Search results for: complex network platform
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 11228

Search results for: complex network platform

10178 Proposal of Commutation Protocol in Hybrid Sensors and Vehicular Networks for Intelligent Transport Systems

Authors: Taha Bensiradj, Samira Moussaoui

Abstract:

Hybrid Sensors and Vehicular Networks (HSVN), represent a hybrid network, which uses several generations of Ad-Hoc networks. It is used especially in Intelligent Transport Systems (ITS). The HSVN allows making collaboration between the Wireless Sensors Network (WSN) deployed on the border of the road and the Vehicular Network (VANET). This collaboration is defined by messages exchanged between the two networks for the purpose to inform the drivers about the state of the road, provide road safety information and more information about traffic on the road. Moreover, this collaboration created by HSVN, also allows the use of a network and the advantage of improving another network. For example, the dissemination of information between the sensors quickly decreases its energy, and therefore, we can use vehicles that do not have energy constraint to disseminate the information between sensors. On the other hand, to solve the disconnection problem in VANET, the sensors can be used as gateways that allow sending the messages received by one vehicle to another. However, because of the short communication range of the sensor and its low capacity of storage and processing of data, it is difficult to ensure the exchange of road messages between it and the vehicle, which can be moving at high speed at the time of exchange. This represents the time where the vehicle is in communication range with the sensor. This work is the proposition of a communication protocol between the sensors and the vehicle used in HSVN. The latter has as the purpose to ensure the exchange of road messages in the available time of exchange.

Keywords: HSVN, ITS, VANET, WSN

Procedia PDF Downloads 366
10177 The Tourism in the Regional Development of South Caucasus

Authors: Giorgi Sulashvili, Vladimer Kekenadze, Olga Khutsishvili, Bela Khotenashvili, Tsiuri Phkhakadze, Besarion Tsikhelashvili

Abstract:

The article dealt with the South Caucasus is a complex economic policy, which consists of strands: The process of deepening economic integration in the South Caucasus region; deepening economic integration with the EU in the framework of "Neighbourhood policy with Europe" and in line with the Maastricht criteria; the development of bilateral trade and economic relations with many countries of the world community; the development of sufficient conditions for the integration of the South Caucasus region in the world to enter the market. According to the author, to determine the place of Georgia in the regional policy of the South Caucasus, it is necessary to consider two views about Georgia: The first is the view of Georgia, as a part of global economic and political processes and the second look at Georgia, as a country located in the geo-economic and geopolitical space of the South Caucasus. Such approaches reveal the place of Georgia in two dimensions; in the global and regional economies. In the countries of South Caucasus, the tourism has been developing fast and has a great social and economic importance. Tourism influences deeply on the social and economic growth of the regions of the country. Tourism development formulates thousand new jobs, fixes the positions of small and middle businesses, ensures the development of the education and culture of the population. In the countries of South Caucasus, the Tourist Industry can be specified as the intersectoral complex, which consists of travel transport and it’s technical service network, tourist enterprises which are specialized in various types, wide network services. Tourists have a chance to enjoy all of these services. At the transitional stage of shifting to the market economy, tourism is among the priorities in the development of the national economy of our country. It is true that the Georgian tourism faces a range of problems at present, but its recognition and the necessity for its development may be considered as a fact. Besides, we would underline that the revitalization of the Georgian tourism is not only the question of time. This area can bring a lot of benefits as to private firms, as to specific countries. It also has many negative effects were conducted fundamental research and studies to consider both, positive and negative impacts of tourism. In the future such decisions will be taken that will bring, the maximum benefit at minimum cost, in order for tourism to take its place in Georgia it is necessary to understand the role of the tourism sector in the economic structure.

Keywords: transitional stage, national economy, Georgian tourism, positive and negative impacts

Procedia PDF Downloads 400
10176 The Synthesis, Structure and Catalytic Activity of Iron(II) Complex with New N2O2 Donor Schiff Base Ligand

Authors: Neslihan Beyazit, Sahin Bayraktar, Cahit Demetgul

Abstract:

Transition metal ions have an important role in biochemistry and biomimetic systems and may provide the basis of models for active sites of biological targets. The presence of copper(II), iron(II) and zinc(II) is crucial in many biological processes. Tetradentate N2O2 donor Schiff base ligands are well known to form stable transition metal complexes and these complexes have also applications in clinical and analytical fields. In this study, we present salient structural features and the details of cathecholase activity of Fe(II) complex of a new Schiff Base ligand. A new asymmetrical N2O2 donor Schiff base ligand and its Fe(II) complex were synthesized by condensation of 4-nitro-1,2 phenylenediamine with 6-formyl-7-hydroxy-5-methoxy-2-methylbenzopyran-4-one and by using an appropriate Fe(II) salt, respectively. Schiff base ligand and its metal complex were characterized by using FT-IR, 1H NMR, 13C NMR, UV-Vis, elemental analysis and magnetic susceptibility. In order to determine the kinetics parameters of catechol oxidase-like activity of Schiff base Fe(II) complex, the oxidation of the 3,5-di-tert-butylcatechol (3,5-DTBC) was measured at 25°C by monitoring the increase of the absorption band at 390-400 nm of the product 3,5-di-tert-butylcatequinone (3,5-DTBQ). The compatibility of catalytic reaction with Michaelis-Menten kinetics also investigated by the method of initial rates by monitoring the growth of the 390–400 nm band of 3,5-DTBQ as a function of time. Kinetic studies showed that Fe(II) complex of the new N2O2 donor Schiff base ligand was capable of acting as a model compound for simulating the catecholase properties of type-3 copper proteins.

Keywords: catecholase activity, Michaelis-Menten kinetics, Schiff base, transition metals

Procedia PDF Downloads 397
10175 Deploying a Platform as a Service Cloud Solution to Support Student Learning

Authors: Jiangping Wang

Abstract:

This presentation describes the design and implementation of PaaS (platform as a service) cloud-based labs that are used in database-related courses to teach students practical skills. Traditionally, all labs are implemented in a desktop-based environment where students have to install heavy client software to access database servers. In order to release students from that burden, we have successfully deployed the cloud-based solution to support database-related courses, from which students and teachers can practice and learn database topics in various database courses via cloud access. With its development environment, execution runtime, web server, database server, and collaboration capability, it offers a shared pool of configurable computing resources and comprehensive environment that supports students’ needs without the complexity of maintaining the infrastructure.

Keywords: PaaS, database environment, e-learning, web server

Procedia PDF Downloads 273
10174 Modal Density Influence on Modal Complexity Quantification in Dynamic Systems

Authors: Fabrizio Iezzi, Claudio Valente

Abstract:

The viscous damping in dynamic systems can be proportional or non-proportional. In the first case, the mode shapes are real whereas in the second case they are complex. From an engineering point of view, the complexity of the mode shapes is important in order to quantify the non-proportional damping. Different indices exist to provide estimates of the modal complexity. These indices are or not zero, depending whether the mode shapes are not or are complex. The modal density problem arises in the experimental identification when the dynamic systems have close modal frequencies. Depending on the entity of this closeness, the mode shapes can hold fictitious imaginary quantities that affect the values of the modal complexity indices. The results are the failing in the identification of the real or complex mode shapes and then of the proportional or non-proportional damping. The paper aims to show the influence of the modal density on the values of these indices in case of both proportional and non-proportional damping. Theoretical and pseudo-experimental solutions are compared to analyze the problem according to an appropriate mechanical system.

Keywords: complex mode shapes, dynamic systems identification, modal density, non-proportional damping

Procedia PDF Downloads 393
10173 A Design System for Complex Profiles of Machine Members Using a Synthetic Curve

Authors: N. Sateesh, C. S. P. Rao, K. Satyanarayana, C. Rajashekar

Abstract:

This paper proposes a development of a CAD/CAM system for complex profiles of various machine members using a synthetic curve i.e. B-spline. Conventional methods in designing and manufacturing of complex profiles are tedious and time consuming. Even programming those on a computer numerical control (CNC) machine can be a difficult job because of the complexity of the profiles. The system developed provides graphical and numerical representation B-spline profile for any given input. In this paper, the system is applicable to represent a cam profile with B-spline and attempt is made to improve the follower motion.

Keywords: plate-cams, cam profile, b-spline, computer numerical control (CNC), computer aided design and computer aided manufacturing (CAD/CAM), R-D-R-D (rise-dwell-return-dwell)

Procedia PDF Downloads 620
10172 Sustainable Electricity Generation Mix for Kenya from 2015 to 2035

Authors: Alex Maina, Mwenda Makathimo, Adwek George, Charles Opiyo

Abstract:

This research entails the simulation of three possible power scenarios for Kenya from 2015 to 2035 using the Low Emissions Analysis Platform (LEAP). These scenarios represent the unfolding future electricity generation that will fully satisfy the demand while considering the following: energy security, power generation cost and impacts on the environment. These scenarios are Reference Scenario (RS), Nuclear Scenario (NS) and More Renewable Scenario (MRS). The findings obtained reveals that the most sustainable scenario while comparing the costs was found to be the coal scenario with a Net Present Value (NPV) of $30,052.67 million though it has the highest Green House Gases (GHGs) emissions. However, the More Renewable Scenario (MRS) had the least GHGs emissions but was found to be a most expensive scenario to implement with an NPV of $30,733.07 million.

Keywords: energy security, Kenya, low emissions analysis platform, net-present value, greenhouse gases

Procedia PDF Downloads 102
10171 Minimization of Denial of Services Attacks in Vehicular Adhoc Networking by Applying Different Constraints

Authors: Amjad Khan

Abstract:

The security of Vehicular ad hoc networking is of great importance as it involves serious life threats. Thus to provide secure communication amongst Vehicles on road, the conventional security system is not enough. It is necessary to prevent the network resources from wastage and give them protection against malicious nodes so that to ensure the data bandwidth availability to the legitimate nodes of the network. This work is related to provide a non conventional security system by introducing some constraints to minimize the DoS (Denial of services) especially data and bandwidth. The data packets received by a node in the network will pass through a number of tests and if any of the test fails, the node will drop those data packets and will not forward it anymore. Also if a node claims to be the nearest node for forwarding emergency messages then the sender can effectively identify the true or false status of the claim by using these constraints. Consequently the DoS(Denial of Services) attack is minimized by the instant availability of data without wasting the network resources.

Keywords: black hole attack, grey hole attack, intransient traffic tempering, networking

Procedia PDF Downloads 287
10170 Functionalized Carbon-Base Fluorescent Nanoparticles for Emerging Contaminants Targeted Analysis

Authors: Alexander Rodríguez-Hernández, Arnulfo Rojas-Perez, Liz Diaz-Vazquez

Abstract:

The rise in consumerism over the past century has resulted in the creation of higher amounts of plasticizers, personal care products and other chemical substances, which enter and accumulate in water systems. Other sources of pollutants in Neotropical regions experience large inputs of nutrients with these pollutants resulting in eutrophication of water which consume large quantities of oxygen, resulting in high fish mortality. This dilemma has created a need for the development of targeted detection in complex matrices and remediation of emerging contaminants. We have synthesized carbon nanoparticles from macro algae (Ulva fasciata) by oxidizing the graphitic carbon network under extreme acidic conditions. The resulting material was characterized by STEM, yielding a spherical 12 nm average diameter nanoparticles, which can be fixed into a polysaccharide aerogel synthesized from the same macro algae. Spectrophotometer analyses show a pH dependent fluorescent behavior varying from 450-620 nm in aqueous media. Heavily oxidized edges provide for easy functionalization with enzymes for a more targeted analysis and remediation technique. Given the optical properties of the carbon base nanoparticles and the numerous possibilities of functionalization, we have developed a selective and robust targeted bio-detection and bioremediation technique for the treatment of emerging contaminants in complex matrices like estuarine embayment.

Keywords: aerogels, carbon nanoparticles, fluorescent, targeted analysis

Procedia PDF Downloads 245
10169 Oil Reservoir Asphalting Precipitation Estimating during CO2 Injection

Authors: I. Alhajri, G. Zahedi, R. Alazmi, A. Akbari

Abstract:

In this paper, an Artificial Neural Network (ANN) was developed to predict Asphaltene Precipitation (AP) during the injection of carbon dioxide into crude oil reservoirs. In this study, the experimental data from six different oil fields were collected. Seventy percent of the data was used to develop the ANN model, and different ANN architectures were examined. A network with the Trainlm training algorithm was found to be the best network to estimate the AP. To check the validity of the proposed model, the model was used to predict the AP for the thirty percent of the data that was unevaluated. The Mean Square Error (MSE) of the prediction was 0.0018, which confirms the excellent prediction capability of the proposed model. In the second part of this study, the ANN model predictions were compared with modified Hirschberg model predictions. The ANN was found to provide more accurate estimates compared to the modified Hirschberg model. Finally, the proposed model was employed to examine the effect of different operating parameters during gas injection on the AP. It was found that the AP is mostly sensitive to the reservoir temperature. Furthermore, the carbon dioxide concentration in liquid phase increases the AP.

Keywords: artificial neural network, asphaltene, CO2 injection, Hirschberg model, oil reservoirs

Procedia PDF Downloads 368
10168 Control of Stability for PV and Battery Hybrid System in Partial Shading

Authors: Weiying Wang, Qi Li, Huiwen Deng, Weirong Chen

Abstract:

The abrupt light change and uneven illumination will make the PV system get rid of constant output power, which will affect the efficiency of the grid connected inverter as well as the stability of the system. To solve this problem, this paper presents a strategy to control the stability of photovoltaic power system under the condition of partial shading of PV array, leading to constant power output, improving the capacity of resisting interferences. Firstly, a photovoltaic cell model considering the partial shading is established, and the backtracking search algorithm is used as the maximum power point to track algorithm under complex illumination. Then, the energy storage system based on the constant power control strategy is used to achieve constant power output. Finally, the effectiveness and correctness of the proposed control method are verified by the joint simulation of MATLAB/Simulink and RTLAB simulation platform.

Keywords: backtracking search algorithm, constant power control, hybrid system, partial shading, stability

Procedia PDF Downloads 301
10167 Ontological Modeling Approach for Statistical Databases Publication in Linked Open Data

Authors: Bourama Mane, Ibrahima Fall, Mamadou Samba Camara, Alassane Bah

Abstract:

At the level of the National Statistical Institutes, there is a large volume of data which is generally in a format which conditions the method of publication of the information they contain. Each household or business data collection project includes a dissemination platform for its implementation. Thus, these dissemination methods previously used, do not promote rapid access to information and especially does not offer the option of being able to link data for in-depth processing. In this paper, we present an approach to modeling these data to publish them in a format intended for the Semantic Web. Our objective is to be able to publish all this data in a single platform and offer the option to link with other external data sources. An application of the approach will be made on data from major national surveys such as the one on employment, poverty, child labor and the general census of the population of Senegal.

Keywords: Semantic Web, linked open data, database, statistic

Procedia PDF Downloads 178
10166 Fuels and Platform Chemicals Production from Lignocellulosic Biomass: Current Status and Future Prospects

Authors: Chandan Kundu, Sankar Bhattacharya

Abstract:

A significant disadvantage of fossil fuel energy production is the considerable amount of carbon dioxide (CO₂) released, which is one of the contributors to climate change. Apart from environmental concerns, changing fossil fuel prices have pushed society gradually towards renewable energy sources in recent years. Biomass is a plentiful and renewable resource and a source of carbon. Recent years have seen increased research interest in generating fuels and chemicals from biomass. Unlike fossil-based resources, biomass is composed of lignocellulosic material, which does not contribute to the increase in atmospheric CO₂ over a longer term. These considerations contribute to the current move of the chemical industry from non-renewable feedstock to renewable biomass. This presentation focuses on generating bio-oil and two major platform chemicals that can potentially improve the environment. Thermochemical processes such as pyrolysis are considered viable methods for producing bio-oil and biomass-based platform chemicals. Fluidized bed reactors, on the other hand, are known to boost bio-oil yields during pyrolysis due to their superior mixing and heat transfer features, as well as their scalability. This review and the associated experimental work are focused on the thermochemical conversion of biomass to bio-oil and two high-value platform chemicals, Levoglucosenone (LGO) and 5-Chloromethyl furfural (5-CMF), in a fluidized bed reactor. These two active molecules with distinct features can potentially be useful monomers in the chemical and pharmaceutical industries since they are well adapted to the manufacture of biologically active products. This process took several meticulous steps. To begin, the biomass was delignified using a peracetic acid pretreatment to remove lignin. Because of its complicated structure, biomass must be pretreated to remove the lignin, increasing access to the carbohydrate components and converting them to platform chemicals. The biomass was then characterized by Thermogravimetric analysis, Synchrotron-based THz spectroscopy, and in-situ DRIFTS in the laboratory. Based on the results, a continuous-feeding fluidized bed reactor system was constructed to generate platform chemicals from pretreated biomass using hydrogen chloride acid-gas as a catalyst. The procedure also yields biochar, which has a number of potential applications, including soil remediation, wastewater treatment, electrode production, and energy resource utilization. Consequently, this research also includes a preliminary experimental evaluation of the biochar's prospective applications. The biochar obtained was evaluated for its CO₂ and steam reactivity. The outline of the presentation will comprise the following: Biomass pretreatment for effective delignification Mechanistic study of the thermal and thermochemical conversion of biomass Thermochemical conversion of untreated and pretreated biomass in the presence of an acid catalyst to produce LGO and CMF A thermo-catalytic process for the production of LGO and 5-CMF in a continuously-fed fluidized bed reactor and efficient separation of chemicals Use of biochar generated from the platform chemicals production through gasification

Keywords: biomass, pretreatment, pyrolysis, levoglucosenone

Procedia PDF Downloads 147
10165 Concept of Automation in Management of Electric Power Systems

Authors: Richard Joseph, Nerey Mvungi

Abstract:

An electric power system includes a generating, a transmission, a distribution and consumers subsystems. An electrical power network in Tanzania keeps growing larger by the day and become more complex so that, most utilities have long wished for real-time monitoring and remote control of electrical power system elements such as substations, intelligent devices, power lines, capacitor banks, feeder switches, fault analyzers and other physical facilities. In this paper, the concept of automation of management of power systems from generation level to end user levels was determined by using Power System Simulator for Engineering (PSS/E) version 30.3.2.

Keywords: automation, distribution subsystem, generating subsystem, PSS/E, TANESCO, transmission subsystem

Procedia PDF Downloads 678
10164 Interactive IoT-Blockchain System for Big Data Processing

Authors: Abdallah Al-ZoubI, Mamoun Dmour

Abstract:

The spectrum of IoT devices is becoming widely diversified, entering almost all possible fields and finding applications in industry, health, finance, logistics, education, to name a few. The IoT active endpoint sensors and devices exceeded the 12 billion mark in 2021 and are expected to reach 27 billion in 2025, with over $34 billion in total market value. This sheer rise in numbers and use of IoT devices bring with it considerable concerns regarding data storage, analysis, manipulation and protection. IoT Blockchain-based systems have recently been proposed as a decentralized solution for large-scale data storage and protection. COVID-19 has actually accelerated the desire to utilize IoT devices as it impacted both demand and supply and significantly affected several regions due to logistic reasons such as supply chain interruptions, shortage of shipping containers and port congestion. An IoT-blockchain system is proposed to handle big data generated by a distributed network of sensors and controllers in an interactive manner. The system is designed using the Ethereum platform, which utilizes smart contracts, programmed in solidity to execute and manage data generated by IoT sensors and devices. such as Raspberry Pi 4, Rasbpian, and add-on hardware security modules. The proposed system will run a number of applications hosted by a local machine used to validate transactions. It then sends data to the rest of the network through InterPlanetary File System (IPFS) and Ethereum Swarm, forming a closed IoT ecosystem run by blockchain where a number of distributed IoT devices can communicate and interact, thus forming a closed, controlled environment. A prototype has been deployed with three IoT handling units distributed over a wide geographical space in order to examine its feasibility, performance and costs. Initial results indicated that big IoT data retrieval and storage is feasible and interactivity is possible, provided that certain conditions of cost, speed and thorough put are met.

Keywords: IoT devices, blockchain, Ethereum, big data

Procedia PDF Downloads 152
10163 Incentive-Based Motivation to Network with Coworkers: Strengthening Professional Networks via Online Social Networks

Authors: Jung Lee

Abstract:

The last decade has witnessed more people than ever before using social media and broadening their social circles. Social media users connect not only with their friends but also with professional acquaintances, primarily coworkers, and clients; personal and professional social circles are mixed within the same social media platform. Considering the positive aspect of social media in facilitating communication and mutual understanding between individuals, we infer that social media interactions with co-workers could indeed benefit one’s professional life. However, given privacy issues, sharing all personal details with one’s co-workers is not necessarily the best practice. Should one connect with coworkers via social media? Will social media connections with coworkers eventually benefit one’s long-term career? Will the benefit differ across cultures? To answer, this study examines how social media can contribute to organizational communication by tracing the foundation of user motivation based on social capital theory, leader-member exchange (LMX) theory and expectancy theory of motivation. Although social media was originally designed for personal communication, users have shown intentions to extend social media use for professional communication, especially when the proper incentive is expected. To articulate the user motivation and the mechanism of the incentive expectation scheme, this study applies those three theories and identify six antecedents and three moderators of social media use motivation including social network flaunt, shared interest, perceived social inclusion. It also hypothesizes that the moderating effects of those constructs would significantly differ based on the relationship hierarchy among the workers. To validate, this study conducted a survey of 329 active social media users with acceptable levels of job experiences. The analysis result confirms the specific roles of the three moderators in social media adoption for organizational communication. The present study contributes to the literature by developing a theoretical modeling of ambivalent employee perceptions about establishing social media connections with co-workers. This framework shows not only how both positive and negative expectations of social media connections with co-workers are formed based on expectancy theory of motivation, but also how such expectations lead to behavioral intentions using career success model. It also enhances understanding of how various relationships among employees can be influenced through social media use and such usage can potentially affect both performance and careers. Finally, it shows how cultural factors induced by social media use can influence relations among the coworkers.

Keywords: the social network, workplace, social capital, motivation

Procedia PDF Downloads 126
10162 The Influence of Step and Fillet Shape on Nozzle Endwall Heat Transfer

Authors: Jeong Ju Kim, Hee Yoon Chung, Dong Ho Rhee, Hyung Hee Cho

Abstract:

There is a gap at combustor-turbine interface where leakage flow comes out to prevent hot gas ingestion into the gas turbine nozzle platform. The leakage flow protects the nozzle endwall surface from the hot gas coming from combustor exit. For controlling flow’s stream, the gap’s geometry is transformed by changing fillet radius size. During the operation, step configuration is occurred that was unintended between combustor-turbine platform interface caused by thermal expansion or mismatched assembly. In this study, CFD simulations were performed to investigate the effect of the fillet and step on heat transfer and film cooling effectiveness on the nozzle platform. The Reynolds-averaged Navier-stokes equation was solved with turbulence model, SST k-omega. With the fillet configuration, predicted film cooling effectiveness results indicated that fillet radius size influences to enhance film cooling effectiveness. Predicted film cooling effectiveness results at forward facing step configuration indicated that step height influences to enhance film cooling effectiveness. We suggested that designer change a combustor-turbine interface configuration which was varied by fillet radius size near endwall gap when there was a step at combustor-turbine interface. Gap shape was modified by increasing fillet radius size near nozzle endwall. Also, fillet radius and step height were interacted with the film cooling effectiveness and heat transfer on endwall surface.

Keywords: gas turbine, film cooling effectiveness, endwall, fillet

Procedia PDF Downloads 366
10161 Automated Prepaid Billing Subscription System

Authors: Adekunle K. O, Adeniyi A. E, Kolawole E

Abstract:

One of the most dramatic trends in the communications market in recent years has been the growth of prepaid services. Today, prepaid no longer constitutes the low-revenue, basic-service segment. It is driven by a high margin, value-add service customers who view it as a convenient way of retaining control over their usage and communication spending while expecting high service levels. To service providers, prepaid services offer the advantage of reducing bad accounts while allowing them to predict usage and plan network resources. Yet, the real-time demands of prepaid services require a scalable, real-time platform to manage customers through their entire life cycle. It delivers integrated real-time rating, voucher management, recharge management, customer care and service provisioning for the generation of new prepaid services. It carries high scalability that can handle millions of prepaid customers in real-time through their entire life cycle.

Keywords: prepaid billing, voucher management, customers, automated, security

Procedia PDF Downloads 120
10160 Decision Support System for Diagnosis of Breast Cancer

Authors: Oluwaponmile D. Alao

Abstract:

In this paper, two models have been developed to ascertain the best network needed for diagnosis of breast cancer. Breast cancer has been a disease that required the attention of the medical practitioner. Experience has shown that misdiagnose of the disease has been a major challenge in the medical field. Therefore, designing a system with adequate performance for will help in making diagnosis of the disease faster and accurate. In this paper, two models: backpropagation neural network and support vector machine has been developed. The performance obtained is also compared with other previously obtained algorithms to ascertain the best algorithms.

Keywords: breast cancer, data mining, neural network, support vector machine

Procedia PDF Downloads 348
10159 Development and Validation of Thermal Stability in Complex System ABDM has two ASIC by NISA and COMSOL Tools

Authors: A. Oukaira, A. Lakhssassi, O. Ettahri

Abstract:

To make a good thermal management in an ABDM (Adapter Board Detector Module) card, we must first control temperature and its gradient from the first step in the design of integrated circuits ASIC of our complex system. In this paper, our main goal is to develop and validate the thermal stability in order to get an idea of the flow of heat around the ASIC in transient and thus address the thermal issues for integrated circuits at the ABDM card. However, we need heat sources simulations for ABDM card to establish its thermal mapping. This led us to perform simulations at each ASIC that will allow us to understand the thermal ABDM map and find real solutions for each one of our complex system that contains 36 ABDM map, taking into account the different layers around ASIC. To do a transient simulation under NISA, we had to build a function of power modulation in time TIMEAMP. The maximum power generated in the ASIC is 0.6 W. We divided the power uniformly in the volume of the ASIC. This power was applied for 5 seconds to visualize the evolution and distribution of heat around the ASIC. The DBC (Dirichlet Boundary conditions) method was applied around the ABDM at 25°C and just after these simulations in NISA tool we will validate them by COMSOL tool, wich is a numerical calculation software for a modular finite element for modeling a wide variety of physical phenomena characterizing a real problem. It will also be a design tool with its ability to handle 3D geometries for complex systems.

Keywords: ABDM, APD, thermal mapping, complex system

Procedia PDF Downloads 268
10158 Parameter Tuning of Complex Systems Modeled in Agent Based Modeling and Simulation

Authors: Rabia Korkmaz Tan, Şebnem Bora

Abstract:

The major problem encountered when modeling complex systems with agent-based modeling and simulation techniques is the existence of large parameter spaces. A complex system model cannot be expected to reflect the whole of the real system, but by specifying the most appropriate parameters, the actual system can be represented by the model under certain conditions. When the studies conducted in recent years were reviewed, it has been observed that there are few studies for parameter tuning problem in agent based simulations, and these studies have focused on tuning parameters of a single model. In this study, an approach of parameter tuning is proposed by using metaheuristic algorithms such as Genetic Algorithm (GA), Particle Swarm Optimization (PSO), Artificial Bee Colonies (ABC), Firefly (FA) algorithms. With this hybrid structured study, the parameter tuning problems of the models in the different fields were solved. The new approach offered was tested in two different models, and its achievements in different problems were compared. The simulations and the results reveal that this proposed study is better than the existing parameter tuning studies.

Keywords: parameter tuning, agent based modeling and simulation, metaheuristic algorithms, complex systems

Procedia PDF Downloads 232
10157 Classifying Students for E-Learning in Information Technology Course Using ANN

Authors: Sirilak Areerachakul, Nat Ployong, Supayothin Na Songkla

Abstract:

This research’s objective is to select the model with most accurate value by using Neural Network Technique as a way to filter potential students who enroll in IT course by electronic learning at Suan Suanadha Rajabhat University. It is designed to help students selecting the appropriate courses by themselves. The result showed that the most accurate model was 100 Folds Cross-validation which had 73.58% points of accuracy.

Keywords: artificial neural network, classification, students, e-learning

Procedia PDF Downloads 429
10156 Profit-Based Artificial Neural Network (ANN) Trained by Migrating Birds Optimization: A Case Study in Credit Card Fraud Detection

Authors: Ashkan Zakaryazad, Ekrem Duman

Abstract:

A typical classification technique ranks the instances in a data set according to the likelihood of belonging to one (positive) class. A credit card (CC) fraud detection model ranks the transactions in terms of probability of being fraud. In fact, this approach is often criticized, because firms do not care about fraud probability but about the profitability or costliness of detecting a fraudulent transaction. The key contribution in this study is to focus on the profit maximization in the model building step. The artificial neural network proposed in this study works based on profit maximization instead of minimizing the error of prediction. Moreover, some studies have shown that the back propagation algorithm, similar to other gradient–based algorithms, usually gets trapped in local optima and swarm-based algorithms are more successful in this respect. In this study, we train our profit maximization ANN using the Migrating Birds optimization (MBO) which is introduced to literature recently.

Keywords: neural network, profit-based neural network, sum of squared errors (SSE), MBO, gradient descent

Procedia PDF Downloads 478
10155 A Summary-Based Text Classification Model for Graph Attention Networks

Authors: Shuo Liu

Abstract:

In Chinese text classification tasks, redundant words and phrases can interfere with the formation of extracted and analyzed text information, leading to a decrease in the accuracy of the classification model. To reduce irrelevant elements, extract and utilize text content information more efficiently and improve the accuracy of text classification models. In this paper, the text in the corpus is first extracted using the TextRank algorithm for abstraction, the words in the abstract are used as nodes to construct a text graph, and then the graph attention network (GAT) is used to complete the task of classifying the text. Testing on a Chinese dataset from the network, the classification accuracy was improved over the direct method of generating graph structures using text.

Keywords: Chinese natural language processing, text classification, abstract extraction, graph attention network

Procedia PDF Downloads 107
10154 A Type-2 Fuzzy Model for Link Prediction in Social Network

Authors: Mansoureh Naderipour, Susan Bastani, Mohammad Fazel Zarandi

Abstract:

Predicting links that may occur in the future and missing links in social networks is an attractive problem in social network analysis. Granular computing can help us to model the relationships between human-based system and social sciences in this field. In this paper, we present a model based on granular computing approach and Type-2 fuzzy logic to predict links regarding nodes’ activity and the relationship between two nodes. Our model is tested on collaboration networks. It is found that the accuracy of prediction is significantly higher than the Type-1 fuzzy and crisp approach.

Keywords: social network, link prediction, granular computing, type-2 fuzzy sets

Procedia PDF Downloads 330
10153 Fault Detection of Pipeline in Water Distribution Network System

Authors: Shin Je Lee, Go Bong Choi, Jeong Cheol Seo, Jong Min Lee, Gibaek Lee

Abstract:

Water pipe network is installed underground and once equipped; it is difficult to recognize the state of pipes when the leak or burst happens. Accordingly, post management is often delayed after the fault occurs. Therefore, the systematic fault management system of water pipe network is required to prevent the accident and minimize the loss. In this work, we develop online fault detection system of water pipe network using data of pipes such as flow rate or pressure. The transient model describing water flow in pipelines is presented and simulated using Matlab. The fault situations such as the leak or burst can be also simulated and flow rate or pressure data when the fault happens are collected. Faults are detected using statistical methods of fast Fourier transform and discrete wavelet transform, and they are compared to find which method shows the better fault detection performance.

Keywords: fault detection, water pipeline model, fast Fourier transform, discrete wavelet transform

Procedia PDF Downloads 516
10152 Identifying Critical Links of a Transport Network When Affected by a Climatological Hazard

Authors: Beatriz Martinez-Pastor, Maria Nogal, Alan O'Connor

Abstract:

During the last years, the number of extreme weather events has increased. A variety of extreme weather events, including river floods, rain-induced landslides, droughts, winter storms, wildfire, and hurricanes, have threatened and damaged many different regions worldwide. These events have a devastating impact on critical infrastructure systems resulting in high social, economical and environmental costs. These events have a huge impact in transport systems. Since, transport networks are completely exposed to every kind of climatological perturbations, and its performance is closely related with these events. When a traffic network is affected by a climatological hazard, the quality of its service is threatened, and the level of the traffic conditions usually decreases. With the aim of understanding this process, the concept of resilience has become most popular in the area of transport. Transport resilience analyses the behavior of a traffic network when a perturbation takes place. This holistic concept studies the complete process, from the beginning of the perturbation until the total recovery of the system, when the perturbation has finished. Many concepts are included in the definition of resilience, such as vulnerability, redundancy, adaptability, and safety. Once the resilience of a transport network can be evaluated, in this case, the methodology used is a dynamic equilibrium-restricted assignment model that allows the quantification of the concept, the next step is its improvement. Through the improvement of this concept, it will be possible to create transport networks that are able to withstand and have a better performance under the presence of climatological hazards. Analyzing the impact of a perturbation in a traffic network, it is observed that the response of the different links, which are part of the network, can be completely different from one to another. Consequently and due to this effect, many questions arise, as what makes a link more critical before an extreme weather event? or how is it possible to identify these critical links? With this aim, and knowing that most of the times the owners or managers of the transport systems have limited resources, the identification of the critical links of a transport network before extreme weather events, becomes a crucial objective. For that reason, using the available resources in the areas that will generate a higher improvement of the resilience, will contribute to the global development of the network. Therefore, this paper wants to analyze what kind of characteristic makes a link a critical one when an extreme weather event damages a transport network and finally identify them.

Keywords: critical links, extreme weather events, hazard, resilience, transport network

Procedia PDF Downloads 290
10151 A General Iterative Nonlinear Programming Method to Synthesize Heat Exchanger Network

Authors: Rupu Yang, Cong Toan Tran, Assaad Zoughaib

Abstract:

The work provides an iterative nonlinear programming method to synthesize a heat exchanger network by manipulating the trade-offs between the heat load of process heat exchangers (HEs) and utilities. We consider for the synthesis problem two cases, the first one without fixed cost for HEs, and the second one with fixed cost. For the no fixed cost problem, the nonlinear programming (NLP) model with all the potential HEs is optimized to obtain the global optimum. For the case with fixed cost, the NLP model is iterated through adding/removing HEs. The method was applied in five case studies and illustrated quite well effectiveness. Among which, the approach reaches the lowest TAC (2,904,026$/year) compared with the best record for the famous Aromatic plants problem. It also locates a slightly better design than records in literature for a 10 streams case without fixed cost with only 1/9 computational time. Moreover, compared to the traditional mixed-integer nonlinear programming approach, the iterative NLP method opens a possibility to consider constraints (such as controllability or dynamic performances) that require knowing the structure of the network to be calculated.

Keywords: heat exchanger network, synthesis, NLP, optimization

Procedia PDF Downloads 169
10150 Scaling Siamese Neural Network for Cross-Domain Few Shot Learning in Medical Imaging

Authors: Jinan Fiaidhi, Sabah Mohammed

Abstract:

Cross-domain learning in the medical field is a research challenge as many conditions, like in oncology imaging, use different imaging modalities. Moreover, in most of the medical learning applications, the sample training size is relatively small. Although few-shot learning (FSL) through the use of a Siamese neural network was able to be trained on a small sample with remarkable accuracy, FSL fails to be effective for use in multiple domains as their convolution weights are set for task-specific applications. In this paper, we are addressing this problem by enabling FSL to possess the ability to shift across domains by designing a two-layer FSL network that can learn individually from each domain and produce a shared features map with extra modulation to be used at the second layer that can recognize important targets from mix domains. Our initial experimentations based on mixed medical datasets like the Medical-MNIST reveal promising results. We aim to continue this research to perform full-scale analytics for testing our cross-domain FSL learning.

Keywords: Siamese neural network, few-shot learning, meta-learning, metric-based learning, thick data transformation and analytics

Procedia PDF Downloads 64
10149 Optimization of a Convolutional Neural Network for the Automated Diagnosis of Melanoma

Authors: Kemka C. Ihemelandu, Chukwuemeka U. Ihemelandu

Abstract:

The incidence of melanoma has been increasing rapidly over the past two decades, making melanoma a current public health crisis. Unfortunately, even as screening efforts continue to expand in an effort to ameliorate the death rate from melanoma, there is a need to improve diagnostic accuracy to decrease misdiagnosis. Artificial intelligence (AI) a new frontier in patient care has the ability to improve the accuracy of melanoma diagnosis. Convolutional neural network (CNN) a form of deep neural network, most commonly applied to analyze visual imagery, has been shown to outperform the human brain in pattern recognition. However, there are noted limitations with the accuracy of the CNN models. Our aim in this study was the optimization of convolutional neural network algorithms for the automated diagnosis of melanoma. We hypothesized that Optimal selection of the momentum and batch hyperparameter increases model accuracy. Our most successful model developed during this study, showed that optimal selection of momentum of 0.25, batch size of 2, led to a superior performance and a faster model training time, with an accuracy of ~ 83% after nine hours of training. We did notice a lack of diversity in the dataset used, with a noted class imbalance favoring lighter vs. darker skin tone. Training set image transformations did not result in a superior model performance in our study.

Keywords: melanoma, convolutional neural network, momentum, batch hyperparameter

Procedia PDF Downloads 105