Search results for: fluid flow in porous media
8045 Experimental Study of the Fiber Dispersion of Pulp Liquid Flow in Channels with Application to Papermaking
Authors: Masaru Sumida
Abstract:
This study explored the feasibility of improving the hydraulic headbox of papermaking machines by studying the flow of wood-pulp suspensions behind a flat plate inserted in parallel and convergent channels. Pulp fiber concentrations of the wake downstream of the plate were investigated by flow visualization and optical measurements. Changes in the time-averaged and fluctuation of the fiber concentration along the flow direction were examined. In addition, the control of the flow characteristics in the two channels was investigated. The behaviors of the pulp fibers and the wake flow were found to be strongly related to the flow states in the upstream passages partitioned by the plate. The distribution of the fiber concentration was complex because of the formation of a thin water layer on the plate and the generation of Karman’s vortices at the trailing edge of the plate. Compared with the flow in the parallel channel, fluctuations in the fiber concentration decreased in the convergent channel. However, at low flow velocities, the convergent channel has a weak effect on equilibrating the time-averaged fiber concentration. This shows that a rectangular trailing edge cannot adequately disperse pulp suspensions; thus, at low flow velocities, a convergent channel is ineffective in ensuring uniform fiber concentration.Keywords: fiber dispersion, headbox, pulp liquid, wake flow
Procedia PDF Downloads 3858044 Designing Social Media into Higher Education Courses
Authors: Thapanee Seechaliao
Abstract:
This research paper presents guiding on how to design social media into higher education courses. The research methodology used a survey approach. The research instrument was a questionnaire about guiding on how to design social media into higher education courses. Thirty-one lecturers completed the questionnaire. The data were scored by frequency and percentage. The research results were the lecturers’ opinions concerning the designing social media into higher education courses as follows: 1) Lecturers deem that the most suitable learning theory is Collaborative Learning. 2) Lecturers consider that the most important learning and innovation Skill in the 21st century is communication and collaboration skills. 3) Lecturers think that the most suitable evaluation technique is authentic assessment. 4) Lecturers consider that the most appropriate portion used as blended learning should be 70% in the classroom setting and 30% online.Keywords: instructional design, social media, courses, higher education
Procedia PDF Downloads 5108043 Hydrodynamic Study of Laminar Flow in Agitated Vessel by a Curved Blade Agitator
Authors: A. Benmoussa, M. Bouanini, M. Rebhi
Abstract:
The mixing and agitation of fluid in stirred tank is one of the most important unit operations for many industries such as chemical, biotechnological, pharmaceutical, petrochemical, cosmetic, and food processing. Therefore, determining the level of mixing and overall behaviour and performance of the mixing tanks are crucial from the product quality and process economics point of views. The most fundamental needs for the analysis of these processes from both a theoretical and industrial perspective is the knowledge of the hydrodynamic behaviour and the flow structure in such tanks. Depending on the purpose of the operation carried out in mixer, the best choice for geometry of the tank and agitator type can vary widely. Initially, a local and global study namely the velocity and power number on a typical agitation system agitated by a mobile-type two-blade straight (d/D=0.5) allowed us to test the reliability of the CFD, the result were compared with those of experimental literature, a very good concordance was observed. The stream function, the velocity profile, the velocity fields and power number are analyzed. It was shown that the hydrodynamics is modified by the curvature of the mobile which plays a key role.Keywords: agitated tanks, curved blade agitator, laminar flow, CFD modelling
Procedia PDF Downloads 4158042 Contemplation of Thermal Characteristics by Filling Ratio of Aluminium Oxide Nano Fluid in Wire Mesh Heat Pipe
Authors: D. Mala, S. Sendhilnathan, D. Ratchagaraja
Abstract:
In this paper, the performance of heat pipe in terms of overall heat transfer coefficient and thermal resistance is quantified by varying the volume of working fluid and the performance parameters are contemplated. For this purpose Al2O3 nano particles with a density of 9.8 gm/cm3 and a volume concentration of 1% is used as the working fluid in experimental heat pipe. The performance of heat pipe was evaluated by conducting experiments with different thermal loads and different angle of inclinations. Thermocouples are used to record the temperature distribution across the experiment. The results provide evidence that the suspension of Al2O3 nano particles in the base fluid increases the thermal efficiency of heat pipe and can be used in practical heat exchange applications.Keywords: heat pipe, angle of inclination, thermal resistance, thermal efficiency
Procedia PDF Downloads 5628041 The Effect of H2S on Crystal Structure
Authors: C. Venkataraman B. E., J. Nagarajan B. E., V. Srinivasan M. Tech
Abstract:
For a better understanding on sulfide stress corrosion cracking, a theoretical approach based on crystal structure, molecule behavior, flow of electrons and electrochemical reaction is developed. Its impact on different materials such as carbon steel, low alloy, alloy for sour (H2S) environments is studied. This paper describes the theories on various disaster and failures occurred in the industry by Stress Corrosion Cracking (SCC). Parameters such as pH of process fluid, partial pressure of CO2, O2, Chlorine, effect of internal pressure (crystal structure deformation by stress), and external environment condition are considered. An analytical line graph is then created for process fluid parameter verses time, temperature, induced/residual stress due to local pressure build-up. By comparison with the load test result of NACE and ASTM, it is possible to predict and simplify the control of SCC by use of materials like ferritic, Austenitic material in the oil and gas & petroleum industries.Keywords: crystal structure deformation, failure assessment, alloy-environment combination, H2S
Procedia PDF Downloads 4018040 Prescription of Maintenance Fluids in the Emergency Department
Authors: Adrian Craig, Jonathan Easaw, Rose Jordan, Ben Hall
Abstract:
The prescription of intravenous fluids is a fundamental component of inpatient management, but it is one which usually lacks thought. Fluids are a drug, which like any other can cause harm when prescribed inappropriately or wrongly. However, it is well recognised that it is poorly done, especially in the acute portals. The National Institute for Health and Care Excellence (NICE) recommends 1mmol/kg of potassium, sodium, and chloride per day. With various options of fluids, clinicians tend to face difficulty in choosing the most appropriate maintenance fluid, and there is a reluctance to prescribe potassium as part of an intravenous maintenance fluid regime. The aim was to prospectively audit the prescription of the first bag of intravenous maintenance fluids, the use of urea and electrolytes results to guide the choice of fluid and the use of fluid prescription charts, in a busy emergency department of a major trauma centre in Stoke-on-Trent, United Kingdom. This was undertaken over a week in early November 2016. Of those prescribed maintenance fluid only 8.9% were prescribed a fluid which was most appropriate for their daily electrolyte requirements. This audit has helped to highlight further the issues that are faced in busy Emergency Departments within hospitals that are stretched and lack capacity for prompt transfer to a ward. It has supported the findings of NICE, that emergency admission portals such as Emergency Departments poorly prescribed intravenous fluid therapy. The findings have enabled simple steps to be taken to educate clinicians about their fluid of choice. This has included: posters to remind clinicians to consider the urea and electrolyte values before prescription, suggesting the inclusion of a suggested intravenous fluid of choice in the prescription chart of the trust and the inclusion of a session within the introduction programme revising intravenous fluid therapy and daily electrolyte requirements. Moving forward, once the interventions have been implemented then, the data will be reaudited in six months to note any improvement in maintenance fluid choice. Alongside this, an audit of the rate of intravenous maintenance fluid therapy would be proposed to further increase patient safety by avoiding unintentional fluid overload which may cause unnecessary harm to patients within the hospital. In conclusion, prescription of maintenance fluid therapy was poor within the Emergency Department, and there is a great deal of opportunity for improvement. Therefore, the measures listed above will be implemented and the data reaudited.Keywords: chloride, electrolyte, emergency department, emergency medicine, fluid, fluid therapy, intravenous, maintenance, major trauma, potassium, sodium, trauma
Procedia PDF Downloads 3228039 The Influence of Social Media on the Body Image of First Year Female Medical Students of University of Khartoum, 2022
Authors: Razan Farah, Siham Ballah
Abstract:
Facebook, Instagram, TikTok and other social media applications have become an integral component of everyone’s social life, particularly among younger generations and adolescences. These social apps have been changing a lot of conceptions and believes in the population by representing public figures and celebrities as role models. The social comparison theory, which says that people self-evaluate based on comparisons with similar others, is commonly used to explore the impact of social media on body image. There is a need to study the influence of those social platforms on the body image as there have been an increase in body dissatisfaction in the recent years. This cross sectional study used a self administered questionnaire on a simple random sample of 133 female medical students of the first year. Finding shows that the response rate was 75%. There was an association between social media usage and noticing how the person look(p value = .022), but no significant association between social media use and body image influence or dissatisfaction was found. This study implies more research under this topic in Sudan as the literature are scarce.Keywords: body image, body dissatisfaction, social media, adolescences
Procedia PDF Downloads 718038 Simulation of Internal Flow Field of Pitot-Tube Jet Pump
Authors: Iqra Noor, Ihtzaz Qamar
Abstract:
Pitot-tube Jet pump, single-stage pump with low flow rate and high head, consists of a radial impeller that feeds water to rotating cavity. Water then enters stationary pitot-tube collector (diffuser), which discharges to the outside. By means of ANSYS Fluent 15.0, the internal flow characteristics for Pitot-tube Jet pump with standard pitot and curved pitot are studied. Under design condition, realizable k-e turbulence model and SIMPLEC algorithm are used to calculate 3D flow field inside both pumps. The simulation results reveal that energy is imparted to the flow by impeller and inside the rotor, forced vortex type flow is observed. Total pressure decreases inside pitot-tube whereas static pressure increases. Changing pitot-tube from standard to curved shape results in minimum flow circulation inside pitot-tube and leads to a higher pump performance.Keywords: CFD, flow circulation, high pressure pump, impeller, internal flow, pickup tube pump, rectangle channels, rotating casing, turbulence
Procedia PDF Downloads 1608037 Comparison of Flow and Mixing Characteristics between Non-Oscillating and Transversely Oscillating Jet
Authors: Dinku Seyoum Zeleke, Rong Fung Huang, Ching Min Hsu
Abstract:
Comparison of flow and mixing characteristics between non-oscillating jet and transversely oscillating jet was investigated experimentally. Flow evolution process was detected by using high-speed digital camera, and jet spread width was calculated using binary edge detection techniques by using the long-exposure images. The velocity characteristics of transversely oscillating jet induced by a V-shaped fluidic oscillator were measured using single component hot-wire anemometer. The jet spread width of non-oscillating jet was much smaller than the jet exit gap because of behaving natural jet behaviors. However, the transversely oscillating jet has a larger jet spread width, which was associated with the excitation of the flow by self-induced oscillation. As a result, the flow mixing characteristics desperately improved both near-field and far-field. Therefore, this transversely oscillating jet has a better turbulence intensity, entrainment, and spreading width so that it augments flow-mixing characteristics desperately.Keywords: flow mixing, transversely oscillating, spreading width, velocity characteristics
Procedia PDF Downloads 2488036 Thermal Effects on Wellbore Stability and Fluid Loss in High-Temperature Geothermal Drilling
Authors: Mubarek Alpkiray, Tan Nguyen, Arild Saasen
Abstract:
Geothermal drilling operations contain numerous challenges that are encountered to increase the well cost and nonproductive time. Fluid loss is one of the most undesirable troublesome that can cause well abandonment in geothermal drilling. Lost circulation can be seen due to natural fractures, high mud weight, and extremely high formation temperatures. This challenge may cause wellbore stability problems and lead to expensive drilling operations. Wellbore stability is the main domain that should be considered to mitigate or prevent fluid loss into the formation. This paper describes the causes of fluid loss in the Pamukoren geothermal field in Turkey. A geomechanics approach integration and assessment is applied to help the understanding of fluid loss problems. In geothermal drillings, geomechanics is primarily based on rock properties, in-situ stress characterization, the temperature of the rock, determination of stresses around the wellbore, and rock failure criteria. Since a high-temperature difference between the wellbore wall and drilling fluid is presented, temperature distribution through the wellbore is estimated and implemented to the wellbore stability approach. This study reviewed geothermal drilling data to analyze temperature estimation along the wellbore, the cause of fluid loss and stored electric capacity of the reservoir. Our observation demonstrates the geomechanical approach's significant role in understanding safe drilling operations on high-temperature wells. Fluid loss is encountered due to thermal stress effects around the borehole. This paper provides a wellbore stability analysis for a geothermal drilling operation to discuss the causes of lost circulation resulting in nonproductive time and cost.Keywords: geothermal wells, drilling, wellbore stresses, drilling fluid loss, thermal stress
Procedia PDF Downloads 1948035 High Viscous Oil–Water Flow: Experiments and CFD Simulations
Authors: A. Archibong-Eso, J. Shi, Y Baba, S. Alagbe, W. Yan, H. Yeung
Abstract:
This study presents over 100 experiments conducted in a 25.4 mm internal diameter (ID) horizontal pipeline. Oil viscosity ranging from 3.5 Pa.s–5.0 Pa.s are used with superficial velocities of oil and water ranging from 0.06 to 0.55 m/s and 0.01 m/s to 1.0 m/s, respectively. Pressure gradient measurements and flow pattern observations are discussed. Numerical simulation of some flow conditions is performed using the commercial CFD code ANSYS Fluent® and the simulation results are compared with experimental results. Results indicate that CFD numerical simulation performed moderately well in predicting the flow configurations observed in this study while discrepancies were observed in the pressure gradient predictions.Keywords: flow patterns, plug, pressure gradient, rivulet
Procedia PDF Downloads 4268034 Permeable Reactive Pavement for Controlling the Transport of Benzene, Toluene, Ethyl-Benzene, and Xylene (BTEX) Contaminants
Authors: Shengyi Huang, Chenju Liang
Abstract:
Volatile organic compounds such as benzene, toluene, ethyl-benzene, and xylene (BTEX) are common contaminants in environment, which could come from asphalt concrete or exhaust emissions of vehicles. The BTEX may invade to the subsurface environment via wet and dry atmospheric depositions. If there aren’t available ways for controlling contaminants’ fate and transport, they would extensively harm natural environment. In the 1st phase of this study, various adsorbents were screened for a suitable one to be an additive in the porous asphalt mixture. In the 2nd phase, addition of the selected adsorbent was incorporated with the design of porous asphalt concrete (PAC) to produce the permeable reactive pavement (PRP), which was subsequently tested for the potential of adsorbing aqueous BTEX as compared to the PAC, in the 3rd phase. The PRP was prepared according to the following steps: firstly, the suitable adsorbent was chosen based on the analytical results of specific surface area analysis, thermal-gravimetric analysis, adsorption kinetics and isotherms, and thermal dynamics analysis; secondly, the materials of coarse aggregate, fine aggregate, filler, asphalt, and fiber were tested in order to meet regulated specifications (e.g., water adsorption, soundness, viscosity etc.) for preparing the PRP; thirdly, the amount of adsorbent additive was determined in the PRP; fourthly, the prepared PAC and PRP were examined for their physical properties (e.g., abrasion loss, drain-down loss, Marshall stability, Marshall flow, dynamic stability etc.). As a result of comparison between PRP and PAC, the PRP showed better physical performance than the traditional PAC. At last, the Marshall Specimen column tests were conducted to explore the adsorption capacities of PAC and PRPs. The BTEX adsorption capacities of PRPs are higher than those obtained from traditional PAC. In summary, PRPs showed superior physical performance and adsorption capacities, which exhibit the potential of PRP to be applied as a replacement of PAC for better controlling the transport of non-point source pollutants.Keywords: porous asphalt concrete, volatile organic compounds, permeable reactive pavement, non-point source pollution
Procedia PDF Downloads 2118033 Factors of Social Media Platforms on Consumer Behavior
Authors: Zebider Asire Munyelet, Yibeltal Chanie Manie
Abstract:
In the modern digital landscape, the increase of social media platforms has become identical to the evolution of online consumer behavior. This study investigates the complicated relationship between social media and the purchasing decisions of online buyers. Through an extensive review of existing literature and empirical research, the aim is to comprehensively analyze the multidimensional impact that social media exerts on the various stages of the online buyer's journey. The investigation encompasses the exploration of how social media platforms serve as influential channels for information dissemination, product discovery, and consumer engagement. Additionally, the study investigates into the psychological aspects underlying the role of social media in shaping buyer preferences, perceptions, and trust in online transactions. The methodologies employed include both quantitative and qualitative analyses, incorporating surveys, interviews, and data analytics to derive meaningful insights. Statistical models are applied to distinguish patterns in online buyer behavior concerning product awareness, brand loyalty, and decision-making processes. The expected outcomes of this research contribute not only to the academic understanding of the dynamic interplay between social media and online buyer behavior but also offer practical implications for marketers, e-commerce platforms, and policymakers.Keywords: consumer Behavior, social media, online purchasing, online transaction
Procedia PDF Downloads 768032 Role of Fracturing, Brecciation and Calcite Veining in Fluids Flow and Permeability Enhancement in Low-Porosity Rock Masses: Case Study of Boulaaba Aptian Dolostones, Kasserine, Central Tunisia
Authors: Mohamed Khali Zidi, Mohsen Henchiri, Walid Ben Ahmed
Abstract:
In the context of a hypogene hydrothermal travertine system, including low-porosity brittle bedrock and rock-mass permeability in Aptian dolostone of Boulaaba, Kasserine is enhanced through faulting and fracturing. This permeability enhancement related to the deformation modes along faults and fractures is likely to be in competition with permeability reduction when microcracks, fractures, and faults all become infilled with breccias and low-permeability hydrothermal precipitates. So that, fault continual or intermittent reactivation is probably necessary for them to keep their potential as structural high-permeability conduits. Dilational normal faults in strong mechanical stratigraphy associated with fault segments with dip changes are sites for porosity and permeability in groundwater infiltration and flow, hydrocarbon reservoirs, and also may be important sources of mineralization. The brecciation mechanism through dilational faulting and gravitational collapse originates according to hosting lithologies chaotic clast-supported breccia in strong lithologies such as sandstones, limestones, and dolostones, and matrix-supported cataclastic in weaker lithologies such as marls and shales. Breccias contribute to controlling fluid flow when the porosity is sealed either by low-permeability hydrothermal precipitates or by fine matrix materials. All these mechanisms of fault-related rock-mass permeability enhancement and reduction can be observed and analyzed in the region of Sidi Boulaaba, Kasserine, central Tunisia, where dilational normal faulting occurs in mechanical strong dolostone layering alternating with more weak marl and shale lithologies, has originated a variety of fault voids (fluid conduits) breccias (chaotic, crackle and mosaic breccias) and carbonate cement.Keywords: travertine, Aptian dolostone, Boulaaba, fracturing
Procedia PDF Downloads 658031 The Effects of Using Telephone and Social Media Applications While Driving in Kuwait
Authors: Bashaiar Alsanaa
Abstract:
Social media have totally converged with social life all around the globe. Using social media applications and mobile phones have become somewhat of an addiction to most people. Driving while using mobile applications falls under such addiction when usage is not of urgency. This study aims to investigate the impact of using such applications while driving in the small rich state of Kuwait, where most people juggle more than one phone for different purposes. Positive and negative effects will be explored in detail as well as causes for these effects and possible reasons. A full range of recommendations will be presented so as to give other countries a specific case study upon which to build solutions and remedies to this emerging and dangerous social phenomenon.Keywords: social media, driving, mobile applications, communication
Procedia PDF Downloads 3608030 A Study on Thermal and Flow Characteristics by Solar Radiation for Single-Span Greenhouse by Computational Fluid Dynamics Simulation
Authors: Jonghyuk Yoon, Hyoungwoon Song
Abstract:
Recently, there are lots of increasing interest in a smart farming that represents application of modern Information and Communication Technologies (ICT) into agriculture since it provides a methodology to optimize production efficiencies by managing growing conditions of crops automatically. In order to obtain high performance and stability for smart greenhouse, it is important to identify the effect of various working parameters such as capacity of ventilation fan, vent opening area and etc. In the present study, a 3-dimensional CFD (Computational Fluid Dynamics) simulation for single-span greenhouse was conducted using the commercial program, Ansys CFX 18.0. The numerical simulation for single-span greenhouse was implemented to figure out the internal thermal and flow characteristics. In order to numerically model solar radiation that spread over a wide range of wavelengths, the multiband model that discretizes the spectrum into finite bands of wavelength based on Wien’s law is applied to the simulation. In addition, absorption coefficient of vinyl varied with the wavelength bands is also applied based on Beer-Lambert Law. To validate the numerical method applied herein, the numerical results of the temperature at specific monitoring points were compared with the experimental data. The average error rates (12.2~14.2%) between them was shown and numerical results of temperature distribution are in good agreement with the experimental data. The results of the present study can be useful information for the design of various greenhouses. This work was supported by Korea Institute of Planning and Evaluation for Technology in Food, Agriculture, Forestry and Fisheries (IPET) through Advanced Production Technology Development Program, funded by Ministry of Agriculture, Food and Rural Affairs (MAFRA)(315093-03).Keywords: single-span greenhouse, CFD (computational fluid dynamics), solar radiation, multiband model, absorption coefficient
Procedia PDF Downloads 1368029 The Influence of Social Media on Gym Memberships in the UAE
Authors: Mohammad Obeidat
Abstract:
In recent years, social media has revolutionized the way businesses market their products and services. Platforms such as Instagram, Facebook, YouTube, and TikTok have become powerful tools for reaching large audiences and engaging with consumers in real-time. These platforms allow businesses to create visually appealing content, interact with customers, and leverage user-generated content to enhance brand visibility and credibility. Recent statistics indicate that businesses that actively participate in social media marketing see improvements in brand visibility, customer engagement, and revenue generation. For example, several studies reveal that 70% of business-to-consumer marketers have gained customers through Facebook. This study aims to contribute to the academic literature on social media marketing and consumer behavior, specifically within the context of the fitness industry in the UAE. The findings will provide valuable insights for gym and fitness center managers, marketers, and social media strategists looking to enhance their engagement with potential customers. By understanding the impact of social media on purchasing decisions, businesses can tailor their marketing efforts to meet consumer expectations better and drive membership growth.Keywords: social media, consumer behavior, digital native, influencer
Procedia PDF Downloads 478028 Thermal Instability in Rivlin-Ericksen Elastico-Viscous Nanofluid with Connective Boundary Condition: Effect of Vertical Throughflow
Authors: Shivani Saini
Abstract:
The effect of vertical throughflow on the onset of convection in Rivlin-Ericksen Elastico-Viscous nanofluid with convective boundary condition is investigated. The flow is stimulated with modified Darcy model under the assumption that the nanoparticle volume fraction is not actively managed on the boundaries. The heat conservation equation is formulated by introducing the convective term of nanoparticle flux. A linear stability analysis based upon normal mode is performed, and an approximate solution of eigenvalue problems is obtained using the Galerkin weighted residual method. Investigation of the dependence of the Rayleigh number on various viscous and nanofluid parameter is performed. It is found that through flow and nanofluid parameters hasten the convection while capacity ratio, kinematics viscoelasticity, and Vadasz number do not govern the stationary convection. Using the convective component of nanoparticle flux, critical wave number is the function of nanofluid parameters as well as the throughflow parameter. The obtained solution provides important physical insight into the behavior of this model.Keywords: Darcy model, nanofluid, porous layer, throughflow
Procedia PDF Downloads 1378027 Stability Analysis of Three-Dimensional Flow and Heat Transfer over a Permeable Shrinking Surface in a Cu-Water Nanofluid
Authors: Roslinda Nazar, Amin Noor, Khamisah Jafar, Ioan Pop
Abstract:
In this paper, the steady laminar three-dimensional boundary layer flow and heat transfer of a copper (Cu)-water nanofluid in the vicinity of a permeable shrinking flat surface in an otherwise quiescent fluid is studied. The nanofluid mathematical model in which the effect of the nanoparticle volume fraction is taken into account is considered. The governing nonlinear partial differential equations are transformed into a system of nonlinear ordinary differential equations using a similarity transformation which is then solved numerically using the function bvp4c from Matlab. Dual solutions (upper and lower branch solutions) are found for the similarity boundary layer equations for a certain range of the suction parameter. A stability analysis has been performed to show which branch solutions are stable and physically realizable. The numerical results for the skin friction coefficient and the local Nusselt number as well as the velocity and temperature profiles are obtained, presented and discussed in detail for a range of various governing parameters.Keywords: heat transfer, nanofluid, shrinking surface, stability analysis, three-dimensional flow
Procedia PDF Downloads 2878026 Increment of Panel Flutter Margin Using Adaptive Stiffeners
Authors: S. Raja, K. M. Parammasivam, V. Aghilesh
Abstract:
Fluid-structure interaction is a crucial consideration in the design of many engineering systems such as flight vehicles and bridges. Aircraft lifting surfaces and turbine blades can fail due to oscillations caused by fluid-structure interaction. Hence, it is focussed to study the fluid-structure interaction in the present research. First, the effect of free vibration over the panel is studied. It is well known that the deformation of a panel and flow induced forces affects one another. The selected panel has a span 300mm, chord 300mm and thickness 2 mm. The project is to study, the effect of cross-sectional area and the stiffener location is carried out for the same panel. The stiffener spacing is varied along both the chordwise and span-wise direction. Then for that optimal location the ideal stiffener length is identified. The effect of stiffener cross-section shapes (T, I, Hat, Z) over flutter velocity has been conducted. The flutter velocities of the selected panel with two rectangular stiffeners of cantilever configuration are estimated using MSC NASTRAN software package. As the flow passes over the panel, deformation takes place which further changes the flow structure over it. With increasing velocity, the deformation goes on increasing, but the stiffness of the system tries to dampen the excitation and maintain equilibrium. But beyond a critical velocity, the system damping suddenly becomes ineffective, so it loses its equilibrium. This estimated in NASTRAN using PK method. The first 10 modal frequencies of a simple panel and stiffened panel are estimated numerically and are validated with open literature. A grid independence study is also carried out and the modal frequency values remain the same for element lengths less than 20 mm. The current investigation concludes that the span-wise stiffener placement is more effective than the chord-wise placement. The maximum flutter velocity achieved for chord-wise placement is 204 m/s while for a span-wise arrangement it is augmented to 963 m/s for the stiffeners location of ¼ and ¾ of the chord from the panel edge (50% of chord from either side of the mid-chord line). The flutter velocity is directly proportional to the stiffener cross-sectional area. A significant increment in flutter velocity from 218m/s to 1024m/s is observed for the stiffener lengths varying from 50% to 60% of the span. The maximum flutter velocity above Mach 3 is achieved. It is also observed that for a stiffened panel, the full effect of stiffener can be achieved only when the stiffener end is clamped. Stiffeners with Z cross section incremented the flutter velocity from 142m/s (Panel with no stiffener) to 328 m/s, which is 2.3 times that of simple panel.Keywords: stiffener placement, stiffener cross-sectional area, stiffener length, stiffener cross sectional area shape
Procedia PDF Downloads 2928025 Heat Transfer from a Cylinder in Cross-Flow of Single and Multiphase Flows
Authors: F. A. Hamad, S. He
Abstract:
In this paper, the average heat transfer characteristics for a cross flow cylinder of 16 mm diameter in a vertical pipe has been studied for single-phase flow (water/oil) and multicomponent (non-boiling) flow (water-air, water-oil, oil-air and water-oil-air). The cylinder is uniformly heated by electrical heater placed at the centre of the element. The results show that the values of average heat transfer coefficients for water are around four times the values for oil flow. Introducing air as a second phase with water has very little effect on heat transfer rate, while the heat transfer increased by 70% in case of oil. For water–oil flow, the heat transfer coefficient values are reflecting the percentage of water up to 50%, but increasing the water more than 50% leads to a sharp increase in the heat transfer coefficients to become close to the values of pure water. The enhancement of heat transfer by mixing two phases may be attributed to the changes in flow structure near to cylinder surface which lead to thinner boundary layer and higher turbulence. For three-phase flow, the heat transfer coefficients for all cases fall within the limit of single-phase flow of water and oil and are very close to pure water values. The net effect of the turbulence augmentation due to the introduction of air and the attenuation due to the introduction of oil leads to a thinner boundary layer of oil over the cylinder surface covered by a mixture of water and air bubbles.Keywords: circular cylinder, cross flow, hear transfer, multicomponent multiphase flow
Procedia PDF Downloads 3968024 Thermohydraulic Performance of Double Flow Solar Air Heater with Corrugated Absorber
Authors: S. P. Sharma, Som Nath Saha
Abstract:
This paper deals with the analytical investigation of thermal and thermohydraulic performance of double flow solar air heaters with corrugated and flat plate absorber. A mathematical model of double flow solar air heater has been presented, and a computer program in C++ language is developed to estimate the outlet temperature of air for the evaluation of thermal and thermohydraulic efficiency by solving the governing equations numerically using relevant correlations for heat transfer coefficients. The results obtained from the mathematical model is compared with the available experimental results and it is found to be reasonably good. The results show that the double flow solar air heaters have higher efficiency than conventional solar air heater, although the double flow corrugated absorber is superior to that of flat plate double flow solar air heater. It is also observed that the thermal efficiency increases with increase in mass flow rate; however, thermohydraulic efficiency increases with increase in mass flow rate up to a certain limit, attains the maximum value, then thereafter decreases sharply.Keywords: corrugated absorber, double flow, solar air heater, thermos-hydraulic efficiency
Procedia PDF Downloads 3148023 Advancing Customer Service Management Platform: Case Study of Social Media Applications
Authors: Iseoluwa Bukunmi Kolawole, Omowunmi Precious Isreal
Abstract:
Social media has completely revolutionized the ways communication used to take place even a decade ago. It makes use of computer mediated technologies which helps in the creation of information and sharing. Social media may be defined as the production, consumption and exchange of information across platforms for social interaction. The social media has become a forum in which customer’s look for information about companies to do business with and request answers to questions about their products and services. Customer service may be termed as a process of ensuring customer’s satisfaction by meeting and exceeding their wants. In delivering excellent customer service, knowing customer’s expectations and where they are reaching out is important in meeting and exceeding customer’s want. Facebook is one of the most used social media platforms among others which also include Twitter, Instagram, Whatsapp and LinkedIn. This indicates customers are spending more time on social media platforms, therefore calls for improvement in customer service delivery over the social media pages. Millions of people channel their issues, complaints, complements and inquiries through social media. This study have being able to identify what social media customers want, their expectations and how they want to be responded to by brands and companies. However, the applied research methodology used in this paper was a mixed methods approach. The authors of d paper used qualitative method such as gathering critical views of experts on social media and customer relationship management to analyse the impacts of social media on customer's satisfaction through interviews. The authors also used quantitative such as online survey methods to address issues at different stages and to have insight about different aspects of the platforms i.e. customer’s and company’s perception about the effects of social media. Thereby exploring and gaining better understanding of how brands make use of social media as a customer relationship management tool. And an exploratory research approach strategy was applied analysing how companies need to create good customer support using social media in order to improve good customer service delivery, customer retention and referrals. Therefore many companies have preferred social media platform application as a medium of handling customer’s queries and ensuring their satisfaction, this is because social media tools are considered more transparent and effective in its operations when dealing with customer relationship management.Keywords: brands, customer service, information, social media
Procedia PDF Downloads 2688022 Uncertainty Reduction and Dyadic Interaction through Social Media
Authors: Masrur Alam Khan
Abstract:
The purpose of this study was to examine the dyadic interaction techniques that social media users utilize to reduce uncertainty in their day to day business engagements in the absence of their physical interaction. The study empirically tested assumptions of uncertainty reduction theory while addressing self-disclosure, seeking questions to develop consensus, and subsequently to achieve intimacy in very conducive environment. Moreover, this study examined the effect of dyadic interaction through social media among business community while identifying the strength of their reciprocity in relationships and compares it with those having no dyadic relations due to absence of social media. Using socio-metric survey, the study revealed a better understanding of their partners for upholding their professional relations more credible. A sample of unacquainted, both male and female, was randomly asked questions regarding their nature of dyadic interaction within their office while using social media (face-to-face, visual CMC (webcam) or text-only). Primary results explored that the social media users develop their better know-how about their professional obligations to reduce ambiguity and align with one to one interact.Keywords: dyadic-interaction, social media, uncertainty reduction, socio-metric survey, self-disclosure, intimacy, reciprocity in relationship
Procedia PDF Downloads 1378021 Electrospinning Preparation of Superhydrophobic Polydimethylsiloxane/Polystyrene Nanofibrous Membranes for Carbon Dioxide Capture
Authors: Chia-Yu Chang, Yi-Feng Lin
Abstract:
CO2 capture has attracted significant research attention due to global warming. Among the various CO2 capture methods, membrane technology has proven to be highly efficient in capturing CO2 due to the ease at which this technology can be scaled up, its low energy consumptions, small area requirements and overall environmental friendliness for use by industrial plants. Capturing CO2 is to use a membrane contactor with a combination of water-repellent porous membranes and chemical absorption processes. In a CO2 membrane contactor system, CO2 passes through a hydrophobic porous membrane in the gas phase to contact the amine absorbent in the liquid phase. Consequently, additional CO2 gas is absorbed by amine absorbents. This study examines highly porous Polydimethylsiloxane (PDMS)/Polystyrene (PS) Nanofibrous Membranes and successfully coated onto a macroporous Al2O3 membrane. The performance of these materials in a membrane contactor system for CO2 absorption is also investigated. Compared with pristine PS nanofibrous membranes, the PDMS/PS nanofibrous membranes exhibit greater solvent resistance and mechanical strength, making them more suitable for use in CO2 capture by the membrane contactor. The resulting hydrophobic membrane contactor also demonstrates the potential for large-scale CO2 absorption during post-combustion processes in power plants.Keywords: CO2 capture, polystyrene, polydimethylsiloxane, superhydrophobic
Procedia PDF Downloads 3888020 Combating Contraflow to Creativity Amongst Preservice Teachers in Teacher Arts Education
Authors: Michael Flannery, Annie ó Breacháin
Abstract:
Teaching the creative arts in preservice teacher education can be challenging. Some students find artistic self-expression and its related creative processes overwhelming. Low creative self-efficacy levels and creative habits of mind can impede their levels of motivation, engagement and persistence. For some, creative arts engagement can induce a state of anxiety and distress as opposed to flow. Flow theory posits that learners are happiest when they are learning in a state of flow. During the flow state, students feel, think and perform their best. They become so involved in the learning experience that nothing else seems to matter. The creative flow state is a crucial conduit of artistic processes to enable learners to explore and produce their best work. Despite the research conducted on flow state across several contexts, the phenomenon of personal flow state remains quite elusive. While some research has examined flow in relation to characteristics, conditions and personality traits, no research has investigated individuals' personal experiences of flow in a visual and tangible manner nor explored a relationship between flow state and teachers’ artistic development. This explorative case study explores preservice teachers’ impressions of flow using an arts-based approach. It identifies, categorizes and discusses patterns of commonality and difference. Grounded by theory concerning flow, self-efficacy and creative habits, this study ponders how emerging findings regarding flow impressions might aid teacher arts educators in helping preservice teachers who struggle with creative self-expression.Keywords: creative arts, flow theory, presence, self-efficacy, teacher education
Procedia PDF Downloads 278019 Social Change and Cultural Sustainability in the Wake of Digital Media Revolution in South Asia
Authors: Binod C. Agrawal
Abstract:
In modern history, industrial and media merchandising in South Asia from East Asia, Europe, United States and other countries of the West is over 200 years old. Hence, continued external technology and media exposure is not a new experience in multi-lingual and multi religious South Asia which evolved cultural means to withstand structural change. In the post-World War II phase, media exposure especially of telecommunication, film, Internet, radio, print media and television have increased manifold. South Asia did not lose any time in acquiring and adopting digital media accelerated by chip revolution, computer and satellite communication. The penetration of digital media and utilization are exceptionally high though the spread has an unequal intensity, use and effects. The author argues that industrial and media products are “cultural products” apart from being “technological products”; hence their influences are most felt in the cultural domain which may lead to blunting of unique cultural specifics in the multi-cultural, multi-lingual and multi religious South Asia. Social scientists, political leaders and parents have voiced concern of “Cultural domination”, “Digital media colonization” and “Westernization”. Increased digital media access has also opened up doors of pornography and other harmful information that have sparked fresh debates and discussions about serious negative, harmful, and undesirable social effects especially among youth. Within ‘techno-social’ perspective, based on recent research studies, the paper aims to describe and analyse possible socio-economic change due to digital media penetration. Further, analysis supports the view that the ancient multi-lingual and multi-religious cultures of South Asia due to inner cultural strength may sustain without setting in a process of irreversible structural changes in South Asia.Keywords: cultural sustainability, digital media effects, digital media impact in South Asia, social change in South Asia
Procedia PDF Downloads 3558018 Emotional Impact and Moral Panic in Swedish Social Media during the COVID-19 Crisis
Authors: Sophia Yakhlef
Abstract:
In spring 2020, the spread of coronavirus disease 2019 (COVID-19) reached the epidemiological criteria to be declared a global pandemic. Global action was taken in order to stop the spread of the virus, such as, for example, restrictions regarding spending time outside of your home and, in several countries, periods of mandatory quarantine. Sweden's method of handling the pandemic has stood out among other European nations, and the tactic of relying on citizens' sense of civic solidarity, rather than enforcing legal restrictions preventing people from spending time outside, has been highly criticised in international news media. This situation has entailed a moral dilemma concerning the proper conduct of behaviour in everyday situations in Sweden, which is also reflected in public news media and social media. This media study focuses on Swedish social media debates and attitudes concerning moral dilemmas of handling this sense of civic solidarity. Comments on social media forums expressing outrage and anger regarding, amongst others, the actions of public media figures (such as celebrities, journalists, and bloggers) are analyzed. Drawing on a social psychological perspective on emotions, the study identifies ambiguities of moral disagreements and moral panics as ways of expressing that a moral norm has been violated. The findings suggest that social media is used in order to handle such ambiguities and make sense of the loosely defined norms of civic solidarity.Keywords: COVID-19 crisis, moral disagreements, moral panic, social media, social norms, social psychology, Sweden
Procedia PDF Downloads 1248017 Open Channel Flow Measurement of Water by Using Width Contraction
Authors: Arun Goel, D. V. S. Verma, Sanjeev Sangwan
Abstract:
The present study was aimed to develop a discharge measuring device for irrigation and laboratory channels. Experiments were conducted on a sharp edged constricted flow meters having four types of width constrictions namely 2:1, 1.5:1, 1:1, and 90o in the direction of flow. These devices were made of MS sheets and installed separately in a rectangular flume. All these four devices were tested under free and submerged flow conditions. Eight different discharges varying from 2 lit/sec to 30 lit/sec were passed through each device. In total around 500 observations of upstream and downstream depths were taken in the present work. For each discharge, free submerged and critical submergence under different flow conditions were noted and plotted. Once the upstream and downstream depths of flow over any of the device are known, the discharge can be easily calculated with the help of the curves developed for free and submerged flow conditions. The device having contraction 2:1 is the most efficient one as it allows maximum critical submergence.Keywords: flowrate, flowmeter, open channels, submergence
Procedia PDF Downloads 4328016 Numerical and Experimental Investigation of Airflow Inside Car Cabin
Authors: Mokhtar Djeddou, Amine Mehel, Georges Fokoua, Anne Tanière, Patrick Chevrier
Abstract:
Commuters' exposure to air pollution, particularly to particle matter, inside vehicles is a significant health issue. Assessing particles concentrations and characterizing their distribution is an important first step to understand and propose solutions to improve car cabin air quality. It is known that particles dynamics is intimately driven by particles-turbulence interactions. In order to analyze and model pollutants distribution inside the car the cabin, it is crucialto examine first the single-phase flow topology and turbulence characteristics. Within this context, Computational Fluid Dynamics (CFD) simulations were conducted to model airflow inside a full-scale car cabin using Reynolds Averaged Navier-Stokes (RANS)approach combined with the first order Realizable k- εmodel to close the RANS equations. To validate the numerical model, a campaign of velocity field measurements at different locations in the front and back of the car cabin has been carried out using hot-wire anemometry technique. Comparison between numerical and experimental results shows a good agreement of velocity profiles. Additionally, visualization of streamlines shows the formation of jet flow developing out of the dashboard air vents and the formation of large vortex structures, particularly in the back seats compartment. These vortex structures could play a key role in the accumulation and clustering of particles in a turbulent flowKeywords: car cabin, CFD, hot wire anemometry, vortical flow
Procedia PDF Downloads 291