Search results for: image processing
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 5835

Search results for: image processing

4785 Video Shot Detection and Key Frame Extraction Using Faber-Shauder DWT and SVD

Authors: Assma Azeroual, Karim Afdel, Mohamed El Hajji, Hassan Douzi

Abstract:

Key frame extraction methods select the most representative frames of a video, which can be used in different areas of video processing such as video retrieval, video summary, and video indexing. In this paper we present a novel approach for extracting key frames from video sequences. The frame is characterized uniquely by his contours which are represented by the dominant blocks. These dominant blocks are located on the contours and its near textures. When the video frames have a noticeable changement, its dominant blocks changed, then we can extracte a key frame. The dominant blocks of every frame is computed, and then feature vectors are extracted from the dominant blocks image of each frame and arranged in a feature matrix. Singular Value Decomposition is used to calculate sliding windows ranks of those matrices. Finally the computed ranks are traced and then we are able to extract key frames of a video. Experimental results show that the proposed approach is robust against a large range of digital effects used during shot transition.

Keywords: FSDWT, key frame extraction, shot detection, singular value decomposition

Procedia PDF Downloads 398
4784 Anatomical Survey for Text Pattern Detection

Authors: S. Tehsin, S. Kausar

Abstract:

The ultimate aim of machine intelligence is to explore and materialize the human capabilities, one of which is the ability to detect various text objects within one or more images displayed on any canvas including prints, videos or electronic displays. Multimedia data has increased rapidly in past years. Textual information present in multimedia contains important information about the image/video content. However, it needs to technologically testify the commonly used human intelligence of detecting and differentiating the text within an image, for computers. Hence in this paper feature set based on anatomical study of human text detection system is proposed. Subsequent examination bears testimony to the fact that the features extracted proved instrumental to text detection.

Keywords: biologically inspired vision, content based retrieval, document analysis, text extraction

Procedia PDF Downloads 444
4783 Development of a Vacuum System for Orthopedic Drilling Processes and Determination of Optimal Processing Parameters for Temperature Control

Authors: Kadir Gök

Abstract:

In this study, a vacuum system was developed for orthopedic drilling processes, and the most efficient processing parameters were determined using statistical analysis of temperature rise. A reverse engineering technique was used to obtain a 3D model of the chip vacuum system, and the obtained point cloud data was transferred to Solidworks software in STL format. An experimental design method was performed by selecting different parameters and their levels, such as RPM, feed rate, and drill bit diameter, to determine the most efficient processing parameters in temperature rise using ANOVA. Additionally, the bone chip-vacuum device was developed and performed successfully to collect the whole chips and fragments in the bone drilling experimental tests, and the chip-collecting device was found to be useful in removing overheating from the drilling zone. The effects of processing parameters on the temperature levels during the chip-vacuuming were determined, and it was found that bone chips and fractures can be used as autograft and allograft for tissue engineering. Overall, this study provides significant insights into the development of a vacuum system for orthopedic drilling processes and the use of bone chips and fractures in tissue engineering applications.

Keywords: vacuum system, orthopedic drilling, temperature rise, bone chips

Procedia PDF Downloads 98
4782 Predicting Oil Spills in Real-Time: A Machine Learning and AIS Data-Driven Approach

Authors: Tanmay Bisen, Aastha Shayla, Susham Biswas

Abstract:

Oil spills from tankers can cause significant harm to the environment and local communities, as well as have economic consequences. Early predictions of oil spills can help to minimize these impacts. Our proposed system uses machine learning and neural networks to predict potential oil spills by monitoring data from ship Automatic Identification Systems (AIS). The model analyzes ship movements, speeds, and changes in direction to identify patterns that deviate from the norm and could indicate a potential spill. Our approach not only identifies anomalies but also predicts spills before they occur, providing early detection and mitigation measures. This can prevent or minimize damage to the reputation of the company responsible and the country where the spill takes place. The model's performance on the MV Wakashio oil spill provides insight into its ability to detect and respond to real-world oil spills, highlighting areas for improvement and further research.

Keywords: Anomaly Detection, Oil Spill Prediction, Machine Learning, Image Processing, Graph Neural Network (GNN)

Procedia PDF Downloads 73
4781 Enhancing Food Quality and Safety Management in Ethiopia's Food Processing Industry: Challenges, Causes, and Solutions

Authors: Tuji Jemal Ahmed

Abstract:

Food quality and safety challenges are prevalent in Ethiopia's food processing industry, which can have adverse effects on consumers' health and wellbeing. The country is known for its diverse range of agricultural products, which are essential to its economy. However, poor food quality and safety policies and management systems in the food processing industry have led to several health problems, foodborne illnesses, and economic losses. This paper aims to highlight the causes and effects of food safety and quality issues in the food processing industry of Ethiopia and discuss potential solutions to address these issues. One of the main causes of poor food quality and safety in Ethiopia's food processing industry is the lack of adequate regulations and enforcement mechanisms. The absence of comprehensive food safety and quality policies and guidelines has led to substandard practices in the food manufacturing process. Moreover, the lack of monitoring and enforcement of existing regulations has created a conducive environment for unscrupulous businesses to engage in unsafe practices that endanger the public's health. The effects of poor food quality and safety are significant, ranging from the loss of human lives, increased healthcare costs, and loss of consumer confidence in the food processing industry. Foodborne illnesses, such as diarrhea, typhoid fever, and cholera, are prevalent in Ethiopia, and poor food quality and safety practices contribute significantly to their prevalence. Additionally, food recalls due to contamination or mislabeling often result in significant economic losses for businesses in the food processing industry. To address these challenges, the Ethiopian government has begun to take steps to improve food quality and safety in the food processing industry. One of the most notable initiatives is the Ethiopian Food and Drug Administration (EFDA), which was established in 2010 to regulate and monitor the quality and safety of food and drug products in the country. The EFDA has implemented several measures to enhance food safety, such as conducting routine inspections, monitoring the importation of food products, and enforcing strict labeling requirements. Another potential solution to improve food quality and safety in Ethiopia's food processing industry is the implementation of food safety management systems (FSMS). An FSMS is a set of procedures and policies designed to identify, assess, and control food safety hazards throughout the food manufacturing process. Implementing an FSMS can help businesses in the food processing industry identify and address potential hazards before they cause harm to consumers. Additionally, the implementation of an FSMS can help businesses comply with existing food safety regulations and guidelines. In conclusion, improving food quality and safety policies and management systems in Ethiopia's food processing industry is critical to protecting public health and enhancing the country's economy. Addressing the root causes of poor food quality and safety and implementing effective solutions, such as the establishment of regulatory agencies and the implementation of food safety management systems, can help to improve the overall safety and quality of the country's food supply.

Keywords: food quality, food safety, policy, management system, food processing industry

Procedia PDF Downloads 85
4780 Quest for Literary Past: A Study of Byatt’s Possession

Authors: Chen Jun

Abstract:

Antonia Susan Byatt’s Possession: A Romance has been misread as a postmodern pastiche novel since its publication because there are epics, epigraphs, lyrics, fairy tales, epistles, and even critical articles swollen in this work. The word ‘pastiche’ suggests messy, disorganized, and chaotic, which buries its artistic excellence while overlooking its subtitle, A Romance. The center of romance is the quest that the hero sets forth to conquer the adversity, hardship, and danger to accomplish a task to prove his identity or social worth. This paper argues that Byatt’s Possession is not a postmodern pastiche novel but rather a postmodern romance in which the characters in the academic world set forth their quest into the Victorian literary past that is nostalgically identified by Byatt as the Golden Age of English literature. In doing so, these five following issues are addressed: first, the origin of the protagonist Roland, and consequently, the nature of his quest; second, the central image of the dragon created by the fictional Victorian poet Henry Ash; third, Melusine as an image of female serpent created by the fictional Victorian poet Christabel LaMotte; fourth, the images of the two ladies; last, the image of water that links the dragon and the serpent. In Possession, the past is reinvented not as an unfortunate fall but as a Golden Age presented in the imaginative academic adventure. The dragon, a stereotypical symbol of evil, becomes the symbol of life in Byatt’s work, which parallels with the image of the mythical phoenix that can resurrect from its own ash. At the same time, the phoenix symbolizes Byatt’s efforts to revive the Victorian poetic art that is supposed to be dead in the post-capitalism society when the novel is the dominating literary genre and poetry becomes the minority. The fictional Victorian poet Ash is in fact Byatt’s own poetic mask through which she breathes life into the lost poetic artistry in the postmodern era.

Keywords: Byatt, possession, postmodern romance, literary past

Procedia PDF Downloads 414
4779 The Importance of Upholding Corporate Governance: A Case Study of Government Pension Funds

Authors: Pichamon Chansuchai

Abstract:

This qualitative research paper aimed to study the best practice regulation of the Government Pension Fund of Thailand or GPF to explore the importance of good corporate governance and to identify and compare impacts towards the organizational operation and image before and after adopting the corporate good governance practice. The study employed the six principles of good corporate governance and best practice including accountability, responsibility, equitable treatment, transparency, value creation and ethics. The study pointed out that the GPF was a good example of the organization that regained public trust and receiving a positive image and credibility after implementing corporate good governance in all aspects of its organizational management.

Keywords: corporate governance, government, pension funds, organizational operation

Procedia PDF Downloads 457
4778 National Branding through Education: South Korean Image in Romania through the Language Textbooks for Foreigners

Authors: Raluca-Ioana Antonescu

Abstract:

The paper treats about the Korean public diplomacy and national branding strategies, and how the Korean language textbooks were used in order to construct the Korean national image. The field research of the paper stands at the intersection between Linguistics and Political Science, while the problem of the research is the role of language and culture in national branding process. The research goal is to contribute to the literature situated at the intersection between International Relations and Applied Linguistics, while the objective is to conceptualize the idea of national branding by emphasizing a dimension which is not much discussed, and that would be the education as an instrument of the national branding and public diplomacy strategies. In order to examine the importance of language upon the national branding strategies, the paper will answer one main question, How is the Korean language used in the construction of national branding?, and two secondary questions, How are explored in literature the relations between language and national branding construction? and What kind of image of South Korea the language textbooks for foreigners transmit? In order to answer the research questions, the paper starts from one main hypothesis, that the language is an essential component of the culture, which is used in the construction of the national branding influenced by traditional elements (like Confucianism) but also by modern elements (like Western influence), and from two secondary hypothesis, the first one is that in the International Relations literature there are little explored the connections between language and national branding, while the second hypothesis is that the South Korean image is constructed through the promotion of a traditional society, but also a modern one. In terms of methodology, the paper will analyze the textbooks used in Romania at the universities which provide Korean Language classes during the three years program B.A., following the dialogs, the descriptive texts and the additional text about the Korean culture. The analysis will focus on the rank status difference, the individual in relation to the collectivity, the respect for the harmony, and the image of the foreigner. The results of the research show that the South Korean image projected in the textbooks convey the Confucian values and it does not emphasize the changes suffered by the society due to the modernity and globalization. The Westernized aspect of the Korean society is conveyed more in an informative way about the Korean international companies, Korean internal development (like the transport or other services), but it does not show the cultural changed the society underwent. Even if the paper is using the textbooks which are used in Romania as a teaching material, it could be used and applied at least to other European countries, since the textbooks are the ones issued by the South Korean language schools, which other European countries are using also.

Keywords: confucianism, modernism, national branding, public diplomacy, traditionalism

Procedia PDF Downloads 241
4777 Results of EPR Dosimetry Study of Population Residing in the Vicinity of the Uranium Mines and Uranium Processing Plant

Authors: K. Zhumadilov, P. Kazymbet, A. Ivannikov, M. Bakhtin, A. Akylbekov, K. Kadyrzhanov, A. Morzabayev, M. Hoshi

Abstract:

The aim of the study is to evaluate the possible excess of dose received by uranium processing plant workers. The possible excess of dose of workers was evaluated with comparison with population pool (Stepnogorsk) and control pool (Astana city). The measured teeth samples were extracted according to medical indications. In total, twenty-seven tooth enamel samples were analyzed from the residents of Stepnogorsk city (180 km from Astana city, Kazakhstan). About 6 tooth samples were collected from the workers of uranium processing plant. The results of tooth enamel dose estimation show us small influence of working conditions to workers, the maximum excess dose is less than 100 mGy. This is pilot study of EPR dose estimation and for a final conclusion additional sample is required.

Keywords: EPR dose, workers, uranium mines, tooth samples

Procedia PDF Downloads 411
4776 Secure Transfer of Medical Images Using Hybrid Encryption

Authors: Boukhatem Mohamed Belkaid, Lahdi Mourad

Abstract:

In this paper, we propose a new encryption system for security issues medical images. The hybrid encryption scheme is based on AES and RSA algorithms to validate the three security services are authentication, integrity, and confidentiality. Privacy is ensured by AES, authenticity is ensured by the RSA algorithm. Integrity is assured by the basic function of the correlation between adjacent pixels. Our system generates a unique password every new session of encryption, that will be used to encrypt each frame of the medical image basis to strengthen and ensure his safety. Several metrics have been used for various tests of our analysis. For the integrity test, we noticed the efficiencies of our system and how the imprint cryptographic changes at reception if a change affects the image in the transmission channel.

Keywords: AES, RSA, integrity, confidentiality, authentication, medical images, encryption, decryption, key, correlation

Procedia PDF Downloads 443
4775 The Power of the Proper Orthogonal Decomposition Method

Authors: Charles Lee

Abstract:

The Principal Orthogonal Decomposition (POD) technique has been used as a model reduction tool for many applications in engineering and science. In principle, one begins with an ensemble of data, called snapshots, collected from an experiment or laboratory results. The beauty of the POD technique is that when applied, the entire data set can be represented by the smallest number of orthogonal basis elements. It is the such capability that allows us to reduce the complexity and dimensions of many physical applications. Mathematical formulations and numerical schemes for the POD method will be discussed along with applications in NASA’s Deep Space Large Antenna Arrays, Satellite Image Reconstruction, Cancer Detection with DNA Microarray Data, Maximizing Stock Return, and Medical Imaging.

Keywords: reduced-order methods, principal component analysis, cancer detection, image reconstruction, stock portfolios

Procedia PDF Downloads 84
4774 Recognition of Early Enterococcus Faecalis through Image Treatment by Using Octave

Authors: Laura Victoria Vigoya Morales, David Rolando Suarez Mora

Abstract:

The problem of detecting enterococcus faecalis is receiving considerable attention with the new cases of beachgoers infected with the bacteria, which can be found in fecal matter. The process detection of this kind of bacteria would be taking a long time, which waste time and money as a result of closing recreation place, like beach or pools. Hence, new methods for automating the process of detecting and recognition of this bacteria has become in a challenge. This article describes a novel approach to detect the enterococcus faecalis bacteria in water by using an octave algorithm, which embody a network neural. This document shows result of performance, quality and integrity of the algorithm.

Keywords: Enterococcus faecalis, image treatment, octave and network neuronal

Procedia PDF Downloads 230
4773 Automatic Detection and Classification of Diabetic Retinopathy Using Retinal Fundus Images

Authors: A. Biran, P. Sobhe Bidari, A. Almazroe, V. Lakshminarayanan, K. Raahemifar

Abstract:

Diabetic Retinopathy (DR) is a severe retinal disease which is caused by diabetes mellitus. It leads to blindness when it progress to proliferative level. Early indications of DR are the appearance of microaneurysms, hemorrhages and hard exudates. In this paper, an automatic algorithm for detection of DR has been proposed. The algorithm is based on combination of several image processing techniques including Circular Hough Transform (CHT), Contrast Limited Adaptive Histogram Equalization (CLAHE), Gabor filter and thresholding. Also, Support Vector Machine (SVM) Classifier is used to classify retinal images to normal or abnormal cases including non-proliferative or proliferative DR. The proposed method has been tested on images selected from Structured Analysis of the Retinal (STARE) database using MATLAB code. The method is perfectly able to detect DR. The sensitivity specificity and accuracy of this approach are 90%, 87.5%, and 91.4% respectively.

Keywords: diabetic retinopathy, fundus images, STARE, Gabor filter, support vector machine

Procedia PDF Downloads 294
4772 The Effect of Irgafos 168 in the Thermostabilization of High Density Polyethylene

Authors: Mahdi Almaky

Abstract:

The thermostabilization of High Density Polyethylene (HDPE) is realized through the action of primary antioxidant such as phenolic antioxidants and secondary antioxidants as aryl phosphates. The efficiency of two secondary antioxidants, commercially named Irgafos 168 and Weston 399, was investigated using different physical, mechanical, spectroscopic, and calorimetric methods. The effect of both antioxidants on the processing stability and long term stability of HDPE produced in Ras Lanuf oil and gas processing Company were measured and compared. The combination of Irgafos 168 with Irganox 1010, as used in smaller concentration, results in a synergetic effect against thermo-oxidation and protect better than the combination of Weston 399 with Irganox 1010 against the colour change at processing temperature and during long term oxidation process.

Keywords: thermostabilization, high density polyethylene, primary antioxidant, phenolic antioxidant, Irgafos 168, Irganox 1010, Weston 399

Procedia PDF Downloads 354
4771 The Effect of the Acquisition and Reconstruction Parameters in Quality of Spect Tomographic Images with Attenuation and Scatter Correction

Authors: N. Boutaghane, F. Z. Tounsi

Abstract:

Many physical and technological factors degrade the SPECT images, both qualitatively and quantitatively. For this, it is not always put into leading technological advances to improve the performance of tomographic gamma camera in terms of detection, collimation, reconstruction and correction of tomographic images methods. We have to master firstly the choice of various acquisition and reconstruction parameters, accessible to clinical cases and using the attenuation and scatter correction methods to always optimize quality image and minimized to the maximum dose received by the patient. In this work, an evaluation of qualitative and quantitative tomographic images is performed based on the acquisition parameters (counts per projection) and reconstruction parameters (filter type, associated cutoff frequency). In addition, methods for correcting physical effects such as attenuation and scatter degrading the image quality and preventing precise quantitative of the reconstructed slices are also presented. Two approaches of attenuation and scatter correction are implemented: the attenuation correction by CHANG method with a filtered back projection reconstruction algorithm and scatter correction by the subtraction JASZCZAK method. Our results are considered as such recommandation, which permits to determine the origin of the different artifacts observed both in quality control tests and in clinical images.

Keywords: attenuation, scatter, reconstruction filter, image quality, acquisition and reconstruction parameters, SPECT

Procedia PDF Downloads 453
4770 Printed Thai Character Recognition Using Particle Swarm Optimization Algorithm

Authors: Phawin Sangsuvan, Chutimet Srinilta

Abstract:

This Paper presents the applications of Particle Swarm Optimization (PSO) Method for Thai optical character recognition (OCR). OCR consists of the pre-processing, character recognition and post-processing. Before enter into recognition process. The Character must be “Prepped” by pre-processing process. The PSO is an optimization method that belongs to the swarm intelligence family based on the imitation of social behavior patterns of animals. Route of each particle is determined by an individual data among neighborhood particles. The interaction of the particles with neighbors is the advantage of Particle Swarm to determine the best solution. So PSO is interested by a lot of researchers in many difficult problems including character recognition. As the previous this research used a Projection Histogram to extract printed digits features and defined the simple Fitness Function for PSO. The results reveal that PSO gives 67.73% for testing dataset. So in the future there can be explored enhancement the better performance of PSO with improve the Fitness Function.

Keywords: character recognition, histogram projection, particle swarm optimization, pattern recognition techniques

Procedia PDF Downloads 477
4769 Evaluating the Performance of Color Constancy Algorithm

Authors: Damanjit Kaur, Avani Bhatia

Abstract:

Color constancy is significant for human vision since color is a pictorial cue that helps in solving different visions tasks such as tracking, object recognition, or categorization. Therefore, several computational methods have tried to simulate human color constancy abilities to stabilize machine color representations. Two different kinds of methods have been used, i.e., normalization and constancy. While color normalization creates a new representation of the image by canceling illuminant effects, color constancy directly estimates the color of the illuminant in order to map the image colors to a canonical version. Color constancy is the capability to determine colors of objects independent of the color of the light source. This research work studies the most of the well-known color constancy algorithms like white point and gray world.

Keywords: color constancy, gray world, white patch, modified white patch

Procedia PDF Downloads 319
4768 Deep Learning Approach to Trademark Design Code Identification

Authors: Girish J. Showkatramani, Arthi M. Krishna, Sashi Nareddi, Naresh Nula, Aaron Pepe, Glen Brown, Greg Gabel, Chris Doninger

Abstract:

Trademark examination and approval is a complex process that involves analysis and review of the design components of the marks such as the visual representation as well as the textual data associated with marks such as marks' description. Currently, the process of identifying marks with similar visual representation is done manually in United States Patent and Trademark Office (USPTO) and takes a considerable amount of time. Moreover, the accuracy of these searches depends heavily on the experts determining the trademark design codes used to catalog the visual design codes in the mark. In this study, we explore several methods to automate trademark design code classification. Based on recent successes of convolutional neural networks in image classification, we have used several different convolutional neural networks such as Google’s Inception v3, Inception-ResNet-v2, and Xception net. The study also looks into other techniques to augment the results from CNNs such as using Open Source Computer Vision Library (OpenCV) to pre-process the images. This paper reports the results of the various models trained on year of annotated trademark images.

Keywords: trademark design code, convolutional neural networks, trademark image classification, trademark image search, Inception-ResNet-v2

Procedia PDF Downloads 232
4767 Geological Mapping of Gabel Humr Akarim Area, Southern Eastern Desert, Egypt: Constrain from Remote Sensing Data, Petrographic Description and Field Investigation

Authors: Doaa Hamdi, Ahmed Hashem

Abstract:

The present study aims at integrating the ASTER data and Landsat 8 data to discriminate and map alteration and/or mineralization zones in addition to delineating different lithological units of Humr Akarim Granites area. The study area is located at 24º9' to 24º13' N and 34º1' to 34º2'45"E., covering a total exposed surface area of about 17 km². The area is characterized by rugged topography with low to moderate relief. Geologic fieldwork and petrographic investigations revealed that the basement complex of the study area is composed of metasediments, mafic dikes, older granitoids, and alkali-feldspar granites. Petrographic investigations revealed that the secondary minerals in the study area are mainly represented by chlorite, epidote, clay minerals and iron oxides. These minerals have specific spectral signatures in the region of visible near-infrared and short-wave infrared (0.4 to 2.5 µm). So that the ASTER imagery processing was concentrated on VNIR-SWIR spectrometric data in order to achieve the purposes of this study (geologic mapping of hydrothermal alteration zones and delineate possible radioactive potentialities). Mapping of hydrothermal alterations zones in addition to discriminating the lithological units in the study area are achieved through the utilization of some different image processing, including color band composites (CBC) and data transformation techniques such as band ratios (BR), band ratio codes (BRCs), principal component analysis(PCA), Crosta Technique and minimum noise fraction (MNF). The field verification and petrographic investigation confirm the results of ASTER imagery and Landsat 8 data, proposing a geological map (scale 1:50000).

Keywords: remote sensing, petrography, mineralization, alteration detection

Procedia PDF Downloads 164
4766 Parallel Vector Processing Using Multi Level Orbital DATA

Authors: Nagi Mekhiel

Abstract:

Many applications use vector operations by applying single instruction to multiple data that map to different locations in conventional memory. Transferring data from memory is limited by access latency and bandwidth affecting the performance gain of vector processing. We present a memory system that makes all of its content available to processors in time so that processors need not to access the memory, we force each location to be available to all processors at a specific time. The data move in different orbits to become available to other processors in higher orbits at different time. We use this memory to apply parallel vector operations to data streams at first orbit level. Data processed in the first level move to upper orbit one data element at a time, allowing a processor in that orbit to apply another vector operation to deal with serial code limitations inherited in all parallel applications and interleaved it with lower level vector operations.

Keywords: Memory Organization, Parallel Processors, Serial Code, Vector Processing

Procedia PDF Downloads 270
4765 A Systematic Review of Sensory Processing Patterns of Children with Autism Spectrum Disorders

Authors: Ala’a F. Jaber, Bara’ah A. Bsharat, Noor T. Ismael

Abstract:

Background: Sensory processing is a fundamental skill needed for the successful performance of daily living activities. These skills are impaired as parts of the neurodevelopmental process issues among children with autism spectrum disorder (ASD). This systematic review aimed to summarize the evidence on the differences in sensory processing and motor characteristic between children with ASD and children with TD. Method: This systematic review followed the guidelines of the preferred reporting items for systematic reviews and meta-analysis. The search terms included sensory, motor, condition, and child-related terms or phrases. The electronic search utilized Academic Search Ultimate, CINAHL Plus with Full Text, ERIC, MEDLINE, MEDLINE Complete, Psychology, and Behavioral Sciences Collection, and SocINDEX with full-text databases. The hand search included looking for potential studies in the references of related studies. The inclusion criteria included studies published in English between years 2009-2020 that included children aged 3-18 years with a confirmed ASD diagnosis, according to the DSM-V criteria, included a control group of typical children, included outcome measures related to the sensory processing and/or motor functions, and studies available in full-text. The review of included studies followed the Oxford Centre for Evidence-Based Medicine guidelines, and the Guidelines for Critical Review Form of Quantitative Studies, and the guidelines for conducting systematic reviews by the American Occupational Therapy Association. Results: Eighty-eight full-text studies related to the differences between children with ASD and children with TD in terms of sensory processing and motor characteristics were reviewed, of which eighteen articles were included in the quantitative synthesis. The results reveal that children with ASD had more extreme sensory processing patterns than children with TD, like hyper-responsiveness and hypo-responsiveness to sensory stimuli. Also, children with ASD had limited gross and fine motor abilities and lower strength, endurance, balance, eye-hand coordination, movement velocity, cadence, dexterity with a higher rate of gait abnormalities than children with TD. Conclusion: This systematic review provided preliminary evidence suggesting that motor functioning should be addressed in the evaluation and intervention for children with ASD, and sensory processing should be supported among children with TD. More future research should investigate whether how the performance and engagement in daily life activities are affected by sensory processing and motor skills.

Keywords: sensory processing, occupational therapy, children, motor skills

Procedia PDF Downloads 128
4764 QCARNet: Networks for Quality-Adaptive Compression Artifact

Authors: Seung Ho Park, Young Su Moon, Nam Ik Cho

Abstract:

We propose a convolution neural network (CNN) for quality adaptive compression artifact reduction named QCARNet. The proposed method is different from the existing discriminative models that learn a specific model at a certain quality level. The method is composed of a quality estimation CNN (QECNN) and a compression artifact reduction CNN (CARCNN), which are two functionally separate CNNs. By connecting the QECNN and CARCNN, each CARCNN layer is able to adaptively reduce compression artifacts and preserve details depending on the estimated quality level map generated by the QECNN. We experimentally demonstrate that the proposed method achieves better performance compared to other state-of-the-art blind compression artifact reduction methods.

Keywords: compression artifact reduction, deblocking, image denoising, image restoration

Procedia PDF Downloads 141
4763 Features Vector Selection for the Recognition of the Fragmented Handwritten Numeric Chains

Authors: Salim Ouchtati, Aissa Belmeguenai, Mouldi Bedda

Abstract:

In this study, we propose an offline system for the recognition of the fragmented handwritten numeric chains. Firstly, we realized a recognition system of the isolated handwritten digits, in this part; the study is based mainly on the evaluation of neural network performances, trained with the gradient backpropagation algorithm. The used parameters to form the input vector of the neural network are extracted from the binary images of the isolated handwritten digit by several methods: the distribution sequence, sondes application, the Barr features, and the centered moments of the different projections and profiles. Secondly, the study is extended for the reading of the fragmented handwritten numeric chains constituted of a variable number of digits. The vertical projection was used to segment the numeric chain at isolated digits and every digit (or segment) was presented separately to the entry of the system achieved in the first part (recognition system of the isolated handwritten digits).

Keywords: features extraction, handwritten numeric chains, image processing, neural networks

Procedia PDF Downloads 265
4762 Factors Influencing the Acceptance of Y Series among the Residents in Three Southern Border Provinces of Thailand

Authors: Chetsada Noknoi

Abstract:

The acceptance of Y series refers to the willingness and enjoyment of watching Y series without feeling different from general series. This occurs when people watch Y series and derive happiness and entertainment from it. The viewing experience has the most significant impact on Y series acceptance. This research aims to 1) investigate the levels of acceptance of sexual diversity, image of Y series Actors, media exposure, and Y series acceptance among the residents in three southern border provinces of Thailand, and 2) examine how acceptance of sexual diversity, actor perceptions in Y series, and media exposure influence Y series acceptance in these provinces. The sample consisted of 322 participants from the three southern border provinces of Thailand. The research instrument used was a questionnaire, and data were analyzed using frequency, percentage, mean, standard deviation, and multiple regression analysis. The findings revealed that overall, acceptance of sexual diversity, Image of Y series Actors, and Y series acceptance among the residents in three southern border provinces of Thailand were at a high level, while media exposure was moderate overall. However, the two factors that had the most significant impact on Y series acceptance in these provinces, ranked from highest to lowest influence, were media exposure and acceptance of sexual diversity. Both of these factors had a positive effect on Y series acceptance among the residents in three southern border provinces of Thailand. Collectively, these factors accounted for 40.7% of the variance in Y series acceptance among the residents in three southern border provinces of Thailand.

Keywords: acceptance, acceptance of sexual diversity, image of Y series actors, media exposure, Y series

Procedia PDF Downloads 77
4761 Status and Image of the Nurse as Perceived by the Public

Authors: Salam Hadid, Mohammad Khatib

Abstract:

The International Council of Nurses-ICN defined nursing as a sphere integrating autonomous and collaborative care intended for the individual, family and community within and outside of the care setting. Nursing as a care profession has developed broadly over recent decades in terms of its essentials, expertise and primarily academically. Despite the impressive growth of the profession, there is still extreme diversity in the public’s perceptions and opinions of the profession and its professionals and in the knowledge on the fundamentals of its true function and spheres of engagement. The current study examines the existing knowledge among the general population regarding the nursing profession. The population consisted of 498 respondents, 236 women and 262 men, age 18-81. The respondents noted that nursing focuses on the technical, and the emotional aspects and promotion of health for the patient are not the nurse’s responsibility. Most of the respondents saw nurses working mainly in hospital and community-based clinic settings. They considered nursing to be a high prestige profession in general, but less prestigious among respondents exposed to healthcare provision. Most of the respondents considered nursing to be a humane profession but without independence and with no need for academic studies. The findings are incompatible with the definition of nursing and its spheres of action as defined in the ICN Code of Ethics. Two suggestions are to work through nursing schools addressing the student nurses, as ambassadors for the profession. The second is using the healthcare encounter between the nursing staff and the public to improve the image of nurses.

Keywords: ethics, nurse image, public, nursing

Procedia PDF Downloads 295
4760 Application of the Seismic Reflection Survey to an Active Fault Imaging

Authors: Nomin-Erdene Erdenetsogt, Tseedulam Khuut, Batsaikhan Tserenpil, Bayarsaikhan Enkhee

Abstract:

As the framework of 60 years of development of Astronomical and Geophysical science in modern Mongolia, various geophysical methods (electrical tomography, ground-penetrating radar, and high-resolution reflection seismic profiles) were used to image an active fault in-depth range between few decimeters to few tens meters. An active fault was fractured by an earthquake magnitude 7.6 during 1967. After geophysical investigations, trench excavations were done at the sites to expose the fault surfaces. The complex geophysical survey in the Mogod fault, Bulgan region of central Mongolia shows an interpretable reflection arrivals range of < 5 m to 50 m with the potential for increased resolution. Reflection profiles were used to help interpret the significance of neotectonic surface deformation at earthquake active fault. The interpreted profiles show a range of shallow fault structures and provide subsurface evidence with support of paleoseismologic trenching photos, electrical surveys.

Keywords: Mogod fault, geophysics, seismic processing, seismic reflection survey

Procedia PDF Downloads 127
4759 Application of Advanced Remote Sensing Data in Mineral Exploration in the Vicinity of Heavy Dense Forest Cover Area of Jharkhand and Odisha State Mining Area

Authors: Hemant Kumar, R. N. K. Sharma, A. P. Krishna

Abstract:

The study has been carried out on the Saranda in Jharkhand and a part of Odisha state. Geospatial data of Hyperion, a remote sensing satellite, have been used. This study has used a wide variety of patterns related to image processing to enhance and extract the mining class of Fe and Mn ores.Landsat-8, OLI sensor data have also been used to correctly explore related minerals. In this way, various processes have been applied to increase the mineralogy class and comparative evaluation with related frequency done. The Hyperion dataset for hyperspectral remote sensing has been specifically verified as an effective tool for mineral or rock information extraction within the band range of shortwave infrared used. The abundant spatial and spectral information contained in hyperspectral images enables the differentiation of different objects of any object into targeted applications for exploration such as exploration detection, mining.

Keywords: Hyperion, hyperspectral, sensor, Landsat-8

Procedia PDF Downloads 124
4758 Convolutional Neural Network Based on Random Kernels for Analyzing Visual Imagery

Authors: Ja-Keoung Koo, Kensuke Nakamura, Hyohun Kim, Dongwha Shin, Yeonseok Kim, Ji-Su Ahn, Byung-Woo Hong

Abstract:

The machine learning techniques based on a convolutional neural network (CNN) have been actively developed and successfully applied to a variety of image analysis tasks including reconstruction, noise reduction, resolution enhancement, segmentation, motion estimation, object recognition. The classical visual information processing that ranges from low level tasks to high level ones has been widely developed in the deep learning framework. It is generally considered as a challenging problem to derive visual interpretation from high dimensional imagery data. A CNN is a class of feed-forward artificial neural network that usually consists of deep layers the connections of which are established by a series of non-linear operations. The CNN architecture is known to be shift invariant due to its shared weights and translation invariance characteristics. However, it is often computationally intractable to optimize the network in particular with a large number of convolution layers due to a large number of unknowns to be optimized with respect to the training set that is generally required to be large enough to effectively generalize the model under consideration. It is also necessary to limit the size of convolution kernels due to the computational expense despite of the recent development of effective parallel processing machinery, which leads to the use of the constantly small size of the convolution kernels throughout the deep CNN architecture. However, it is often desired to consider different scales in the analysis of visual features at different layers in the network. Thus, we propose a CNN model where different sizes of the convolution kernels are applied at each layer based on the random projection. We apply random filters with varying sizes and associate the filter responses with scalar weights that correspond to the standard deviation of the random filters. We are allowed to use large number of random filters with the cost of one scalar unknown for each filter. The computational cost in the back-propagation procedure does not increase with the larger size of the filters even though the additional computational cost is required in the computation of convolution in the feed-forward procedure. The use of random kernels with varying sizes allows to effectively analyze image features at multiple scales leading to a better generalization. The robustness and effectiveness of the proposed CNN based on random kernels are demonstrated by numerical experiments where the quantitative comparison of the well-known CNN architectures and our models that simply replace the convolution kernels with the random filters is performed. The experimental results indicate that our model achieves better performance with less number of unknown weights. The proposed algorithm has a high potential in the application of a variety of visual tasks based on the CNN framework. Acknowledgement—This work was supported by the MISP (Ministry of Science and ICT), Korea, under the National Program for Excellence in SW (20170001000011001) supervised by IITP, and NRF-2014R1A2A1A11051941, NRF2017R1A2B4006023.

Keywords: deep learning, convolutional neural network, random kernel, random projection, dimensionality reduction, object recognition

Procedia PDF Downloads 290
4757 Investigating the Influence of Activation Functions on Image Classification Accuracy via Deep Convolutional Neural Network

Authors: Gulfam Haider, sana danish

Abstract:

Convolutional Neural Networks (CNNs) have emerged as powerful tools for image classification, and the choice of optimizers profoundly affects their performance. The study of optimizers and their adaptations remains a topic of significant importance in machine learning research. While numerous studies have explored and advocated for various optimizers, the efficacy of these optimization techniques is still subject to scrutiny. This work aims to address the challenges surrounding the effectiveness of optimizers by conducting a comprehensive analysis and evaluation. The primary focus of this investigation lies in examining the performance of different optimizers when employed in conjunction with the popular activation function, Rectified Linear Unit (ReLU). By incorporating ReLU, known for its favorable properties in prior research, the aim is to bolster the effectiveness of the optimizers under scrutiny. Specifically, we evaluate the adjustment of these optimizers with both the original Softmax activation function and the modified ReLU activation function, carefully assessing their impact on overall performance. To achieve this, a series of experiments are conducted using a well-established benchmark dataset for image classification tasks, namely the Canadian Institute for Advanced Research dataset (CIFAR-10). The selected optimizers for investigation encompass a range of prominent algorithms, including Adam, Root Mean Squared Propagation (RMSprop), Adaptive Learning Rate Method (Adadelta), Adaptive Gradient Algorithm (Adagrad), and Stochastic Gradient Descent (SGD). The performance analysis encompasses a comprehensive evaluation of the classification accuracy, convergence speed, and robustness of the CNN models trained with each optimizer. Through rigorous experimentation and meticulous assessment, we discern the strengths and weaknesses of the different optimization techniques, providing valuable insights into their suitability for image classification tasks. By conducting this in-depth study, we contribute to the existing body of knowledge surrounding optimizers in CNNs, shedding light on their performance characteristics for image classification. The findings gleaned from this research serve to guide researchers and practitioners in making informed decisions when selecting optimizers and activation functions, thus advancing the state-of-the-art in the field of image classification with convolutional neural networks.

Keywords: deep neural network, optimizers, RMsprop, ReLU, stochastic gradient descent

Procedia PDF Downloads 125
4756 An Improved Sub-Nyquist Sampling Jamming Method for Deceiving Inverse Synthetic Aperture Radar

Authors: Yanli Qi, Ning Lv, Jing Li

Abstract:

Sub-Nyquist sampling jamming method (SNSJ) is a well known deception jamming method for inverse synthetic aperture radar (ISAR). However, the anti-decoy of the SNSJ method performs easier since the amplitude of the false-target images are weaker than the real-target image; the false-target images always lag behind the real-target image, and all targets are located in the same cross-range. In order to overcome the drawbacks mentioned above, a simple modulation based on SNSJ (M-SNSJ) is presented in this paper. The method first uses amplitude modulation factor to make the amplitude of the false-target images consistent with the real-target image, then uses the down-range modulation factor and cross-range modulation factor to make the false-target images move freely in down-range and cross-range, respectively, thus the capacity of deception is improved. Finally, the simulation results on the six available combinations of three modulation factors are given to illustrate our conclusion.

Keywords: inverse synthetic aperture radar (ISAR), deceptive jamming, Sub-Nyquist sampling jamming method (SNSJ), modulation based on Sub-Nyquist sampling jamming method (M-SNSJ)

Procedia PDF Downloads 218