Search results for: data making better
27552 Association Rules Mining and NOSQL Oriented Document in Big Data
Authors: Sarra Senhadji, Imene Benzeguimi, Zohra Yagoub
Abstract:
Big Data represents the recent technology of manipulating voluminous and unstructured data sets over multiple sources. Therefore, NOSQL appears to handle the problem of unstructured data. Association rules mining is one of the popular techniques of data mining to extract hidden relationship from transactional databases. The algorithm for finding association dependencies is well-solved with Map Reduce. The goal of our work is to reduce the time of generating of frequent itemsets by using Map Reduce and NOSQL database oriented document. A comparative study is given to evaluate the performances of our algorithm with the classical algorithm Apriori.Keywords: Apriori, Association rules mining, Big Data, Data Mining, Hadoop, MapReduce, MongoDB, NoSQL
Procedia PDF Downloads 16327551 'Explainable Artificial Intelligence' and Reasons for Judicial Decisions: Why Justifications and Not Just Explanations May Be Required
Authors: Jacquelyn Burkell, Jane Bailey
Abstract:
Artificial intelligence (AI) solutions deployed within the justice system face the critical task of providing acceptable explanations for decisions or actions. These explanations must satisfy the joint criteria of public and professional accountability, taking into account the perspectives and requirements of multiple stakeholders, including judges, lawyers, parties, witnesses, and the general public. This research project analyzes and integrates two existing literature on explanations in order to propose guidelines for explainable AI in the justice system. Specifically, we review three bodies of literature: (i) explanations of the purpose and function of 'explainable AI'; (ii) the relevant case law, judicial commentary and legal literature focused on the form and function of reasons for judicial decisions; and (iii) the literature focused on the psychological and sociological functions of these reasons for judicial decisions from the perspective of the public. Our research suggests that while judicial ‘reasons’ (arguably accurate descriptions of the decision-making process and factors) do serve similar explanatory functions as those identified in the literature on 'explainable AI', they also serve an important ‘justification’ function (post hoc constructions that justify the decision that was reached). Further, members of the public are also looking for both justification and explanation in reasons for judicial decisions, and that the absence of either feature is likely to contribute to diminished public confidence in the legal system. Therefore, artificially automated judicial decision-making systems that simply attempt to document the process of decision-making are unlikely in many cases to be useful to and accepted within the justice system. Instead, these systems should focus on the post-hoc articulation of principles and precedents that support the decision or action, especially in cases where legal subjects’ fundamental rights and liberties are at stake.Keywords: explainable AI, judicial reasons, public accountability, explanation, justification
Procedia PDF Downloads 12727550 Knowledge Diffusion via Automated Organizational Cartography (Autocart)
Authors: Mounir Kehal
Abstract:
The post-globalization epoch has placed businesses everywhere in new and different competitive situations where knowledgeable, effective and efficient behavior has come to provide the competitive and comparative edge. Enterprises have turned to explicit - and even conceptualizing on tacit - knowledge management to elaborate a systematic approach to develop and sustain the intellectual capital needed to succeed. To be able to do that, you have to be able to visualize your organization as consisting of nothing but knowledge and knowledge flows, whilst being presented in a graphical and visual framework, referred to as automated organizational cartography. Hence, creating the ability of further actively classifying existing organizational content evolving from and within data feeds, in an algorithmic manner, potentially giving insightful schemes and dynamics by which organizational know-how is visualized. It is discussed and elaborated on most recent and applicable definitions and classifications of knowledge management, representing a wide range of views from mechanistic (systematic, data driven) to a more socially (psychologically, cognitive/metadata driven) orientated. More elaborate continuum models, for knowledge acquisition and reasoning purposes, are being used for effectively representing the domain of information that an end user may contain in their decision making process for utilization of available organizational intellectual resources (i.e. Autocart). In this paper, we present an empirical research study conducted previously to try and explore knowledge diffusion in a specialist knowledge domain.Keywords: knowledge management, knowledge maps, knowledge diffusion, organizational cartography
Procedia PDF Downloads 31027549 Ethical and Personality Factors and Accounting Professional Judgement
Authors: Shannon Hashemi, Alireza Daneshfar
Abstract:
Accounting ethical awareness has been widely promoted in recent years both in academia and in practice. However, the effectiveness of ethical awareness on accountants' judgment and choice of action is still debatable. This study investigates whether Machiavellianism and gender, as significant personality factors, influence the effect of ethical awareness on accountants' decision-making. Using an experiment, the results of ANOVA tests show that although introducing ethical awareness positively influences the accountants' judgment and choice of action, such an effect is significantly moderated by the accountants' Machiavellianism score and gender. Specifically, the test results show that the effect of introducing ethical awareness was higher on males with low Machiavellian score. The results also show that when the Machiavellian scores were high, the effect of ethical awareness was lower for both males and females. Applications of the results are discussed for accounting professionals as well as accounting ethics educators and researchers.Keywords: ethical awareness, accounting decision making, Machiavellianism, ANOVA, ethics, accounting education
Procedia PDF Downloads 11427548 An Ecological Approach to Understanding Student Absenteeism in a Suburban, Kansas School
Authors: Andrew Kipp
Abstract:
Student absenteeism is harmful to both the school and the absentee student. One approach to improving student absenteeism is targeting contextual factors within the students’ learning environment. However, contemporary literature has not taken an ecological agency approach to understanding student absenteeism. Ecological agency is a theoretical framework that magnifies the interplay between the environment and the actions of people within the environment. To elaborate, the person’s personal history and aspirations and the environmental conditions provide potential outlets or restrictions to their intended action. The framework provides the unique perspective of understanding absentee students’ decision-making through the affordances and constraints found in their learning environment. To that effect, the study was guided by the question, “Why do absentee students decide to engage in absenteeism in a suburban Kansas school?” A case study methodology was used to answer the research question. Four suburban, Kansas high school absentee students in the 2020-2021 school year were selected for the study. The fall 2020 semester was in a remote learning setting, and the spring 2021 semester was in an in-person learning setting. The study captured their decision-making with respect to school attendance throughsemi-structured interviews, prolonged observations, drawings, and concept maps. The data was analyzed through thematic analysis. The findings revealed that peer socialization opportunities, methods of instruction, shifts in cultural beliefs due to COVID-19, manifestations of anxiety and lack of space to escape their anxiety, social media bullying, and the inability to receive academic tutoring motivated the participants’ daily decision to either attend or miss school. The findings provided a basis to improve several institutional and classroom practices. These practices included more student-led instruction and less teacher-led instruction in both in-person and remote learning environments, promoting socialization through classroom collaboration and clubs based on emerging student interests, reducing instances of bullying through prosocial education, safe spaces for students to escape the classroom to manage their anxiety, and more opportunities for one-on-one tutoring to improve grades. The study provides an example of using the ecological agency approach to better understand the personal and environmental factors that lead to absenteeism. The study also informs educational policies and classroom practices to better promote student attendance. Further research should investigate other school contexts using the ecological agency theoretical framework to better understand the influence of the school environment on student absenteeism.Keywords: student absenteeism, ecological agency, classroom practices, educational policy, student decision-making
Procedia PDF Downloads 14427547 Immunization-Data-Quality in Public Health Facilities in the Pastoralist Communities: A Comparative Study Evidence from Afar and Somali Regional States, Ethiopia
Authors: Melaku Tsehay
Abstract:
The Consortium of Christian Relief and Development Associations (CCRDA), and the CORE Group Polio Partners (CGPP) Secretariat have been working with Global Alliance for Vac-cines and Immunization (GAVI) to improve the immunization data quality in Afar and Somali Regional States. The main aim of this study was to compare the quality of immunization data before and after the above interventions in health facilities in the pastoralist communities in Ethiopia. To this end, a comparative-cross-sectional study was conducted on 51 health facilities. The baseline data was collected in May 2019, while the end line data in August 2021. The WHO data quality self-assessment tool (DQS) was used to collect data. A significant improvment was seen in the accuracy of the pentavalent vaccine (PT)1 (p = 0.012) data at the health posts (HP), while PT3 (p = 0.010), and Measles (p = 0.020) at the health centers (HC). Besides, a highly sig-nificant improvment was observed in the accuracy of tetanus toxoid (TT)2 data at HP (p < 0.001). The level of over- or under-reporting was found to be < 8%, at the HP, and < 10% at the HC for PT3. The data completeness was also increased from 72.09% to 88.89% at the HC. Nearly 74% of the health facilities timely reported their respective immunization data, which is much better than the baseline (7.1%) (p < 0.001). These findings may provide some hints for the policies and pro-grams targetting on improving immunization data qaulity in the pastoralist communities.Keywords: data quality, immunization, verification factor, pastoralist region
Procedia PDF Downloads 12527546 Text Analysis to Support Structuring and Modelling a Public Policy Problem-Outline of an Algorithm to Extract Inferences from Textual Data
Authors: Claudia Ehrentraut, Osama Ibrahim, Hercules Dalianis
Abstract:
Policy making situations are real-world problems that exhibit complexity in that they are composed of many interrelated problems and issues. To be effective, policies must holistically address the complexity of the situation rather than propose solutions to single problems. Formulating and understanding the situation and its complex dynamics, therefore, is a key to finding holistic solutions. Analysis of text based information on the policy problem, using Natural Language Processing (NLP) and Text analysis techniques, can support modelling of public policy problem situations in a more objective way based on domain experts knowledge and scientific evidence. The objective behind this study is to support modelling of public policy problem situations, using text analysis of verbal descriptions of the problem. We propose a formal methodology for analysis of qualitative data from multiple information sources on a policy problem to construct a causal diagram of the problem. The analysis process aims at identifying key variables, linking them by cause-effect relationships and mapping that structure into a graphical representation that is adequate for designing action alternatives, i.e., policy options. This study describes the outline of an algorithm used to automate the initial step of a larger methodological approach, which is so far done manually. In this initial step, inferences about key variables and their interrelationships are extracted from textual data to support a better problem structuring. A small prototype for this step is also presented.Keywords: public policy, problem structuring, qualitative analysis, natural language processing, algorithm, inference extraction
Procedia PDF Downloads 59027545 Pattern in Splitting Sequence in Okike’s Merged Irregular Transposition Cipher for Encrypting Cyberspace Messages
Authors: Okike Benjamin, E. J. D. Garba
Abstract:
The protection of sensitive information against unauthorized access or fraudulent changes has been of prime concern throughout the centuries. Modern communication techniques, using computers connected through networks, make all data even more vulnerable to these threats. The researchers in this work propose a new encryption technique to be known as Merged Irregular Transposition Cipher. In this proposed encryption technique, a message to be encrypted will first of all be split into multiple parts depending on the length of the message. After the split, different keywords are chosen to encrypt different parts of the message. After encrypting all parts of the message, the positions of the encrypted message could be swapped to other position thereby making it very difficult to decrypt by any unauthorized user.Keywords: information security, message splitting, pattern, sequence
Procedia PDF Downloads 29027544 Investigating Water-Oxidation Using a Ru(III) Carboxamide Water Coordinated Complex
Authors: Yosra M. Badiei, Evelyn Ortiz, Marisa Portenti, David Szalda
Abstract:
Water-oxidation half-reaction is a critical reaction that can be driven by a sustainable energy source (e.g., solar or wind) and be coupled with a chemical fuel making reaction which stores the released electrons and protons from water (e.g., H₂ or methanol). The use of molecular water-oxidation catalysts (WOC) allow the rationale design of redox active metal centers and provides a better understanding of their structure-activity-relationship. Herein, the structure of a Ru(III) complex bearing a doubly deprotonated N,N'-bis(aryl)pyridine-2,6-dicarboxamide ligand which contains a water molecule in its primary coordination sphere was elucidated by single-crystal X-ray diffraction. Further spectroscopic experimental data and pH-dependent electrochemical studies reveal its water-oxidation reactivity. Emphasis on mechanistic details for O₂ formation of this complex will be addressed.Keywords: water-oxidation, catalysis, ruthenium, artificial photosynthesis
Procedia PDF Downloads 20127543 An Effort at Improving Reliability of Laboratory Data in Titrimetric Analysis for Zinc Sulphate Tablets Using Validated Spreadsheet Calculators
Authors: M. A. Okezue, K. L. Clase, S. R. Byrn
Abstract:
The requirement for maintaining data integrity in laboratory operations is critical for regulatory compliance. Automation of procedures reduces incidence of human errors. Quality control laboratories located in low-income economies may face some barriers in attempts to automate their processes. Since data from quality control tests on pharmaceutical products are used in making regulatory decisions, it is important that laboratory reports are accurate and reliable. Zinc Sulphate (ZnSO4) tablets is used in treatment of diarrhea in pediatric population, and as an adjunct therapy for COVID-19 regimen. Unfortunately, zinc content in these formulations is determined titrimetrically; a manual analytical procedure. The assay for ZnSO4 tablets involves time-consuming steps that contain mathematical formulae prone to calculation errors. To achieve consistency, save costs, and improve data integrity, validated spreadsheets were developed to simplify the two critical steps in the analysis of ZnSO4 tablets: standardization of 0.1M Sodium Edetate (EDTA) solution, and the complexometric titration assay procedure. The assay method in the United States Pharmacopoeia was used to create a process flow for ZnSO4 tablets. For each step in the process, different formulae were input into two spreadsheets to automate calculations. Further checks were created within the automated system to ensure validity of replicate analysis in titrimetric procedures. Validations were conducted using five data sets of manually computed assay results. The acceptance criteria set for the protocol were met. Significant p-values (p < 0.05, α = 0.05, at 95% Confidence Interval) were obtained from students’ t-test evaluation of the mean values for manual-calculated and spreadsheet results at all levels of the analysis flow. Right-first-time analysis and principles of data integrity were enhanced by use of the validated spreadsheet calculators in titrimetric evaluations of ZnSO4 tablets. Human errors were minimized in calculations when procedures were automated in quality control laboratories. The assay procedure for the formulation was achieved in a time-efficient manner with greater level of accuracy. This project is expected to promote cost savings for laboratory business models.Keywords: data integrity, spreadsheets, titrimetry, validation, zinc sulphate tablets
Procedia PDF Downloads 17027542 Control HVAC Parameters by Brain Emotional Learning Based Intelligent Controller (BELBIC)
Authors: Javad Abdi, Azam Famil Khalili
Abstract:
Modeling emotions have attracted much attention in recent years, both in cognitive psychology and design of artificial systems. However, it is a negative factor in decision-making; emotions have shown to be a strong faculty for making fast satisfying decisions. In this paper, we have adapted a computational model based on the limbic system in the mammalian brain for control engineering applications. Learning in this model based on Temporal Difference (TD) Learning, we applied the proposed controller (termed BELBIC) for a simple model of a submarine. The model was supposed to reach the desired depth underwater. Our results demonstrate excellent control action, disturbance handling, and system parameter robustness for TDBELBIC. The proposal method, regarding the present conditions, the system action in the part and the controlling aims, can control the system in a way that these objectives are attained in the least amount of time and the best way.Keywords: artificial neural networks, temporal difference, brain emotional learning based intelligent controller, heating- ventilating and air conditioning
Procedia PDF Downloads 43427541 The Choosing the Right Projects With Multi-Criteria Decision Making to Ensure the Sustainability of the Projects
Authors: Saniye Çeşmecioğlu
Abstract:
The importance of project sustainability and success has become increasingly significant due to the proliferation of external environmental factors that have decreased project resistance in contemporary times. The primary approach to forestall the failure of projects is to ensure their long-term viability through the strategic selection of projects as creating judicious project selection framework within the organization. Decision-makers require precise decision contexts (models) that conform to the company's business objectives and sustainability expectations during the project selection process. The establishment of a rational model for project selection enables organizations to create a distinctive and objective framework for the selection process. Additionally, for the optimal implementation of this decision-making model, it is crucial to establish a Project Management Office (PMO) team and Project Steering Committee within the organizational structure to oversee the framework. These teams enable updating project selection criteria and weights in response to changing conditions, ensuring alignment with the company's business goals, and facilitating the selection of potentially viable projects. This paper presents a multi-criteria decision model for selecting project sustainability and project success criteria that ensures timely project completion and retention. The model was developed using MACBETH (Measuring Attractiveness by a Categorical Based Evaluation Technique) and was based on broadcaster companies’ expectations. The ultimate results of this study provide a model that endorses the process of selecting the appropriate project objectively by utilizing project selection and sustainability criteria along with their respective weights for organizations. Additionally, the study offers suggestions that may ascertain helpful in future endeavors.Keywords: project portfolio management, project selection, multi-criteria decision making, project sustainability and success criteria, MACBETH
Procedia PDF Downloads 6327540 An Analysis of Transition in Building Form from Abolition of Diagonal Plane Control by Street Width: Focusing on Site Plan and Urban Block
Authors: Joohyun Park, Jin Baek
Abstract:
The purpose of this study is to Analyze the role and effect arise from Diagonal Plane Control by Street Width (DPCSW) in Architecture in Seoul, and to predict the aspect of transition about the relationship among buildings and Urban morphology After the abolition. To find the tendency of building shape regulation, This study review Building Acts concerned with form making (the building to land Ratio, building designated line, wall designated line, building height limit (DPCSW) and etc.) and simulate the shape of urban blocks made by Acts in drawings. The review results show DPCSW is not only limitation about height, but also making the building setback from road and make the Road broader. And it makes the typical shape of the urban block that buildings are moving away from surrounding road After the Abolition of DPCSW; it is expected by the legislature that domestic real estate’s market would be promoted by increased total floor areas in each building. Some substitution from the legislature is announced, but it just deals with Building Maximum unit by Block unit except the regulation about arrangement in urban Figure and Ground. In conclusion, refrain from the uncontrolled development of city, It is important to make regulation about not only height factors but limitation line in land. Furthermore, through revising District Unit Plan, It is positively necessary to reset the relationship between buildings for the making the city space better.Keywords: diagonal plane control by street width, building maximum height, district unit plan, building acts, urban block type, morphology, building shape
Procedia PDF Downloads 31227539 Evaluation Framework for Investments in Rail Infrastructure Projects
Authors: Dimitrios J. Dimitriou, Maria F. Sartzetaki
Abstract:
Transport infrastructures are high-cost, long-term investments that serve as vital foundations for the operation of a region or nation and are essential to a country’s or business’s economic development and prosperity, by improving well-being and generating jobs and income. The development of appropriate financing options is of key importance in the decision making process in order develop viable transport infrastructures. The development of transport infrastructure has increasingly been shifting toward alternative methods of project financing such as Public Private Partnership (PPPs) and hybrid forms. In this paper, a methodological decision-making framework based on the evaluation of the financial viability of transportation infrastructure for different financial schemes is presented. The framework leads to an assessment of the financial viability which can be achieved by performing various financing scenarios analyses. To illustrate the application of the proposed methodology, a case study of rail transport infrastructure financing scenario analysis in Greece is developed.Keywords: rail transport infrastructure, financial viability, scenario analysis, rail project feasibility
Procedia PDF Downloads 27927538 Conception of a Regulated, Dynamic and Intelligent Sewerage in Ostrevent
Authors: Rabaa Tlili Yaakoubi, Hind Nakouri, Olivier Blanpain
Abstract:
The current tools for real time management of sewer systems are based on two software tools: the software of weather forecast and the software of hydraulic simulation. The use of the first ones is an important cause of imprecision and uncertainty, the use of the second requires temporal important steps of decision because of their need in times of calculation. This way of proceeding fact that the obtained results are generally different from those waited. The major idea of the CARDIO project is to change the basic paradigm by approaching the problem by the "automatic" face rather than by that "hydrology". The objective is to make possible the realization of a large number of simulations at very short times (a few seconds) allowing to take place weather forecasts by using directly the real time meditative pluviometric data. The aim is to reach a system where the decision-making is realized from reliable data and where the correction of the error is permanent. A first model of control laws was realized and tested with different return-period rainfalls. The gains obtained in rejecting volume vary from 40 to 100%. The development of a new algorithm was then used to optimize calculation time and thus to overcome the subsequent combinatorial problem in our first approach. Finally, this new algorithm was tested with 16- year-rainfall series. The obtained gains are 60% of total volume rejected to the natural environment and of 80 % in the number of discharges.Keywords: RTC, paradigm, optimization, automation
Procedia PDF Downloads 28427537 CanVis: Towards a Web Platform for Cancer Progression Tree Analysis
Authors: Michael Aupetit, Mahmoud Al-ismail, Khaled Mohamed
Abstract:
Cancer is a major public health problem all over the world. Breast cancer has the highest incidence rate over all cancers for women in Qatar making its study a top priority of the country. Human cancer is a dynamic disease that develops over an extended period through the accumulation of a series of genetic alterations. A Darwinian process drives the tumor cells toward higher malignancy growing the branches of a progression tree in the space of genes expression. Although it is not possible to track these genetic alterations dynamically for one patient, it is possible to reconstruct the progression tree from the aggregation of thousands of tumor cells’ genetic profiles from thousands of different patients at different stages of the disease. Analyzing the progression tree is a way to detect pivotal molecular events that drive the malignant evolution and to provide a guide for the development of cancer diagnostics, prognostics and targeted therapeutics. In this work we present the development of a Visual Analytic web platform CanVis enabling users to upload gene-expression data and analyze their progression tree. The server computes the progression tree based on state-of-the-art techniques and allows an interactive visual exploration of this tree and the gene-expression data along its branching structure helping to discover potential driver genes.Keywords: breast cancer, progression tree, visual analytics, web platform
Procedia PDF Downloads 41827536 Big Data for Local Decision-Making: Indicators Identified at International Conference on Urban Health 2017
Authors: Dana R. Thomson, Catherine Linard, Sabine Vanhuysse, Jessica E. Steele, Michal Shimoni, Jose Siri, Waleska Caiaffa, Megumi Rosenberg, Eleonore Wolff, Tais Grippa, Stefanos Georganos, Helen Elsey
Abstract:
The Sustainable Development Goals (SDGs) and Urban Health Equity Assessment and Response Tool (Urban HEART) identify dozens of key indicators to help local decision-makers prioritize and track inequalities in health outcomes. However, presentations and discussions at the International Conference on Urban Health (ICUH) 2017 suggested that additional indicators are needed to make decisions and policies. A local decision-maker may realize that malaria or road accidents are a top priority. However, s/he needs additional health determinant indicators, for example about standing water or traffic, to address the priority and reduce inequalities. Health determinants reflect the physical and social environments that influence health outcomes often at community- and societal-levels and include such indicators as access to quality health facilities, access to safe parks, traffic density, location of slum areas, air pollution, social exclusion, and social networks. Indicator identification and disaggregation are necessarily constrained by available datasets – typically collected about households and individuals in surveys, censuses, and administrative records. Continued advancements in earth observation, data storage, computing and mobile technologies mean that new sources of health determinants indicators derived from 'big data' are becoming available at fine geographic scale. Big data includes high-resolution satellite imagery and aggregated, anonymized mobile phone data. While big data are themselves not representative of the population (e.g., satellite images depict the physical environment), they can provide information about population density, wealth, mobility, and social environments with tremendous detail and accuracy when combined with population-representative survey, census, administrative and health system data. The aim of this paper is to (1) flag to data scientists important indicators needed by health decision-makers at the city and sub-city scale - ideally free and publicly available, and (2) summarize for local decision-makers new datasets that can be generated from big data, with layperson descriptions of difficulties in generating them. We include SDGs and Urban HEART indicators, as well as indicators mentioned by decision-makers attending ICUH 2017.Keywords: health determinant, health outcome, mobile phone, remote sensing, satellite imagery, SDG, urban HEART
Procedia PDF Downloads 21127535 Luggage Handling System at World’s Largest Pilgrimage Center
Authors: Saddikuti Venkataramanaiah, N Ravichandran
Abstract:
The main focus of this paper is to highlight the challenges faced by the world’s largest pilgrimage center in providing free-of-cost luggage handling services to visiting pilgrims. The service was managed by a third-party agency selected based on a competitive bidding process. The third-party agency is responsible for providing timely, reliable, and secure services to the pilgrims. The methodology includes field visits and interaction with pilgrims, service providers, and other stakeholders of the system. Based on a detailed analysis of the information/data gathered, various innovations implemented and implications for policy making and sustainable service delivery were suggested.Keywords: luggage handling, sustainable, service delivery, third party logistics, innovation
Procedia PDF Downloads 9127534 Using Visualization Techniques to Support Common Clinical Tasks in Clinical Documentation
Authors: Jonah Kenei, Elisha Opiyo
Abstract:
Electronic health records, as a repository of patient information, is nowadays the most commonly used technology to record, store and review patient clinical records and perform other clinical tasks. However, the accurate identification and retrieval of relevant information from clinical records is a difficult task due to the unstructured nature of clinical documents, characterized in particular by a lack of clear structure. Therefore, medical practice is facing a challenge thanks to the rapid growth of health information in electronic health records (EHRs), mostly in narrative text form. As a result, it's becoming important to effectively manage the growing amount of data for a single patient. As a result, there is currently a requirement to visualize electronic health records (EHRs) in a way that aids physicians in clinical tasks and medical decision-making. Leveraging text visualization techniques to unstructured clinical narrative texts is a new area of research that aims to provide better information extraction and retrieval to support clinical decision support in scenarios where data generated continues to grow. Clinical datasets in electronic health records (EHR) offer a lot of potential for training accurate statistical models to classify facets of information which can then be used to improve patient care and outcomes. However, in many clinical note datasets, the unstructured nature of clinical texts is a common problem. This paper examines the very issue of getting raw clinical texts and mapping them into meaningful structures that can support healthcare professionals utilizing narrative texts. Our work is the result of a collaborative design process that was aided by empirical data collected through formal usability testing.Keywords: classification, electronic health records, narrative texts, visualization
Procedia PDF Downloads 11827533 A Review of Data Visualization Best Practices: Lessons for Open Government Data Portals
Authors: Bahareh Ansari
Abstract:
Background: The Open Government Data (OGD) movement in the last decade has encouraged many government organizations around the world to make their data publicly available to advance democratic processes. But current open data platforms have not yet reached to their full potential in supporting all interested parties. To make the data useful and understandable for everyone, scholars suggested that opening the data should be supplemented by visualization. However, different visualizations of the same information can dramatically change an individual’s cognitive and emotional experience in working with the data. This study reviews the data visualization literature to create a list of the methods empirically tested to enhance users’ performance and experience in working with a visualization tool. This list can be used in evaluating the OGD visualization practices and informing the future open data initiatives. Methods: Previous reviews of visualization literature categorized the visualization outcomes into four categories including recall/memorability, insight/comprehension, engagement, and enjoyment. To identify the papers, a search for these outcomes was conducted in the abstract of the publications of top-tier visualization venues including IEEE Transactions for Visualization and Computer Graphics, Computer Graphics, and proceedings of the CHI Conference on Human Factors in Computing Systems. The search results are complemented with a search in the references of the identified articles, and a search for 'open data visualization,' and 'visualization evaluation' keywords in the IEEE explore and ACM digital libraries. Articles are included if they provide empirical evidence through conducting controlled user experiments, or provide a review of these empirical studies. The qualitative synthesis of the studies focuses on identification and classifying the methods, and the conditions under which they are examined to positively affect the visualization outcomes. Findings: The keyword search yields 760 studies, of which 30 are included after the title/abstract review. The classification of the included articles shows five distinct methods: interactive design, aesthetic (artistic) style, storytelling, decorative elements that do not provide extra information including text, image, and embellishment on the graphs), and animation. Studies on decorative elements show consistency on the positive effects of these elements on user engagement and recall but are less consistent in their examination of the user performance. This inconsistency could be attributable to the particular data type or specific design method used in each study. The interactive design studies are consistent in their findings of the positive effect on the outcomes. Storytelling studies show some inconsistencies regarding the design effect on user engagement, enjoyment, recall, and performance, which could be indicative of the specific conditions required for the use of this method. Last two methods, aesthetics and animation, have been less frequent in the included articles, and provide consistent positive results on some of the outcomes. Implications for e-government: Review of the visualization best-practice methods show that each of these methods is beneficial under specific conditions. By using these methods in a potentially beneficial condition, OGD practices can promote a wide range of individuals to involve and work with the government data and ultimately engage in government policy-making procedures.Keywords: best practices, data visualization, literature review, open government data
Procedia PDF Downloads 10727532 The Evaluation of Child Maltreatment Severity and the Decision-Making Processes in the Child Protection System
Authors: Maria M. Calheiros, Carla Silva, Eunice Magalhães
Abstract:
Professionals working in child protection services (CPS) need to have common and clear criteria to identify cases of maltreatment and to differentiate levels of severity in order to determine when CPS intervention is required, its nature and urgency, and, in most countries, the service that will be in charge of the case (community or specialized CPS). Actually, decision-making process is complex in CPS, and, for that reason, such criteria are particularly important for who significantly contribute to that decision-making in child maltreatment cases. The main objective of this presentation is to describe the Maltreatment Severity Assessment Questionnaire (MSQ), specifically designed to be used by professionals in the CPS, which adopts a multidimensional approach and uses a scale of severity within subtypes. Specifically, we aim to provide evidence of validity and reliability of this tool, in order to improve the quality and validity of assessment processes and, consequently, the decision making in CPS. The total sample was composed of 1000 children and/or adolescents (51.1% boys), aged between 0 and 18 years old (M = 9.47; DP = 4.51). All the participants were referred to official institutions of the children and youth protective system. Children and adolescents maltreatment (abuse, neglect experiences and sexual abuse) were assessed with 21 items of the Maltreatment Severity Questionnaire (MSQ), by professionals of CPS. Each item (sub-type) was composed of four descriptors of increasing severity. Professionals rated the level of severity, using a 4-point scale (1= minimally severe; 2= moderately severe; 3= highly severe; 4= extremely severe). The construct validity of the Maltreatment Severity Questionnaire was assessed with a holdout method, performing an Exploratory Factor Analysis (EFA) followed by a Confirmatory Factor Analysis (CFA). The final solution comprised 18 items organized in three factors 47.3% of variance explained. ‘Physical neglect’ (eight items) was defined by parental omissions concerning the insurance and monitoring of the child’s physical well-being and health, namely in terms of clothing, hygiene, housing conditions and contextual environmental security. ‘Physical and Psychological Abuse’ (four items) described abusive physical and psychological actions, namely, coercive/punitive disciplinary methods, physically violent methods or verbal interactions that offend and denigrate the child, with the potential to disrupt psychological attributes (e.g., self-esteem). ‘Psychological neglect’ (six items) involved omissions related to children emotional development, mental health monitoring, school attendance, development needs, as well as inappropriate relationship patterns with attachment figures. Results indicated a good reliability of all the factors. The assessment of child maltreatment cases with MSQ could have a set of practical and research implications: a) It is a valid and reliable multidimensional instrument to measure child maltreatment, b) It is an instrument integrating the co-occurrence of various types of maltreatment and a within-subtypes scale of severity; c) Specifically designed for professionals, it may assist them in decision-making processes; d) More than using case file reports to evaluate maltreatment experiences, researchers could guide more appropriately their research about determinants and consequences of maltreatment.Keywords: assessment, maltreatment, children and youth, decision-making
Procedia PDF Downloads 29027531 Data Mining in Medicine Domain Using Decision Trees and Vector Support Machine
Authors: Djamila Benhaddouche, Abdelkader Benyettou
Abstract:
In this paper, we used data mining to extract biomedical knowledge. In general, complex biomedical data collected in studies of populations are treated by statistical methods, although they are robust, they are not sufficient in themselves to harness the potential wealth of data. For that you used in step two learning algorithms: the Decision Trees and Support Vector Machine (SVM). These supervised classification methods are used to make the diagnosis of thyroid disease. In this context, we propose to promote the study and use of symbolic data mining techniques.Keywords: biomedical data, learning, classifier, algorithms decision tree, knowledge extraction
Procedia PDF Downloads 56027530 Analysis of Different Classification Techniques Using WEKA for Diabetic Disease
Authors: Usama Ahmed
Abstract:
Data mining is the process of analyze data which are used to predict helpful information. It is the field of research which solve various type of problem. In data mining, classification is an important technique to classify different kind of data. Diabetes is most common disease. This paper implements different classification technique using Waikato Environment for Knowledge Analysis (WEKA) on diabetes dataset and find which algorithm is suitable for working. The best classification algorithm based on diabetic data is Naïve Bayes. The accuracy of Naïve Bayes is 76.31% and take 0.06 seconds to build the model.Keywords: data mining, classification, diabetes, WEKA
Procedia PDF Downloads 14727529 Effective Citizen Participation in Local Government Decision-Making and Democracy
Authors: Ali Zaimi
Abstract:
Citizen participation in local government is an opportunity given to citizens and government to increase communication between them, create public support for local government plans and most important grow public trust in government. Also, the citizens’ involvement in the political process is an important part of democracy. This study aims to define the strategies for increasing citizen participation in local governance and concentrated in two important mechanisms such as participatory budget and public policy councils. Three strategies that promote more effective citizen involvement in local governance are understanding and using formal institutions of power, collaboration of citizens’ groups and governments officials to jointly formulate programs plans, electing and appointing local officials. A unique aspect of citizen participation to operate effectively is the transparency of government and the inclusion of actors into decision-making. The citizen engagement in local governance enhances accountability and problem solving, promote more inclusive and cohesive communities and enlarge the quality and quantity of initiatives made by communities.Keywords: accountability, citizen participation, democracy, government
Procedia PDF Downloads 26727528 Improving the Logistic System to Secure Effective Food Fish Supply Chain in Indonesia
Authors: Atikah Nurhayati, Asep A. Handaka
Abstract:
Indonesia is a world’s major fish producer which can feed not only its citizens but also the people of the world. Currently, the total annual production is 11 tons and expected to double by the year of 2050. Given the potential, fishery has been an important part of the national food security system in Indonesia. Despite such a potential, a big challenge is facing the Indonesians in making fish the reliable source for their food, more specifically source of protein intake. The long geographic distance between the fish production centers and the consumer concentrations has prevented effective supply chain from producers to consumers and therefore demands a good logistic system. This paper is based on our research, which aimed at analyzing the fish supply chain and is to suggest relevant improvement to the chain. The research was conducted in the Year of 2016 in selected locations of Java Island, where intensive transaction on fishery commodities occur. Data used in this research comprises secondary data of time series reports on production and distribution and primary data regarding distribution aspects which were collected through interviews with purposively selected 100 respondents representing fishers, traders and processors. The data were analyzed following the supply chain management framework and processed following logistic regression and validity tests. The main findings of the research are as follows. Firstly, it was found that improperly managed connectivity and logistic chain is the main cause for insecurity of availability and affordability for the consumers. Secondly, lack of quality of most local processed products is a major obstacle for improving affordability and connectivity. The paper concluded with a number of recommended strategies to tackle the problem. These include rationalization of the length of the existing supply chain, intensification of processing activities, and improvement of distribution infrastructure and facilities.Keywords: fishery, food security, logistic, supply chain
Procedia PDF Downloads 24227527 Remote Sensing and Gis Use in Trends of Urbanization and Regional Planning
Authors: Sawan Kumar Jangid
Abstract:
The paper attempts to study various facets of urbanization and regional planning in the framework of the present conditions and future needs. Urbanization is a dynamic system in which development and changes are prominent features; which implies population growth and changes in the primary, secondary and tertiary sector in the economy. Urban population is increasing day by day due to a natural increase in population and migration from rural areas, and the impact is bound to have in urban areas in terms of infrastructure, environment, water supply and other vital resources. For the organized way of planning and monitoring the implementation of Physical urban and regional plans high-resolution satellite imagery is the potential solution. Now the Remote Sensing data is widely used in urban as well as regional planning, infrastructure planning mainly telecommunication and transport network planning, highway development, accessibility to market area development in terms of catchment and population built-up area density. With Remote Sensing it is possible to identify urban growth, which falls outside the formal planning control. Remote Sensing and GIS technique combined together facilitate the planners, in making a decision, for general public and investors to have relevant data for their use in minimum time. This paper sketches out the Urbanization modal for the future development of Urban and Regional Planning. The paper suggests, a dynamic approach towards regional development strategy.Keywords: development, dynamic, migration, resolution
Procedia PDF Downloads 42027526 Comprehensive Study of Data Science
Authors: Asifa Amara, Prachi Singh, Kanishka, Debargho Pathak, Akshat Kumar, Jayakumar Eravelly
Abstract:
Today's generation is totally dependent on technology that uses data as its fuel. The present study is all about innovations and developments in data science and gives an idea about how efficiently to use the data provided. This study will help to understand the core concepts of data science. The concept of artificial intelligence was introduced by Alan Turing in which the main principle was to create an artificial system that can run independently of human-given programs and can function with the help of analyzing data to understand the requirements of the users. Data science comprises business understanding, analyzing data, ethical concerns, understanding programming languages, various fields and sources of data, skills, etc. The usage of data science has evolved over the years. In this review article, we have covered a part of data science, i.e., machine learning. Machine learning uses data science for its work. Machines learn through their experience, which helps them to do any work more efficiently. This article includes a comparative study image between human understanding and machine understanding, advantages, applications, and real-time examples of machine learning. Data science is an important game changer in the life of human beings. Since the advent of data science, we have found its benefits and how it leads to a better understanding of people, and how it cherishes individual needs. It has improved business strategies, services provided by them, forecasting, the ability to attend sustainable developments, etc. This study also focuses on a better understanding of data science which will help us to create a better world.Keywords: data science, machine learning, data analytics, artificial intelligence
Procedia PDF Downloads 8427525 Development of Structural Deterioration Models for Flexible Pavement Using Traffic Speed Deflectometer Data
Authors: Sittampalam Manoharan, Gary Chai, Sanaul Chowdhury, Andrew Golding
Abstract:
The primary objective of this paper is to present a simplified approach to develop the structural deterioration model using traffic speed deflectometer data for flexible pavements. Maintaining assets to meet functional performance is not economical or sustainable in the long terms, and it would end up needing much more investments for road agencies and extra costs for road users. Performance models have to be included for structural and functional predicting capabilities, in order to assess the needs, and the time frame of those needs. As such structural modelling plays a vital role in the prediction of pavement performance. A structural condition is important for the prediction of remaining life and overall health of a road network and also major influence on the valuation of road pavement. Therefore, the structural deterioration model is a critical input into pavement management system for predicting pavement rehabilitation needs accurately. The Traffic Speed Deflectometer (TSD) is a vehicle-mounted Doppler laser system that is capable of continuously measuring the structural bearing capacity of a pavement whilst moving at traffic speeds. The device’s high accuracy, high speed, and continuous deflection profiles are useful for network-level applications such as predicting road rehabilitations needs and remaining structural service life. The methodology adopted in this model by utilizing time series TSD maximum deflection (D0) data in conjunction with rutting, rutting progression, pavement age, subgrade strength and equivalent standard axle (ESA) data. Then, regression analyses were undertaken to establish a correlation equation of structural deterioration as a function of rutting, pavement age, seal age and equivalent standard axle (ESA). This study developed a simple structural deterioration model which will enable to incorporate available TSD structural data in pavement management system for developing network-level pavement investment strategies. Therefore, the available funding can be used effectively to minimize the whole –of- life cost of the road asset and also improve pavement performance. This study will contribute to narrowing the knowledge gap in structural data usage in network level investment analysis and provide a simple methodology to use structural data effectively in investment decision-making process for road agencies to manage aging road assets.Keywords: adjusted structural number (SNP), maximum deflection (D0), equant standard axle (ESA), traffic speed deflectometer (TSD)
Procedia PDF Downloads 15127524 Comparative Study od Three Artificial Intelligence Techniques for Rain Domain in Precipitation Forecast
Authors: Nabilah Filzah Mohd Radzuan, Andi Putra, Zalinda Othman, Azuraliza Abu Bakar, Abdul Razak Hamdan
Abstract:
Precipitation forecast is important to avoid natural disaster incident which can cause losses in the involved area. This paper reviews three techniques logistic regression, decision tree, and random forest which are used in making precipitation forecast. These combination techniques through the vector auto-regression (VAR) model help in finding the advantages and strengths of each technique in the forecast process. The data-set contains variables of the rain’s domain. Adaptation of artificial intelligence techniques involved in rain domain enables the forecast process to be easier and systematic for precipitation forecast.Keywords: logistic regression, decisions tree, random forest, VAR model
Procedia PDF Downloads 44727523 Review on the Role of Sustainability Techniques in Development of Green Building
Authors: Ubaid Ur Rahman, Waqar Younas, Sooraj Kumar Chhabira
Abstract:
Environmentally sustainable building construction has experienced significant growth during the past 10 years at international level. This paper shows that the conceptual framework adopts sustainability techniques in construction to develop environment friendly building called green building. Waste occurs during the different construction phases which causes the environmental problems like, deposition of waste on ground surface creates major problems such as bad smell. It also gives birth to different health diseases and produces toxic waste agent which is specifically responsible for making soil infertile. Old recycled building material is used in the construction of new building. Sustainable construction is economical and saves energy sources. Sustainable construction is the major responsibility of designer and project manager. The designer has to fulfil the client demands while keeping the design environment friendly. Project manager has to deliver and execute sustainable construction according to sustainable design. Steel is the most appropriate sustainable construction material. It is more durable and easily recyclable. Steel occupies less area and has more tensile and compressive strength than concrete, making it a better option for sustainable construction as compared to other building materials. New technology like green roof has made the environment pleasant, and has reduced the construction cost. It minimizes economic, social and environmental issues. This paper presents an overview of research related to the material use of green building and by using this research recommendation are made which can be followed in the construction industry. In this paper, we go through detailed analysis on construction material. By making suitable adjustments to project management practices it is shown that a green building improves the cost efficiency of the project, makes it environmental friendly and also meets future generation demands.Keywords: sustainable construction, green building, recycled waste material, environment
Procedia PDF Downloads 246