procedia PDF Downloads 101
7102 Changes in Serum Neopterin in Workers Exposed to Different Mineral Dust

Authors: Gospodinka Prakova, Pavlina Gidikova, Gergana Sandeva, Kamelia Haracherova, Emil Slavov

Abstract:

Neopterin was demonstrated to be a sensitive marker of cell-mediated immune reactions which plays a key role in the interaction of monocyte / macrophage activation. The purpose of this work was to investigate changes in serum neopterin in workers exposed to different composition of mineral dust. Material and Methods: Serum neopterin was studied in 193 exposed workers, divided into three groups, depending on the mineral dust and content of the quartz in the respirable fraction. The I-st group-coal dust containing less than 2% free crystalline silica (n=44), II-nd group-coal dust containing over 2% free crystalline silica (n=94) and the III-rd group-mixed dust with corundum and carborundum (n=55). The control group was composed of 21 individuals without exposure to dust. Serum neopterin was investigated by Elisa method in ng/ml according to the instructions of the manufacturer. Results and Discussion: It was found significantly higher level of serum neopterin in exposed workers of mineral dust (2,10 ± 0,62 ng / ml), compared with that of the control group (1,10 ± 0,85 ng/ml; p < 0,05). Neopterin levels in workers exposed to coal dust (1,87 ± 0,42 ng / ml-I-st and 3,32 ± 0,77 ng / ml-II-nd group) were significantly higher compared with those exposed to a mixed dust (1,31±0,68 mg / ml-third) and control group (p < 0,05). No significant difference in serum neopterin when exposed to a mixed dust composed of corundum and carborundum (III-rd) and a control group. Conclusion: The results of this study indicate activates a cell-mediated immune response when exposed to a mineral dust. The level of that activation depends mainly on the composition of the dust and is significantly highest in workers exposed to coal dust.

Keywords: mineral dust, neopterin, occupational exposure, respirable crystalline silica

Procedia PDF Downloads 260
7101 Analysis Rotor Bearing System Dynamic Interaction with Bearing Supports

Authors: V. T. Ngo, D. M. Xie

Abstract:

Frequently, in the design of machines, some of parameters that directly affect the rotor dynamics of the machines are not accurately known. In particular, bearing stiffness support is one such parameter. One of the most basic principles to grasp in rotor dynamics is the influence of the bearing stiffness on the critical speeds and mode shapes associated with a rotor-bearing system. Taking a rig shafting as an example, this paper studies the lateral vibration of the rotor with multi-degree-of-freedom by using Finite Element Method (FEM). The FEM model is created and the eigenvalues and eigenvectors are calculated and analyzed to find natural frequencies, critical speeds, mode shapes. Then critical speeds and mode shapes are analyzed by set bearing stiffness changes. The model permitted to identify the critical speeds and bearings that have an important influence on the vibration behavior.

Keywords: lateral vibration, finite element method, rig shafting, critical speed

Procedia PDF Downloads 331
7100 Parameters Adjustment of the Modified UBCSand Constitutive Model for the Potentially Liquefiable Sands of Santiago de Cali-Colombia

Authors: Daniel Rosero, Johan S. Arana, Sebastian Arango, Alejandro Cruz, Isabel Gomez-Gutierrez, Peter Thomson

Abstract:

Santiago de Cali is located in the southwestern Colombia in a high seismic hazard zone. About 50% of the city is on the banks of the Cauca River, which is the second most important hydric affluent in the country and whose alluvial deposits contain potentially liquefiable sands. Among the methods used to study a site's liquefaction potential is the finite elements method which use constitutive models to simulate the soil response for different load types. Among the different constitutive models, the Modified UBCSand stands out to study the seismic behavior of sands, and especially the liquefaction phenomenon. In this paper, the dynamic behavior of a potentially liquefiable sand of Santiago de Cali is studied by cyclic triaxial and CPTu tests. Subsequently, the behavior of the sand is simulated using the Modified UBCSand constitutive model, whose parameters are calibrated using the results of cyclic triaxial and CPTu tests. The above with the aim of analyze the constitutive model applicability for studying the geotechnical problems associated to liquefaction in the city.

Keywords: constitutive model, cyclic triaxial test, dynamic behavior, liquefiable sand, modified ubcsand

Procedia PDF Downloads 265
7099 Integration of Load Introduction Elements into Fabrics

Authors: Jan Schwennen, Harlad Schmid, Juergen Fleischer

Abstract:

Lightweight design plays an important role in the automotive industry. Especially the combination of metal and CFRP shows great potential for future vehicle concepts. This requires joining technologies that are cost-efficient and appropriate for the materials involved. Previous investigations show that integrating load introduction elements during CFRP part manufacturing offers great advantages in mechanical performance. However, it is not yet clear how to integrate the elements in an automated process without harming the fiber structure. In this paper, a test rig is build up to investigate the effect of different parameters during insert integration experimentally. After a short description of the experimental equipment, preliminary tests are performed to determine a set of important process parameters. Based on that, the planning of design of experiments is given. The interpretation and evaluation of the test results show that with a minimization of the insert diameter and the peak angle less harm on the fiber structure can be achieved. Furthermore, a maximization of the die diameter above the insert shows a positive effect on the fiber structure. At the end of this paper, a theoretical description of alternative peak shaping is given and then the results get validated on the basis of an industrial reference part.

Keywords: CFRP, fabrics, insert, load introduction element, integration

Procedia PDF Downloads 230
7098 Function Approximation with Radial Basis Function Neural Networks via FIR Filter

Authors: Kyu Chul Lee, Sung Hyun Yoo, Choon Ki Ahn, Myo Taeg Lim

Abstract:

Recent experimental evidences have shown that because of a fast convergence and a nice accuracy, neural networks training via extended Kalman filter (EKF) method is widely applied. However, as to an uncertainty of the system dynamics or modeling error, the performance of the method is unreliable. In order to overcome this problem in this paper, a new finite impulse response (FIR) filter based learning algorithm is proposed to train radial basis function neural networks (RBFN) for nonlinear function approximation. Compared to the EKF training method, the proposed FIR filter training method is more robust to those environmental conditions. Furthermore, the number of centers will be considered since it affects the performance of approximation.

Keywords: extended Kalman filter, classification problem, radial basis function networks (RBFN), finite impulse response (FIR) filter

Procedia PDF Downloads 449
7097 Analysis of Shallow Foundation Using Conventional and Finite Element Approach

Authors: Sultan Al Shafian, Mozaher Ul Kabir, Khondoker Istiak Ahmad, Masnun Abrar, Mahfuza Khanum, Hossain M. Shahin

Abstract:

For structural evaluation of shallow foundation, the modulus of subgrade reaction is one of the most widely used and accepted parameter for its ease of calculations. To determine this parameter, one of the most common field method is Plate Load test method. In this field test method, the subgrade modulus is considered for a specific location and according to its application, it is assumed that the displacement occurred in one place does not affect other adjacent locations. For this kind of assumptions, the modulus of subgrade reaction sometimes forced the engineers to overdesign the underground structure, which eventually results in increasing the cost of the construction and sometimes failure of the structure. In the present study, the settlement of a shallow foundation has been analyzed using both conventional and numerical analysis. Around 25 plate load tests were conducted on a sand fill site in Bangladesh to determine the Modulus of Subgrade reaction of ground which is later used to design a shallow foundation considering different depth. After the collection of the field data, the field condition was appropriately simulated in a finite element software. Finally results obtained from both the conventional and numerical approach has been compared. A significant difference has been observed in the case of settlement while comparing the results. A proper correlation has also been proposed at the end of this research work between the two methods of in order to provide the most efficient way to calculate the subgrade modulus of the ground for designing the shallow foundation.

Keywords: modulus of subgrade reaction, shallow foundation, finite element analysis, settlement, plate load test

Procedia PDF Downloads 172
7096 Symmetrical In-Plane Resonant Gyroscope with Decoupled Modes

Authors: Shady Sayed, Samer Wagdy, Ahmed Badawy, Moutaz M. Hegaze

Abstract:

A symmetrical single mass resonant gyroscope is discussed in this paper. The symmetrical design allows matched resonant frequencies for driving and sensing vibration modes, which leads to amplifying the sensitivity of the gyroscope by the mechanical quality factor of the sense mode. It also achieves decoupled vibration modes for getting a low zero-rate output shift and more stable operation environment. A new suspension beams design is developed to get a symmetrical gyroscope with matched and decoupled modes at the same time. Finite element simulations are performed using ANSYS software package to verify the theoretical calculations. The gyroscope is fabricated from aluminum alloy 2024 substrate, the measured drive and sense resonant frequencies of the fabricated model are matched and equal 81.4 Hz with 5.7% error from the simulation results.

Keywords: decoupled mode shapes, resonant sensor, symmetrical gyroscope, finite element simulation

Procedia PDF Downloads 303
7095 Numerical Modelling of Effective Diffusivity in Bone Tissue Engineering

Authors: Ayesha Sohail, Khadija Maqbool, Anila Asif, Haroon Ahmad

Abstract:

The field of tissue engineering is an active area of research. Bone tissue engineering helps to resolve the clinical problems of critical size and non-healing defects by the creation of man-made bone tissue. We will design and validate an efficient numerical model, which will simulate the effective diffusivity in bone tissue engineering. Our numerical model will be based on the finite element analysis of the diffusion-reaction equations. It will have the ability to optimize the diffusivity, even at multi-scale, with the variation of time. It will also have a special feature, with which we will not only be able to predict the oxygen, glucose and cell density dynamics, more accurately, but will also sort the issues arising due to anisotropy. We will fix these problems with the help of modifying the governing equations, by selecting appropriate spatio-temporal finite element schemes, by adaptive grid refinement strategy and by transient analysis.

Keywords: scaffolds, porosity, diffusion, transient analysis

Procedia PDF Downloads 531
7094 Bending Behaviour of Fiber Reinforced Polymer Composite Stiffened Panel Subjected to Transverse Loading

Authors: S. Kumar, Rajesh Kumar, S. Mandal

Abstract:

Fiber Reinforced Polymer (FRP) is gaining popularity in many branch of engineering and various applications due to their light weight, specific strength per unit weight and high stiffness in particular direction. As the strength of material is high it can be used in thin walled structure as industrial roof sheds satisfying the strength constraint with comparatively lesser thickness. Analysis of bending behavior of FRP panel has been done here with variation in oriented angle of stiffener panels, fiber orientation, aspect ratio and boundary conditions subjected to transverse loading by using Finite Element Method. The effect of fiber orientation and thickness of ply has also been studied to determine the minimum thickness of ply for optimized section of stiffened FRP panel.

Keywords: bending behavior, fiber reinforced polymer, finite element method, orientation of stiffeners

Procedia PDF Downloads 382
7093 Chemical and Vibrational Nonequilibrium Hypersonic Viscous Flow around an Axisymmetric Blunt Body

Authors: Rabah Haoui

Abstract:

Hypersonic flows around spatial vehicles during their reentry phase in planetary atmospheres are characterized by intense aerothermodynamics phenomena. The aim of this work is to analyze high temperature flows around an axisymmetric blunt body taking into account chemical and vibrational non-equilibrium for air mixture species and the no slip condition at the wall. For this purpose, the Navier-Stokes equations system is resolved by the finite volume methodology to determine the flow parameters around the axisymmetric blunt body especially at the stagnation point and in the boundary layer along the wall of the blunt body. The code allows the capture of shock wave before a blunt body placed in hypersonic free stream. The numerical technique uses the Flux Vector Splitting method of Van Leer. CFL coefficient and mesh size level are selected to ensure the numerical convergence.

Keywords: hypersonic flow, viscous flow, chemical kinetic, dissociation, finite volumes, frozen and non-equilibrium flow

Procedia PDF Downloads 451
7092 Application of Finite Volume Method for Numerical Simulation of Contaminant Transfer in a Two-Dimensional Reservoir

Authors: Atousa Ataieyan, Salvador A. Gomez-Lopera, Gennaro Sepede

Abstract:

Today, due to the growing urban population and consequently, the increasing water demand in cities, the amount of contaminants entering the water resources is increasing. This can impose harmful effects on the quality of the downstream water. Therefore, predicting the concentration of discharged pollutants at different times and distances of the interested area is of high importance in order to carry out preventative and controlling measures, as well as to avoid consuming the contaminated water. In this paper, the concentration distribution of an injected conservative pollutant in a square reservoir containing four symmetric blocks and three sources using Finite Volume Method (FVM) is simulated. For this purpose, after estimating the flow velocity, classical Advection-Diffusion Equation (ADE) has been discretized over the studying domain by Backward Time- Backward Space (BTBS) scheme. Then, the discretized equations for each node have been derived according to the initial condition, boundary conditions and point contaminant sources. Finally, taking into account the appropriate time step and space step, a computational code was set up in MATLAB. Contaminant concentration was then obtained at different times and distances. Simulation results show how using BTBS differentiating scheme and FVM as a numerical method for solving the partial differential equation of transport is an appropriate approach in the case of two-dimensional contaminant transfer in an advective-diffusive flow.

Keywords: BTBS differentiating scheme, contaminant concentration, finite volume, mass transfer, water pollution

Procedia PDF Downloads 127