Search results for: light intensity
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 5329

Search results for: light intensity

4279 Time and Kinematics of Moving Bodies

Authors: Muhammad Omer Farooq Saeed

Abstract:

The purpose of the proposal is to find out what time actually is! And to understand the natural phenomenon of the behavior of time and light corresponding to the motion of the bodies at relatively high speeds. The utmost concern of the paper is to deal with the possible demerits in the equations of relativity, thereby providing some valuable extensions in those equations and concepts. The idea used develops the most basic conception of the relative motion of the body with respect to space and a real understanding of time and the variation of energy of the body in different frames of reference. The results show the development of a completely new understanding of time, relative motion and energy, along with some extensions in the equations of special relativity most importantly the time dilation and the mass-energy relationship that will explain all frames of a body, all in one go. The proposal also raises serious questions on the validity of the “Principle of Equivalence” on which the General Relativity is based, most importantly a serious case of the bending light that eventually goes against its own governing concepts of space-time being proposed in the theory. The results also predict the existence of a completely new field that explains the fact just how and why bodies acquire energy in space-time. This field explains the production of gravitational waves based on time. All in all, this proposal challenges the formulas and conceptions of Special and General Relativity, respectively.

Keywords: time, relative motion, energy, speed, frame of reference, photon, curvature, space-time, time –differentials

Procedia PDF Downloads 69
4278 Analytical Technique for Definition of Internal Forces in Links of Robotic Systems and Mechanisms with Statically Indeterminate and Determinate Structures Taking into Account the Distributed Dynamical Loads and Concentrated Forces

Authors: Saltanat Zhilkibayeva, Muratulla Utenov, Nurzhan Utenov

Abstract:

The distributed inertia forces of complex nature appear in links of rod mechanisms within the motion process. Such loads raise a number of problems, as the problems of destruction caused by a large force of inertia; elastic deformation of the mechanism can be considerable, that can bring the mechanism out of action. In this work, a new analytical approach for the definition of internal forces in links of robotic systems and mechanisms with statically indeterminate and determinate structures taking into account the distributed inertial and concentrated forces is proposed. The relations between the intensity of distributed inertia forces and link weight with geometrical, physical and kinematic characteristics are determined in this work. The distribution laws of inertia forces and dead weight make it possible at each position of links to deduce the laws of distribution of internal forces along the axis of the link, in which loads are found at any point of the link. The approximation matrixes of forces of an element under the action of distributed inertia loads with the trapezoidal intensity are defined. The obtained approximation matrixes establish the dependence between the force vector in any cross-section of the element and the force vector in calculated cross-sections, as well as allow defining the physical characteristics of the element, i.e., compliance matrix of discrete elements. Hence, the compliance matrixes of an element under the action of distributed inertial loads of trapezoidal shape along the axis of the element are determined. The internal loads of each continual link are unambiguously determined by a set of internal loads in its separate cross-sections and by the approximation matrixes. Therefore, the task is reduced to the calculation of internal forces in a final number of cross-sections of elements. Consequently, it leads to a discrete model of elastic calculation of links of rod mechanisms. The discrete model of the elements of mechanisms and robotic systems and their discrete model as a whole are constructed. The dynamic equilibrium equations for the discrete model of the elements are also received in this work as well as the equilibrium equations of the pin and rigid joints expressed through required parameters of internal forces. Obtained systems of dynamic equilibrium equations are sufficient for the definition of internal forces in links of mechanisms, which structure is statically definable. For determination of internal forces of statically indeterminate mechanisms (in the way of determination of internal forces), it is necessary to build a compliance matrix for the entire discrete model of the rod mechanism, that is reached in this work. As a result by means of developed technique the programs in the MAPLE18 system are made and animations of the motion of the fourth class mechanisms of statically determinate and statically indeterminate structures with construction on links the intensity of cross and axial distributed inertial loads, the bending moments, cross and axial forces, depending on kinematic characteristics of links are obtained.

Keywords: distributed inertial forces, internal forces, statically determinate mechanisms, statically indeterminate mechanisms

Procedia PDF Downloads 216
4277 Glimpses into the History of Makkah in the Light of Archaeological Finds

Authors: Heba Aboul-Enein

Abstract:

The blessed Mecca (Makkah) has been attacked as a city without a pre-Islamic history. Many claims have been posited denying the historicity of this holy city, and mythicizing Arabic historical records. Hence, the current paper attempted to shed light on this controversial history of Makkah. To achieve the intended objective, the study recoursed to archaeological, historical, and linguistic evidence, to prove that the holy city existed since the dawn of human history. The data under study include the results of recent excavations; archaeological surveys in Saudi Arabia, academic works of archaeologists, newspaper reports of the latest archaeological discoveries, and the findings of Saudi explorers. In addition, the study examined ancient and contemporary references; western accounts of Makkah, the bible, Jewish, Christian, Islamic, and Arabic references, in an effort to reconcile these texts with the archeological findings. The paper also reviewed the latest results of aerial archeology of the region. The study proved based on archaeological finds, and contrary to fallacious claims, that Makkah is an ancient city that existed and was inhabited by humans in varied historical eras.

Keywords: aerial archaeology, archaeological finds in the Makkan region, archaeological surveys, Western, Jewish and Islamic accounts of Makkah

Procedia PDF Downloads 474
4276 Inverse Saturable Absorption in Non-linear Amplifying Loop Mirror Mode-Locked Fiber Laser

Authors: Haobin Zheng, Xiang Zhang, Yong Shen, Hongxin Zou

Abstract:

The research focuses on mode-locked fiber lasers with a non-linear amplifying loop mirror (NALM). Although these lasers have shown potential, they still have limitations in terms of low repetition rate. The self-starting of mode-locking in NALM is influenced by the cross-phase modulation (XPM) effect, which has not been thoroughly studied. The aim of this study is two-fold. First, to overcome the difficulties associated with increasing the repetition rate in mode-locked fiber lasers with NALM. Second, to analyze the influence of XPM on self-starting of mode-locking. The power distributions of two counterpropagating beams in the NALM and the differential non-linear phase shift (NPS) accumulations are calculated. The analysis is conducted from the perspective of NPS accumulation. The differential NPSs for continuous wave (CW) light and pulses in the fiber loop are compared to understand the inverse saturable absorption (ISA) mechanism during pulse formation in NALM. The study reveals a difference in differential NPSs between CW light and pulses in the fiber loop in NALM. This difference leads to an ISA mechanism, which has not been extensively studied in artificial saturable absorbers. The ISA in NALM provides an explanation for experimentally observed phenomena, such as active mode-locking initiation through tapping the fiber or fine-tuning light polarization. These findings have important implications for optimizing the design of NALM and reducing the self-starting threshold of high-repetition-rate mode-locked fiber lasers. This study contributes to the theoretical understanding of NALM mode-locked fiber lasers by exploring the ISA mechanism and its impact on self-starting of mode-locking. The research fills a gap in the existing knowledge regarding the XPM effect in NALM and its role in pulse formation. This study provides insights into the ISA mechanism in NALM mode-locked fiber lasers and its role in selfstarting of mode-locking. The findings contribute to the optimization of NALM design and the reduction of self-starting threshold, which are essential for achieving high-repetition-rate operation in fiber lasers. Further research in this area can lead to advancements in the field of mode-locked fiber lasers with NALM.

Keywords: inverse saturable absorption, NALM, mode-locking, non-linear phase shift

Procedia PDF Downloads 100
4275 Synthesis, Characterization and Photocatalytic Performance of Visible Light Induced Materials

Authors: M. Muneer, Waseem Raza

Abstract:

Nano-crystalline materials of pure and metal-doped semiconducting materials have been successfully synthesized using sol gel and hydrothermal methods. The prepared materials were characterized by standard analytical techniques, i.e., XRD, SEM, EDX, UV–vis Spectroscopy and FTIR. The (XRD) analysis showed that the obtained particles are present in partial crystalline nature and exhibit no other impurity phase. The EDX and (SEM) images depicted that metals have been successfully loaded on the surface of the semiconductor. FTIR showed an additional absorption band at 910 cm−1, characteristic of absorption band indicating the incorporation of dopant into the lattice in addition to a broad and strong absorption band in the region of 410–580 cm−1 due to metal–O stretching. The UV–vis absorption spectra of synthesized particles indicate that the doping of metals into the lattice shift the absorption band towards the visible region. Thermal analysis, measurement of the synthesized sample showed that the thermal stability of pure semiconducting material is decreased due to increase in dopant concentration. The photocatalytic activity of the synthesized particles was studied by measuring the change in concentration of three different chromophoric dyes as a function of irradiation time. The photocatalytic activity of doped materials were found to increase with increase in dopant concentration.

Keywords: photocatalysis, metal doped semicondcutors, dye degradation, visible light active materials

Procedia PDF Downloads 433
4274 Quantum Mechanics as A Limiting Case of Relativistic Mechanics

Authors: Ahmad Almajid

Abstract:

The idea of unifying quantum mechanics with general relativity is still a dream for many researchers, as physics has only two paths, no more. Einstein's path, which is mainly based on particle mechanics, and the path of Paul Dirac and others, which is based on wave mechanics, the incompatibility of the two approaches is due to the radical difference in the initial assumptions and the mathematical nature of each approach. Logical thinking in modern physics leads us to two problems: - In quantum mechanics, despite its success, the problem of measurement and the problem of wave function interpretation is still obscure. - In special relativity, despite the success of the equivalence of rest-mass and energy, but at the speed of light, the fact that the energy becomes infinite is contrary to logic because the speed of light is not infinite, and the mass of the particle is not infinite too. These contradictions arise from the overlap of relativistic and quantum mechanics in the neighborhood of the speed of light, and in order to solve these problems, one must understand well how to move from relativistic mechanics to quantum mechanics, or rather, to unify them in a way different from Dirac's method, in order to go along with God or Nature, since, as Einstein said, "God doesn't play dice." From De Broglie's hypothesis about wave-particle duality, Léon Brillouin's definition of the new proper time was deduced, and thus the quantum Lorentz factor was obtained. Finally, using the Euler-Lagrange equation, we come up with new equations in quantum mechanics. In this paper, the two problems in modern physics mentioned above are solved; it can be said that this new approach to quantum mechanics will enable us to unify it with general relativity quite simply. If the experiments prove the validity of the results of this research, we will be able in the future to transport the matter at speed close to the speed of light. Finally, this research yielded three important results: 1- Lorentz quantum factor. 2- Planck energy is a limited case of Einstein energy. 3- Real quantum mechanics, in which new equations for quantum mechanics match and exceed Dirac's equations, these equations have been reached in a completely different way from Dirac's method. These equations show that quantum mechanics is a limited case of relativistic mechanics. At the Solvay Conference in 1927, the debate about quantum mechanics between Bohr, Einstein, and others reached its climax, while Bohr suggested that if particles are not observed, they are in a probabilistic state, then Einstein said his famous claim ("God does not play dice"). Thus, Einstein was right, especially when he didn't accept the principle of indeterminacy in quantum theory, although experiments support quantum mechanics. However, the results of our research indicate that God really does not play dice; when the electron disappears, it turns into amicable particles or an elastic medium, according to the above obvious equations. Likewise, Bohr was right also, when he indicated that there must be a science like quantum mechanics to monitor and study the motion of subatomic particles, but the picture in front of him was blurry and not clear, so he resorted to the probabilistic interpretation.

Keywords: lorentz quantum factor, new, planck’s energy as a limiting case of einstein’s energy, real quantum mechanics, new equations for quantum mechanics

Procedia PDF Downloads 74
4273 Principal Component Analysis Combined Machine Learning Techniques on Pharmaceutical Samples by Laser Induced Breakdown Spectroscopy

Authors: Kemal Efe Eseller, Göktuğ Yazici

Abstract:

Laser-induced breakdown spectroscopy (LIBS) is a rapid optical atomic emission spectroscopy which is used for material identification and analysis with the advantages of in-situ analysis, elimination of intensive sample preparation, and micro-destructive properties for the material to be tested. LIBS delivers short pulses of laser beams onto the material in order to create plasma by excitation of the material to a certain threshold. The plasma characteristics, which consist of wavelength value and intensity amplitude, depends on the material and the experiment’s environment. In the present work, medicine samples’ spectrum profiles were obtained via LIBS. Medicine samples’ datasets include two different concentrations for both paracetamol based medicines, namely Aferin and Parafon. The spectrum data of the samples were preprocessed via filling outliers based on quartiles, smoothing spectra to eliminate noise and normalizing both wavelength and intensity axis. Statistical information was obtained and principal component analysis (PCA) was incorporated to both the preprocessed and raw datasets. The machine learning models were set based on two different train-test splits, which were 70% training – 30% test and 80% training – 20% test. Cross-validation was preferred to protect the models against overfitting; thus the sample amount is small. The machine learning results of preprocessed and raw datasets were subjected to comparison for both splits. This is the first time that all supervised machine learning classification algorithms; consisting of Decision Trees, Discriminant, naïve Bayes, Support Vector Machines (SVM), k-NN(k-Nearest Neighbor) Ensemble Learning and Neural Network algorithms; were incorporated to LIBS data of paracetamol based pharmaceutical samples, and their different concentrations on preprocessed and raw dataset in order to observe the effect of preprocessing.

Keywords: machine learning, laser-induced breakdown spectroscopy, medicines, principal component analysis, preprocessing

Procedia PDF Downloads 86
4272 Utilization of Composite Components for Land Vehicle Systems: A Review

Authors: Kivilcim Ersoy, Cansu Yazganarikan

Abstract:

In recent years, composite materials are more frequently utilized not only in aviation but also in automotive industry due to its high strength to weight ratio, fatigue and corrosion resistances as well as better performances in specific environments. The market demand also favors lightweight design for wheeled and tracked armored vehicles due to the increased demand for land and amphibious mobility features. This study represents the current application areas and trends in automotive, bus and armored land vehicles industries. In addition, potential utilization areas of fiber composite and hybrid material concepts are being addressed. This work starts with a survey of current applications and patent trends of composite materials in automotive and land vehicle industries. An intensive investigation is conducted to determine the potential of these materials for application in land vehicle industry, where small series production dominates and challenging requirements are concerned. In the end, potential utilization areas for combat land vehicle systems are offered. By implementing these light weight solutions with alternative materials and design concepts, it is possible to achieve drastic weight reduction, which will enable both land and amphibious mobility without unyielding stiffness and survivability capabilities.

Keywords: land vehicle, composite, light-weight design, armored vehicle

Procedia PDF Downloads 463
4271 Application of Data Driven Based Models as Early Warning Tools of High Stream Flow Events and Floods

Authors: Mohammed Seyam, Faridah Othman, Ahmed El-Shafie

Abstract:

The early warning of high stream flow events (HSF) and floods is an important aspect in the management of surface water and rivers systems. This process can be performed using either process-based models or data driven-based models such as artificial intelligence (AI) techniques. The main goal of this study is to develop efficient AI-based model for predicting the real-time hourly stream flow (Q) and apply it as early warning tool of HSF and floods in the downstream area of the Selangor River basin, taken here as a paradigm of humid tropical rivers in Southeast Asia. The performance of AI-based models has been improved through the integration of the lag time (Lt) estimation in the modelling process. A total of 8753 patterns of Q, water level, and rainfall hourly records representing one-year period (2011) were utilized in the modelling process. Six hydrological scenarios have been arranged through hypothetical cases of input variables to investigate how the changes in RF intensity in upstream stations can lead formation of floods. The initial SF was changed for each scenario in order to include wide range of hydrological situations in this study. The performance evaluation of the developed AI-based model shows that high correlation coefficient (R) between the observed and predicted Q is achieved. The AI-based model has been successfully employed in early warning throughout the advance detection of the hydrological conditions that could lead to formations of floods and HSF, where represented by three levels of severity (i.e., alert, warning, and danger). Based on the results of the scenarios, reaching the danger level in the downstream area required high RF intensity in at least two upstream areas. According to results of applications, it can be concluded that AI-based models are beneficial tools to the local authorities for flood control and awareness.

Keywords: floods, stream flow, hydrological modelling, hydrology, artificial intelligence

Procedia PDF Downloads 247
4270 Language Rights and the Challenge of National Integration: The Nigerian Experience

Authors: Odewumi Olatunde, Adegun Sunday

Abstract:

Linguistic diversity is seen to complicate attempts to build a stable and cohesive political community. Hence, the challenge of integration is enormous in a multi-ethno-lingual country like Nigeria. In the same vein, justification for minority language rights claims in relation to broader political theories of justice, freedom and democracy cannot be ignored. It is in the light of the fore-going that this paper explores Nigeria’s experiments at language policy and planning(LPP) and the long drawn agitations for self-determination and linguistic freedom by the minority ethnic groups in the polity which has been exacerbated by the National Policy on Education language provisions. The paper succinctly reviews Nigeria’s LPP efforts and its attendant theater of conflicts; explores international attempts at evolving normative principles of freedom and equality for language policy and finally evaluates the position of the Nigerian LPP in the light of evolving international conventions. On this premise, it is concluded that giving a conscientious and honest implementation of the Nigerian language provisions as assessed from their face validity, the nation’s efforts could be exonerated from running afoul of any known civilized values and best practices. It is, therefore, recommended that an effectual and consistent commitment to implementation driven by a renewed political will is what is required for the nation to succeed in this direction.

Keywords: integration, rights, challenge, conventions, policy

Procedia PDF Downloads 413
4269 The 6Rs of Radiobiology in Photodynamic Therapy: Review

Authors: Kave Moloudi, Heidi Abrahamse, Blassan P. George

Abstract:

Radiotherapy (RT) and photodynamic therapy (PDT) are both forms of cancer treatment that aim to kill cancer cells while minimizing damage to healthy tissue. The similarity between RT and PDT lies in their mechanism of action. Both treatments use energy to damage cancer cells. RT uses high-energy radiation to damage the DNA of cancer cells, while PDT uses light energy to activate a photosensitizing agent, which produces reactive oxygen species (ROS) that damage the cancer cells. Both treatments require careful planning and monitoring to ensure the correct dose is delivered to the tumor while minimizing damage to surrounding healthy tissue. They are also often used in combination with other treatments, such as surgery or chemotherapy, to improve overall outcomes. However, there are also significant differences between RT and PDT. For example, RT is a non-invasive treatment that can be delivered externally or internally, while PDT requires the injection of a photosensitizing agent and the use of a specialized light source to activate it. Additionally, the side effects and risks associated with each treatment can vary. In this review, we focus on generalizing the 6Rs of radiobiology in PDT, which can open a window for the clinical application of Radio-photodynamic therapy with minimum side effects. Furthermore, this review can open new insight to work on and design new radio-photosensitizer agents in Radio-photodynamic therapy.

Keywords: radiobiology, photodynamic therapy, radiotherapy, 6Rs in radiobiology, ROS, DNA damages, cellular and molecular mechanism, clinical application.

Procedia PDF Downloads 100
4268 Numerical Simulation of Laser ‎Propagation through Turbulent ‎Atmosphere Using Zernike ‎Polynomials

Authors: Mohammad Moradi ‎

Abstract:

In this article, propagation of a laser beam through turbulent ‎atmosphere is evaluated. At first the laser beam is simulated and then ‎turbulent atmosphere will be simulated by using Zernike polynomials. ‎Some parameter like intensity, PSF will be measured for four ‎wavelengths in different Cn2.

Keywords: laser beam propagation, phase screen, turbulent atmosphere, Zernike ‎polynomials

Procedia PDF Downloads 510
4267 Effectiveness of High-Intensity Interval Training in Overweight Individuals between 25-45 Years of Age Registered in Sports Medicine Clinic, General Hospital Kalutara

Authors: Dimuthu Manage

Abstract:

Introduction: The prevalence of obesity and obesity-related non-communicable diseases are becoming a massive health concern in the whole world. Physical activity is recognized as an effective solution for this matter. The published data on the effectiveness of High-Intensity Interval Training (HIIT) in improving health parameters in overweight and obese individuals in Sri Lanka is sparse. Hence this study is conducted. Methodology: This is a quasi-experimental study that was conducted at the Sports medicine clinic, General Hospital, Kalutara. Participants have engaged in a programme of HIIT three times per week for six weeks. Data collection was based on precise measurements by using structured and validated methods. Ethical clearance was obtained. Results: Registered number for the study was 48, and only 52% have completed the study. The mean age was 32 (SD=6.397) years, with 64% males. All the anthropometric measurements which were assessed (i.e. waist circumference(P<0.001), weight(P<0.001) and BMI(P<0.001)), body fat percentage(P<0.001), VO2 max(P<0.001), and lipid profile (ie. HDL(P=0.016), LDL(P<0.001), cholesterol(P<0.001), triglycerides(P<0.010) and LDL: HDL(P<0.001)) had shown statistically significant improvement after the intervention with the HIIT programme. Conclusions: This study confirms HIIT as a time-saving and effective exercise method, which helps in preventing obesity as well as non-communicable diseases. HIIT ameliorates body anthropometry, fat percentage, cardiopulmonary status, and lipid profile in overweight and obese individuals markedly. As with the majority of studies, the design of the current study is subject to some limitations. The first is the study focused on a correlational study. If it is a comparative study, comparing it with other methods of training programs would have given more validity. Although the validated tools used to measure variables and the same tools used in pre and post-exercise occasions with the available facilities, it would have been better to measure some of them using gold-standard methods. However, this evidence should be further assessed in larger-scale trials using comparative groups to generalize the efficacy of the HIIT exercise program.

Keywords: HIIT, lipid profile, BMI, VO2 max

Procedia PDF Downloads 63
4266 Development of a Solar Energy Based Prototype, CyanoClean, for Arsenic Removal from Water with the Use of a Cyanobacterial Consortium in Field Conditions of India

Authors: Anurakti Shukla, Sudhakar Srivastava

Abstract:

Cyanobacteria are known for rapid growth rates, high biomass, and the ability to accumulate potentially toxic elements and contaminants. The present work was planned to develop a low-cost, feasible prototype, CyanoClean, for the growth of a cyanobacterial consortium for the removal of arsenic (As) from water. The cyanobacterial consortium consisting of Oscillatoria, Phormidiumand Gloeotrichiawas used, and the conditions for optimal growth of the consortium were standardized. A pH of 7.6, initial cyanobacterial biomass of 10 g/L, and arsenite [As(III)] and arsenate [As(V)] concentration of 400 μΜand 600 μM, respectively, were found to be suitable. The CyanoClean prototype was designed with acrylic sheet and had arrangements for optimal cyanobacterial growth in natural sunlight and also in artificial light. The As removal experiments in concentration- and duration-dependent manner demonstrated removal of up to 39-69% and 9-33% As respectively from As(III) and As(V)-contaminated water. In field testing of CyanoClean, natural As-contaminated groundwater was used, and As reduction was monitored when a flow rate of 3 L/h was maintained. In a field experiment, As concentration in groundwater was found to reduce from 102.43 μg L⁻¹ to <10 μg L⁻¹ after 6 h in natural sunlight. However, in shaded conditions under artificial light, the same result was achieved after 9 h. The CyanoClean prototype is of simple design and can be easily up-scaled for application at a small- to medium-size land and shall be affordable even for a low- to middle-income group farmer.

Keywords: cyanoclean, gloeotrichia, oscillatoria, phormidium, phycoremediation

Procedia PDF Downloads 140
4265 Elaboration and Characterization of Silver Nanoparticles for Therapeutic and Environmental Applications

Authors: Manel Bouloudenine, Karima Djeddou, Hadjer Ben Manser, Hana Soualah Alila, Mohmed Bououdina

Abstract:

This survey research involves the elaboration and characterization of silver nanoparticles for therapeutic and environmental applications. The silver nanoparticles "Ag NPs" were synthesized by reducing AgNO3 with microwaves. The characterization of nanoparticles was done by using Transmission Electron Microscopy " TEM ", Energy Dispersive Spectroscopy "EDS", Selected Area Electron Diffraction "SEAD", UV-Visible Spectroscopy and Dynamic Light Scattering "DLS". Transmission Electron Microscopy and Electron Diffraction have confirmed the nanoscale, the shape, and the crystalline quality of as synthesized silver nanoparticles. Elementary analysis has proved the purity of Ag NPs and the presence of the Surface Plasmon Resonance phenomenon "SPR". A strong absorption shift was observed in the visible range of the UV-visible spectrum of as synthesized Ag NPs, which indicates the presence of metallic silver. When the strong absorption in the ultraviolet range of the spectrum has revealed the presence of ionic Ag NPs ionic Ag aggregates species. The autocorrelation function measured by the Dynamic Light Scattering has shown a strong monodispersed character of Ag NPs, which is indicated by the presence of a single size population, with a minima and a maxima laying between 40 and 111 nm. Related to other research, our results confirm the performance properties of as synthesized Ag NPs, which allows them to be performing in many technological applications, including therapeutic and environmental ones.

Keywords: silvers nanoparticles, microwaves, EDS, TEM

Procedia PDF Downloads 145
4264 Sustainable Drinking Water Treatment Method Using Solar Light

Authors: Ayushi Arora

Abstract:

Solar photocatalysis has the potential to treat drinking water in a sustainable and cost effective manner. According to WHO, there should not be any colony forming units (CFU) per 100 mL present in drinking water, and as per the Central Pollution Control Board (CPCB) of India, the bathing water should have less than 500 CFU/100 mL and the maximum permissible limit is 2500 CFU/100 mL. In this study, 8 water sources near our collaborators, Indian Institute of Technology, Kharagpur, India, were analysed, and it was found that 6 out of 8 sources of water had significant coliform count in them. Two of them were chosen to be treated by solar photocatalysis a) well water which had a count of 4800 CFU/100 mL for total coliforms and was used by people for drinking purposes, and b) pond water which had a count of 92000 CFU/100 mL for total coliforms and 3000 CFU/mL for E.Coli and was used by people for washing and bathing purposes. In this study, a semiconductor-semiconductor, composite BTO-TiO2-RMSG & TiO2-SiO2 were tested for their ability to be activated under solar light and to reduce Total Coliforms and E.Coli bacteria in real world contaminated water, and it was found that both catalysts were both able to reduce the total coliform count in water by 99.7% and 98.2 % in 2 hrs respectively. They have also shown promising results in reusability tests. This study demonstrates the ability of solar photocatalysis to be used in real world drinking water treatment and will promote future advancements in this field.

Keywords: sustainable water treatment, waterpurification technologies, water policies, water pollution and environmental engineering

Procedia PDF Downloads 79
4263 Electrodynamic Principles for Generation and Wireless Transfer of Energy

Authors: Steven D. P. Moore

Abstract:

An electrical discharge in the air induces an electromagnetic (EM) wave capable of wireless transfer, reception, and conversion back into electrical discharge at a distant location. Following Norton’s ground wave principles, EM wave radiation (EMR) runs parallel to the Earth’s surface. Energy in an EMR wave can move through the air and be focused to create a spark at a distant location, focused by a receiver to generate a local electrical discharge. This local discharge can be amplified and stored but also has the propensity to initiate another EMR wave. In addition to typical EM waves, lightning is also associated with atmospheric events, trans-ionospheric pulse pairs, the most powerful natural EMR signal on the planet. With each lightning strike, regardless of global position, it generates naturally occurring pulse-pairs that are emitted towards space within a narrow cone. An EMR wave can self-propagate, travel at the speed of light, and, if polarized, contain vector properties. If this reflective pulse could be directed by design through structures that have increased probabilities for lighting strikes, it could theoretically travel near the surface of the Earth at light speed towards a selected receiver for local transformation into electrical energy. Through research, there are several influencing parameters that could be modified to model, test, and increase the potential for adopting this technology towards the goal of developing a global grid that utilizes natural sources of energy.

Keywords: electricity, sparkgap, wireless, electromagnetic

Procedia PDF Downloads 185
4262 Photocrosslinkable Nanocomposite Ink for Printing of Strong, Biodegradable and Bioactive Bone Graft

Authors: Xin Zhao

Abstract:

3D printing is used in creating bone grafts of various architectures by printing materials in a layer-by-layer manner. Traditionally, to make materials printable, heating up or dissolving materials in organic solvents have been used, compromising their capability in loading biomolecules. Photocrosslinkable materials which are initially liquid and printable, and solidified upon light exposure are therefore developed. However, the existing photocrosslinkable materials are either too soft to bear load or non-degradable with potential long-term biocompatibility problems. Here, photocrosslinkable nanocomposite ink is developed composed of poly (lactide-co-propylene glycol-co-lactide) dimethacrylate (PmLnDMA) and hydroxyethyl methacrylate-functionalized hydroxyapatite nanoparticles (nHAMA) mimicking the hairy setae of gecko that can strongly interact with its surroundings to bear high load. Incorporation of nHAMA into PmLnDMA endows the nanocomposite ink with several advantages in (1) improved organic/inorganic interfacial compatibility to increase mechanical strength, (2) readily modulated rheological behaviors, wettability, and biodegradation, (3) enhanced osteoconductivity and osteoinductivity. Moreover, the ink can be rapidly crosslinked upon light exposure, load, and long-term release growth factors, and be printed into 3D bone scaffolds of various shapes and structures according to the patients’ needs. Altogether, this innovation will benefit patients all over the world who suffer from bone fractures, tumors, infections.

Keywords: photocrosslinkable nanocomposite, 3D printing, bone ink, personalized medicine

Procedia PDF Downloads 114
4261 The Regulation of Vaccine-Related Intellectual Property Rights in Light of the Areas of Divergence between the Agreement on Trade-Related Aspects of Intellectual Property Rights and Investment Treaties in the Kingdom of Saudi Arabia and Australia

Authors: Abdulrahman Fahim M. Alsulami

Abstract:

The current research seeks to explore the regulation of vaccine-related IP rights in light of the areas of divergence between the Trade-Related Aspects of Intellectual Property Rights (TRIPS) Agreement and investment treaties. The study is conducted in the context of the COVID-19 pandemic; therefore, it seems natural that a specific chapter is devoted to the examination of vaccine arrangements related to vaccine supplies. The chapter starts with the examination of a typical vaccine from the perspective of IP rights. It presents the distinctive features of vaccines as pharmaceutical products and investments, reviews the basics of their patent protection, reviews vaccines’ components, and discusses IPR protection of different components of vaccines. The subsection that focuses on vaccine development and licensing reviews vaccine development stages investigates differences between vaccine licensing in different countries and presents barriers to vaccine licensing. The third subsection, at the same time, introduces the existing arrangements related to COVID-19 vaccine supplies, including COVAX arrangements, international organizations’ assistance, and direct negotiations between governments and vaccine manufacturers.

Keywords: bilateral investment treaties, COVID-19 vaccine, IP rights, TRIPs agreement

Procedia PDF Downloads 181
4260 Optimization of Culture Conditions of Paecilomyces tenuipes, Entomopathogenic Fungi Inoculated into the Silkworm Larva, Bombyx mori

Authors: Sunghee Nam

Abstract:

Entomopathogenic fungi is a Cordyceps species that is isolated from dead silkworm and cicada. Fungi on cicadas were described in old Chinese medicinal books and from ancient times, vegetable wasps and plant worms were widely known to have active substance and have been studied for pharmacological use. Among many fungi belonging to the genus Cordyceps, Cordyceps sinensis have been demonstrated to yield natural products possessing various biological activities and many bioactive components. Generally, It is commonly used to replenish the kidney and soothe the lung, and for the treatment of fatigue. Due to their commercial and economic importance, the demand for Cordyceps has been rapidly increased. However, a supply of Cordyceps specimen could not meet the increasing demand because of their sole dependence on field collection and habitat destruction. Because it is difficult to obtain many insect hosts in nature and the edibility of host insect needs to be verified in a pharmacological aspect. Recently, this setback was overcome that P. tenuipes was able to be cultivated in a large scale using silkworm as host. Pharmacological effects of P. tenuipes cultured on silkworm such as strengthening immune function, anti-fatigue, anti-tumor activity and controlling liver etc. have been proved. They are widely commercialized. In this study, we attempted to establish a method for stable growth inhibition of P. tenuipes on silkworm hosts and an optimal condition for synnemata formation. To determine optimum culturing conditions, temperature and light conditions were varied. The length and number of synnemata was highest at 25℃ temperature and 100~300 lux illumination. On an average, the synnemata of wild P. tenuipes measures 70 ㎜ in length and 20 in number; those of the cultured strain were relatively shorter and more in number. The number of synnemata may have increased as a result of inoculating the host with highly concentrated conidia, while the length may have decreased due to limited nutrition per individual. It is not able that changes in light illumination cause morphological variations in the synnemata. However, regulation of only light and temperature could not produce stromata like perithecia, asci, and ascospores.

Keywords: optimization of culture conditions of paecilomyces tenuipes, entomopathogenic fungi optimization of culture conditions of paecilomyces tenuipes, entomopathogenic fungi silkworm larva, bombyx mori

Procedia PDF Downloads 252
4259 Calculation of Instrumental Results of the Tohoku Earthquake, Japan (Mw 9.0) on March 11, 2011 and Other Destructive Earthquakes during Seismic Hazard Assessment

Authors: J. K. Karapetyan

Abstract:

In this paper seismological-statistical analysis of actual instrumental data on the main tremor of the Great Japan earthquake 11.03.2011 is implemented for finding out the dependence between maximal values of peak ground accelerations (PGA) and epicentric distances. A number of peculiarities of manifestation of accelerations' maximum values at the interval of long epicentric distances are revealed which do not correspond with current scales of seismic intensity.

Keywords: earthquakes, instrumental records, seismic hazard, Japan

Procedia PDF Downloads 363
4258 The Effects of Ultrasound on the Extraction of Ficus deltoidea Leaves

Authors: Nur Aimi Syairah Mohd Abdul Alim, Azilah Ajit, A. Z. Sulaiman

Abstract:

The present study aimed to investigate the effects of ultrasound-assisted extraction (UAE) on the extraction of Vitexin and Iso-Vitexin from Ficus deltoidea plants. In recent years, ultrasound technology has been found to be a potential herbal extraction technique. The passage of ultrasound energy in a liquid medium generates mechanical agitation and other physical effects due to acoustic cavitation. The main goal is to optimised ultrasonic-assisted extraction condition providing the highest extraction yield with the most desirable antioxidant activity and stability. Thus, a series of experiments has been developed to investigate the effect of ultrasound energy on the vegetal material and the implemented parameters by using HPLC-photodiode array detection. The influences of several experimental parameters on the ultrasonic extraction of Ficus deltoidea leaves were investigated: extraction time (1-8 h), solvent-to-water ratio (1:10 to 1:50), temperature (50–100 °C), duty cycle (10–continuous sonication) and intensity. The extracts at the optimized condition were compared with those obtained by conventional boiling extraction, in terms of bioactive constituents yield and chemical composition. The compounds of interest identified in the extracts were Vitexin and Isovitexin, which possess anti-diabetic, anti-oxidant and anti-cancer properties. Results showed that the main variables affecting the extraction process were temperature and time. Though in less extent, solvent-to-water ratio, duty cycle and intensity are also demonstrated to be important parameters. The experimental values under optimal conditions were in good consistent with the predicted values, which suggested that ultrasonic-assisted extraction (UAE) is more efficient process as compared to conventional boiling extraction. It recommended that ultrasound extraction of Ficus deltoidea plants are feasible to replace the traditional time-consuming and low efficiency preparation procedure in the future modernized and commercialized manufacture of this highly valuable herbal medicine.

Keywords: Ficus, ultrasounds, vitexin, isovitexin

Procedia PDF Downloads 413
4257 The Explanation for Dark Matter and Dark Energy

Authors: Richard Lewis

Abstract:

The following assumptions of the Big Bang theory are challenged and found to be false: the cosmological principle, the assumption that all matter formed at the same time and the assumption regarding the cause of the cosmic microwave background radiation. The evolution of the universe is described based on the conclusion that the universe is finite with a space boundary. This conclusion is reached by ruling out the possibility of an infinite universe or a universe which is finite with no boundary. In a finite universe, the centre of the universe can be located with reference to our home galaxy (The Milky Way) using the speed relative to the Cosmic Microwave Background (CMB) rest frame and Hubble's law. This places our home galaxy at a distance of approximately 26 million light years from the centre of the universe. Because we are making observations from a point relatively close to the centre of the universe, the universe appears to be isotropic and homogeneous but this is not the case. The CMB is coming from a source located within the event horizon of the universe. There is sufficient mass in the universe to create an event horizon at the Schwarzschild radius. Galaxies form over time due to the energy released by the expansion of space. Conservation of energy must consider total energy which is mass (+ve) plus energy (+ve) plus spacetime curvature (-ve) so that the total energy of the universe is always zero. The predominant position of galaxy formation moves over time from the centre of the universe towards the boundary so that today the majority of new galaxy formation is taking place beyond our horizon of observation at 14 billion light years.

Keywords: cosmology, dark energy, dark matter, evolution of the universe

Procedia PDF Downloads 140
4256 Technical and Practical Aspects of Sizing a Autonomous PV System

Authors: Abdelhak Bouchakour, Mustafa Brahami, Layachi Zaghba

Abstract:

The use of photovoltaic energy offers an inexhaustible supply of energy but also a clean and non-polluting energy, which is a definite advantage. The geographical location of Algeria promotes the development of the use of this energy. Indeed, given the importance of the intensity of the radiation received and the duration of sunshine. For this reason, the objective of our work is to develop a data-processing tool (software) of calculation and optimization of dimensioning of the photovoltaic installations. Our approach of optimization is basing on mathematical models, which amongst other things describe the operation of each part of the installation, the energy production, the storage and the consumption of energy.

Keywords: solar panel, solar radiation, inverter, optimization

Procedia PDF Downloads 606
4255 Building Exoskeletons for Seismic Retrofitting

Authors: Giuliana Scuderi, Patrick Teuffel

Abstract:

The proven vulnerability of the existing social housing building heritage to natural or induced earthquakes requires the development of new design concepts and conceptual method to preserve materials and object, at the same time providing new performances. An integrate intervention between civil engineering, building physics and architecture can convert the social housing districts from a critical part of the city to a strategic resource of revitalization. Referring to bio-mimicry principles the present research proposes a taxonomy with the exoskeleton of the insect, an external, light and resistant armour whose role is to protect the internal organs from external potentially dangerous inputs. In the same way, a “building exoskeleton”, acting from the outside of the building as an enclosing cage, can restore, protect and support the existing building, assuming a complex set of roles, from the structural to the thermal, from the aesthetical to the functional. This study evaluates the structural efficiency of shape memory alloys devices (SMADs) connecting the “building exoskeleton” with the existing structure to rehabilitate, in order to prevent the out-of-plane collapse of walls and for the passive dissipation of the seismic energy, with a calibrated operability in relation to the intensity of the horizontal loads. The two case studies of a masonry structure and of a masonry structure with concrete frame are considered, and for each case, a theoretical social housing building is exposed to earthquake forces, to evaluate its structural response with or without SMADs. The two typologies are modelled with the finite element program SAP2000, and they are respectively defined through a “frame model” and a “diagonal strut model”. In the same software two types of SMADs, called the 00-10 SMAD and the 05-10 SMAD are defined, and non-linear static and dynamic analyses, namely push over analysis and time history analysis, are performed to evaluate the seismic response of the building. The effectiveness of the devices in limiting the control joint displacements resulted higher in one direction, leading to the consideration of a possible calibrated use of the devices in the different walls of the building. The results show also a higher efficiency of the 00-10 SMADs in controlling the interstory drift, but at the same time the necessity to improve the hysteretic behaviour, to maximise the passive dissipation of the seismic energy.

Keywords: adaptive structure, biomimetic design, building exoskeleton, social housing, structural envelope, structural retrofitting

Procedia PDF Downloads 419
4254 A Randomized, Controlled Trial to Test Habit Formation Theory for Low Intensity Physical Exercise Promotion in Older Adults

Authors: Patrick Louie Robles, Jerry Suls, Ciaran Friel, Mark Butler, Samantha Gordon, Frank Vicari, Joan Duer-Hefele, Karina W. Davidson

Abstract:

Physical activity guidelines focus on increasing moderate-intensity activity for older adults, but adherence to recommendations remains low. This is despite the fact that scientific evidence finds increasing physical activity is positively associated with health benefits. Behavior change techniques (BCTs) have demonstrated some effectiveness in reducing sedentary behavior and promoting physical activity. This pilot study uses a personalized trials (N-of-1) design, delivered virtually, to evaluate the efficacy of using five BCTs in increasing low-intensity physical activity (by 2,000 steps of walking per day) in adults aged 45-75 years old. The 5 BCTs described in habit formation theory are goal setting, action planning, rehearsal, rehearsal in a consistent context, and self-monitoring. The study recruited health system employees in the target age range who had no mobility restrictions and expressed interest in increasing their daily activity by a minimum of 2,000 steps per day at least five days per week. Participants were sent a Fitbit Charge 4 fitness tracker with an established study account and password. Participants were recommended to wear the Fitbit device 24/7 but were required to wear it for a minimum of ten hours per day. Baseline physical activity was measured by Fitbit for two weeks. Participants then engaged remotely with a clinical research coordinator to establish a “walking plan” that included a time and day interval (e.g., between 7am -8am on Monday-Friday), a location for the walk (e.g., park), and how much time the plan would need to achieve a minimum of 2,000 steps over their baseline average step count (20 minutes). All elements of the walking plan were required to remain consistent throughout the study. In the 10-week intervention phase of the study, participants received all five BCTs in a single, time-sensitive text message. The text message was delivered 30 minutes prior to the established walk time and signaled participants to begin walking when the context (i.e., day of the week, time of day) they pre-selected is encountered. Participants were asked to log both the start and conclusion of their activity session by pressing a button on the Fitbit tracker. Within 30 minutes of the planned conclusion of the activity session, participants received a text message with a link to a secure survey. Here, they noted whether they engaged in the BCTs when prompted and completed an automaticity survey to identify how “automatic” their walking behavior had become. At the end of their trial, participants received a personalized summary of their step data over time, helping them learn more about their responses to the five BCTs. Whether the use of these 5 ‘habit formation’ BCTs in combination elicits a change in physical activity behavior among older adults will be reported. This study will inform the feasibility of a virtually-delivered N-of-1 study design to effectively promote physical activity as a component of healthy aging.

Keywords: aging, exercise, habit, walking

Procedia PDF Downloads 138
4253 Using Daily Light Integral Concept to Construct the Ecological Plant Design Strategy of Urban Landscape

Authors: Chuang-Hung Lin, Cheng-Yuan Hsu, Jia-Yan Lin

Abstract:

It is an indispensible strategy to adopt greenery approach on architectural bases so as to improve ecological habitats, decrease heat-island effect, purify air quality, and relieve surface runoff as well as noise pollution, all of which are done in an attempt to achieve sustainable environment. How we can do with plant design to attain the best visual quality and ideal carbon dioxide fixation depends on whether or not we can appropriately make use of greenery according to the nature of architectural bases. To achieve the goal, it is a need that architects and landscape architects should be provided with sufficient local references. Current greenery studies focus mainly on the heat-island effect of urban with large scale. Most of the architects still rely on people with years of expertise regarding the adoption and disposition of plantation in connection with microclimate scale. Therefore, environmental design, which integrates science and aesthetics, requires fundamental research on landscape environment technology divided from building environment technology. By doing so, we can create mutual benefits between green building and the environment. This issue is extremely important for the greening design of the bases of green buildings in cities and various open spaces. The purpose of this study is to establish plant selection and allocation strategies under different building sunshade levels. Initially, with the shading of sunshine on the greening bases as the starting point, the effects of the shades produced by different building types on the greening strategies were analyzed. Then, by measuring the PAR( photosynthetic active radiation), the relative DLI( daily light integral) was calculated, while the DLI Map was established in order to evaluate the effects of the building shading on the established environmental greening, thereby serving as a reference for plant selection and allocation. The discussion results were to be applied in the evaluation of environment greening of greening buildings and establish the “right plant, right place” design strategy of multi-level ecological greening for application in urban design and landscape design development, as well as the greening criteria to feedback to the eco-city greening buildings.

Keywords: daily light integral, plant design, urban open space

Procedia PDF Downloads 508
4252 Nd³⁺: Si₂N₂O (Sinoite) Phosphors for White Light Emitting Diodes

Authors: Alparslan A. Balta, Hilmi Yurdakul, Orkun Tunckan, Servet Turan, Arife Yurdakul

Abstract:

A silicon oxynitride (Si2N2O), the mineralogical name is “Sinoite”, reveals the outstanding physical, mechanical and thermal properties, e.g., good oxidation resistance at high temperatures, high fracture toughness with rod shape, high hardness, low theoretical density, good thermal shock resistance by low thermal expansion coefficient and high thermal conductivity. In addition, the orthorhombic crystal structure of Si2N2O allows accommodating the rare earth (RE) element atoms along the “c” axis due to existing large structural interstitial sites. Here, 0.02 to 0.12 wt. % Nd3+ doped Si2N2O samples were successfully synthesized by spark plasma sintering (SPS) method at 30MPa pressure and 1650oC temperature. Li2O was also utilized as a sintering additive to take advantage of low eutectic point during synthesizing. The specimens were characterized in detail by scanning electron microscopy (SEM), transmission electron microscopy (TEM), X-ray diffraction (XRD) and cathodoluminescence (CL) in SEM and photoluminescence (PL) spectroscopy. Based on the overall results, the Si2N2O phase was obtained above 90% by the SPS route. Furthermore, Nd3+: Si2N2O samples showed a very broad intense emission peak between 400-700 nm, which corresponds to white color. Therefore, this material can be considered as a promising candidate for white light-emitting diodes (WLEDs) purposes. This study was supported by TUBITAK under project number 217M667.

Keywords: neodymium, oxynitride, Si₂N₂O, WLEDs

Procedia PDF Downloads 135
4251 Sea of Light: A Game 'Based Approach for Evidence-Centered Assessment of Collaborative Problem Solving

Authors: Svenja Pieritz, Jakab Pilaszanovich

Abstract:

Collaborative Problem Solving (CPS) is recognized as being one of the most important skills of the 21st century with having a potential impact on education, job selection, and collaborative systems design. Therefore, CPS has been adopted in several standardized tests, including the Programme for International Student Assessment (PISA) in 2015. A significant challenge of evaluating CPS is the underlying interplay of cognitive and social skills, which requires a more holistic assessment. However, the majority of the existing tests are using a questionnaire-based assessment, which oversimplifies this interplay and undermines ecological validity. Two major difficulties were identified: Firstly, the creation of a controllable, real-time environment allowing natural behaviors and communication between at least two people. Secondly, the development of an appropriate method to collect and synthesize both cognitive and social metrics of collaboration. This paper proposes a more holistic and automated approach to the assessment of CPS. To address these two difficulties, a multiplayer problem-solving game called Sea of Light was developed: An environment allowing students to deploy a variety of measurable collaborative strategies. This controlled environment enables researchers to monitor behavior through the analysis of game actions and chat. The according solution for the statistical model is a combined approach of Natural Language Processing (NLP) and Bayesian network analysis. Social exchanges via the in-game chat are analyzed through NLP and fed into the Bayesian network along with other game actions. This Bayesian network synthesizes evidence to track and update different subdimensions of CPS. Major findings focus on the correlations between the evidences collected through in- game actions, the participants’ chat features and the CPS self- evaluation metrics. These results give an indication of which game mechanics can best describe CPS evaluation. Overall, Sea of Light gives test administrators control over different problem-solving scenarios and difficulties while keeping the student engaged. It enables a more complete assessment based on complex, socio-cognitive information on actions and communication. This tool permits further investigations of the effects of group constellations and personality in collaborative problem-solving.

Keywords: bayesian network, collaborative problem solving, game-based assessment, natural language processing

Procedia PDF Downloads 130
4250 A Leaf-Patchable Reflectance Meter for in situ Continuous Monitoring of Chlorophyll Content

Authors: Kaiyi Zhang, Wenlong Li, Haicheng Li, Yifei Luo, Zheng Li, Xiaoshi Wang, Xiaodong Chen

Abstract:

Plant wearable sensors facilitate the real-time monitoring of plant physiological status. In situ monitoring of the plant chlorophyll content over days could provide valuable information on the photosynthetic capacity, nitrogen content, and general plant health. However, it cannot be achieved by current chlorophyll measuring methods. Here, a miniaturized and plant-wearable chlorophyll meter was developed for rapid, non-destructive, in situ, and long-term chlorophyll monitoring. This reflectance-based chlorophyll sensor with 1.5 mm thickness and 0.2 g weight (1000 times lighter than the commercial chlorophyll meter), includes a light emitting diode (LED) and two symmetric photodetectors (PDs) on a flexible substrate and is patched onto the leaf upper epidermis with a conformal light guiding layer. A chlorophyll content index (CCI) calculated based on this sensor shows a better linear relationship with the leaf chlorophyll content (r² > 0.9) than the traditional chlorophyll meter. This meter can wirelessly communicate with a smartphone to monitor the leaf chlorophyll change under various stresses and indicate the unhealthy status of plants for long-term application of plants under various stresses earlier than chlorophyll meter and naked-eye observation. This wearable chlorophyll sensing patch is promising in smart and precision agriculture.

Keywords: plant wearable sensors, reflectance-based measurements, chlorophyll content monitoring, smart agriculture

Procedia PDF Downloads 113