Search results for: structural behavior of reinforced concrete beams
1234 A Framework for Incorporating Non-Linear Degradation of Conductive Adhesive in Environmental Testing
Authors: Kedar Hardikar, Joe Varghese
Abstract:
Conductive adhesives have found wide-ranging applications in electronics industry ranging from fixing a defective conductor on printed circuit board (PCB) attaching an electronic component in an assembly to protecting electronics components by the formation of “Faraday Cage.” The reliability requirements for the conductive adhesive vary widely depending on the application and expected product lifetime. While the conductive adhesive is required to maintain the structural integrity, the electrical performance of the associated sub-assembly can be affected by the degradation of conductive adhesive. The degradation of the adhesive is dependent upon the highly varied use case. The conventional approach to assess the reliability of the sub-assembly involves subjecting it to the standard environmental test conditions such as high-temperature high humidity, thermal cycling, high-temperature exposure to name a few. In order to enable projection of test data and observed failures to predict field performance, systematic development of an acceleration factor between the test conditions and field conditions is crucial. Common acceleration factor models such as Arrhenius model are based on rate kinetics and typically rely on an assumption of linear degradation in time for a given condition and test duration. The application of interest in this work involves conductive adhesive used in an electronic circuit of a capacitive sensor. The degradation of conductive adhesive in high temperature and humidity environment is quantified by the capacitance values. Under such conditions, the use of established models such as Hallberg-Peck model or Eyring Model to predict time to failure in the field typically relies on linear degradation rate. In this particular case, it is seen that the degradation is nonlinear in time and exhibits a square root t dependence. It is also shown that for the mechanism of interest, the presence of moisture is essential, and the dominant mechanism driving the degradation is the diffusion of moisture. In this work, a framework is developed to incorporate nonlinear degradation of the conductive adhesive for the development of an acceleration factor. This method can be extended to applications where nonlinearity in degradation rate can be adequately characterized in tests. It is shown that depending on the expected product lifetime, the use of conventional linear degradation approach can overestimate or underestimate the field performance. This work provides guidelines for suitability of linear degradation approximation for such varied applicationsKeywords: conductive adhesives, nonlinear degradation, physics of failure, acceleration factor model.
Procedia PDF Downloads 1351233 Successful Public-Private Partnership Through the Impact of Environmental Education: A Case Study on Transforming Community Confrict into Harmony in the Dongpian Community
Authors: Men An Pan, Ho Hsiung Huang, Jui Chuan Lin, Tsui Hsun Wu, Hsing Yuan Yen
Abstract:
Pingtung County, located in the southernmost region of Taiwan, has the largest number of pig farms in the country. In the past, livestock operators in Dongpian Village discharged their wastewater into the nearby water bodies, causing water pollution in the local rivers and polluting the air with the stench of the pig excrement. These resulted in many complaints from the local residents. In response to a long time fighting back of the community against the livestock farms due to the confrict, the County Government's Environmental Protection Bureau (PTEPB) examined potential wayouts in addition to heavy fines to the perpetrators. Through helping the livestock farms to upgrade their pollution prevention equipment, promoting the reuse of biogas residue and slurry from the pig excrement, and environmental education, the confrict was successfully resolved. The properly treated wastewater from the livestock farms has been freely provided to the neighboring farmlands via pipelines and tankers. Thus, extensive cultivation of bananas, papaya, red dragon fruit, Inca nut, and cocoa has resulted in 34% resource utilization of biogas residue as a fertilizer. This has encouraged farmers to reduce chemical fertilizers and use microbial materials like photosynthetic bacteria after banning herbicides while lowering the cost of wastewater treatment in livestock farms and alleviating environmental pollution simultaneously. That is, the livestock farms fully demonstrate the determination to fulfill their corporate social responsibility (CSR). Due to the success, Eight farms jointly established a social enterprise - "Dongpian Gemstone Village Co., Ltd." to promote organic farming through a "shared farm." The company appropriates 5% of its total revenue back to the community through caregiving services for the elderly and a fund for young local farmers. The community adopted the Satoyama Initiative in accordance with the Conference of the CBD COP10. Through the positive impact of environmental education, the community seeks to realize the coexistence between society and nature while maintaining and developing socio-economic activities (including agriculture) with respect for nature and building a harmonic relationship between humans and nature. By way of sustainable management of resources and ensuring biodiversity, the community is transforming into a socio-ecological production landscape. Apart from nature conservation and watercourse ecology, preserving local culture is also a key focus of the environmental education. To mitigate the impact of global warming and climate change, the community and the government have worked together to develop a disaster prevention and relief system, strive to establish a low-carbon emitting homeland, and become a model for resilient communities. By the power of environmental education, this community has turned its residents’ hearts and minds into concrete action, fulfilled social responsibility, and moved towards realizing the UN SDGs. Even though it is not the only community to integrate government agencies, research institutions, and NGOs for environmental education, it is a prime example of a low-carbon sustainable community that achieves more than 9 SDGs, including responsible consumption and production, climate change action, and diverse partnerships. The community is also leveraging environmental education to become a net-zero carbon community targeted by COP26.Keywords: environmental education, biogas residue, biogas slurry, CSR, SDGs, climate change, net-zero carbon emissions
Procedia PDF Downloads 1451232 Autonomous Learning Motivates EFL Students to Learn English at Al Buraimi University College in the Sultanate of Oman: A Case Study
Authors: Yahia A. M. AlKhoudary
Abstract:
This Study presents the outcome of an investigation to evaluate the importance of autonomous learning as a means of motivation. However, very little research done in this field. Thus, the aims of this study are to ascertain the needs of the learners and to investigate their attitudes and motivation towards the mode of learning. Various suggestions made on how to improve learners’ participation in the learning process. A survey conducted on a sample group of 60 Omani College students. Self-report questionnaires and retrospective interviews conducted to find out their material-type preferences in a self-access learning context. Achieving autonomous learning system, which learners is one of the Ministry of Education goals in the Sultanate of Oman. As a result, this study presents the outcome of an investigation to evaluate the students’ performance in English as a Foreign Language (EFL). It focuses on the effect of autonomous learning that encourages students to learn English, a research conducted at Buraimi city, the Sultanate of Oman. The procedure of this investigation based on four dimensions: (1) sixty students are selected and divided into two groups, (2) pre and posttest projects are given to them, and (3) questionnaires are administered to both students who are involved in the experiment and 50 teachers (25 males and 25 females) to collect accurate data, (4) an interview with students and teachers to find out their attitude towards autonomous learning. Analysis of participants’ responses indicated that autonomous learning motivates students to learn English independently and increase the intrinsic rather than extrinsic motivation to improve their English language as a long-life active learning. The findings of this study show that autonomous learning approach is the best remedy to empower the students’ skills and overcome all relevant difficulties. They also show that secondary school teachers can fully rely on this learning approach that encourages language learners to monitor their progress, increase both learners and teachers’ motivation and ameliorate students’ behavior in the classroom. This approach is also an ongoing process, which takes time, patience and support to be lifelong learning.Keywords: Omani, autonomous learning system, English as a Foreign Language (EFL), learning approach
Procedia PDF Downloads 4671231 Nanoparticles Made from PNIPAM-G-PEO Double Hydrophilic Copolymers for Temperature-Controlled Drug Delivery
Authors: Victoria I. Michailova, Denitsa B. Momekova, Hristiana A. Velichkova, Evgeni H. Ivanov
Abstract:
The aim of this work is to design and develop thermo-responsive nanosized drug delivery systems based on poly(N-isopropylacrylamide)-g-poly(ethylene oxide) (PNIPAM-g-PEO) double hydrophilic graft copolymers. The PNIPAM-g-PEO copolymers are able to self-assemble in water into nanoparticles above the LCST of the thermo-responsive PNIPAM backbone and to disassemble and rapidly release the entrapped drugs upon cooling. However, their drug delivery applications are often hindered by their low loading capacity as the drugs to be encapsulated do not dissolve in water. In order to overcome this limitation, here we applied a low-temperature procedure with ethanol as an alternative route to the formation and loading a model hydrophobic drug, Indomethacin (IMC), into PNIPAM-g-PEO nanoparticles. The rationale for this approach was that ethanol dissolves both IMC and the copolymer and its mixing with water may induce micellization of PNIPAM-g-PEO at temperatures lower than the LCST. The influence of the volume fraction of ethanol and the temperature on the aggregation characteristics of PNIPAM-g-PEO copolymers (2.7 mol% PEO) was investigated by means of DLS, TEM and rheological dynamic oscillatory tests. The studies showed rich phase behavior at T < LCST, incl. the formation of highly solvated 500-1000 nm complex structures, 30-70 nm micelles and polymersomes as well as giant polymersomes, as the fraction of added ethanol increased. We believe that the PNIPAM-g-PEO self-assembly is favored due to the different solvation of its constituting blocks in ethanol-water mixtures. The incorporation of IMC led to alteration of the physicochemical and morphological characteristics of the blank nanoparticles. In this case, only monodisperse polymersomes and micelles were observed in the solutions with an average diameter less than 65 nm and substantial drug loading (DLC ~117 – 146 wt%). Indomethacin release from the nanoparticles was responsive to temperature changes, being much faster at a temperature of 42oC compared to that of 37oC under otherwise the same conditions. The results obtained suggest that these PNIPAM-g-PEO nanoparticles could be potential in mild hyper-thermic delivery of nonsteroidal anti-inflammatory drugs.Keywords: drug delivery, nanoparticles, poly(N-isopropylacryl amide)-g-poly(ethylene oxide), thermo-responsive
Procedia PDF Downloads 2901230 Realization and Characterizations of Conducting Ceramics Based on ZnO Doped by TiO₂, Al₂O₃ and MgO
Authors: Qianying Sun, Abdelhadi Kassiba, Guorong Li
Abstract:
ZnO with wurtzite structure is a well-known semiconducting oxide (SCO), being applied in thermoelectric devices, varistors, gas sensors, transparent electrodes, solar cells, liquid crystal displays, piezoelectric and electro-optical devices. Intrinsically, ZnO is weakly n-type SCO due to native defects (Znⱼ, Vₒ). However, the substitutional doping by metallic elements as (Al, Ti) gives rise to a high n-type conductivity ensured by donor centers. Under CO+N₂ sintering atmosphere, Schottky barriers of ZnO ceramics will be suppressed by lowering the concentration of acceptors at grain boundaries and then inducing a large increase in the Hall mobility, thereby increasing the conductivity. The presented work concerns ZnO based ceramics, which are fabricated with doping by TiO₂ (0.50mol%), Al₂O₃ (0.25mol%) and MgO (1.00mol%) and sintering in different atmospheres (Air (A), N₂ (N), CO+N₂(C)). We obtained uniform, dense ceramics with ZnO as the main phase and Zn₂TiO₄ spinel as a secondary and minor phase. An important increase of the conductivity was shown for the samples A, N, and C which were sintered under different atmospheres. The highest conductivity (σ = 1.52×10⁵ S·m⁻¹) was obtained under the reducing atmosphere (CO). The role of doping was investigated with the aim to identify the local environment and valence states of the doping elements. Thus, Electron paramagnetic spectroscopy (EPR) determines the concentration of defects and the effects of charge carriers in ZnO ceramics as a function of the sintering atmospheres. The relation between conductivity and defects concentration shows the opposite behavior between these parameters suggesting that defects act as traps for charge carriers. For Al ions, nuclear magnetic resonance (NMR) technique was used to identify the involved local coordination of these ions. Beyond the six and forth coordinated Al, an additional NMR signature of ZnO based TCO requires analysis taking into account the grain boundaries and the conductivity through the Knight shift effects. From the thermal evolution of the conductivity as a function of the sintering atmosphere, we succeed in defining the conditions to realize ZnO based TCO ceramics with an important thermal coefficient of resistance (TCR) which is promising for electrical safety of devices.Keywords: ceramics, conductivity, defects, TCO, ZnO
Procedia PDF Downloads 1971229 The Role of Situational Factors in User Experience during Human-Robot Interaction
Authors: Da Tao, Tieyan Wang, Mingfu Qin
Abstract:
While social robots have been increasingly developed and rapidly applied in our daily life, how robots should interact with humans is still an urgent problem to be explored. Appropriate use of interactive behavior is likely to create a good user experience in human-robot interaction situations, which in turn can improve people’s acceptance of robots. This paper aimed to systematically and quantitatively examine the effects of several important situational factors (i.e., interaction distance, interaction posture, and feedback style) on user experience during human-robot interaction. A three-factor mixed designed experiment was adopted in this study, where subjects were asked to interact with a social robot in different interaction situations by combinations of varied interaction distance, interaction posture, and feedback style. A set of data on users’ behavioral performance, subjective perceptions, and eye movement measures were tracked and collected, and analyzed by repeated measures analysis of variance. The results showed that the three situational factors showed no effects on behavioral performance in tasks during human-robot interaction. Interaction distance and feedback style yielded significant main effects and interaction effects on the proportion of fixation times. The proportion of fixation times on the robot is higher for negative feedback compared with positive feedback style. While the proportion of fixation times on the robot generally decreased with the increase of the interaction distance, it decreased more under the positive feedback style than under the negative feedback style. In addition, there were significant interaction effects on pupil diameter between interaction distance and posture. As interaction distance increased, mean pupil diameter became smaller in side interaction, while it became larger in frontal interaction. Moreover, the three situation factors had significant interaction effects on user acceptance of the interaction mode. The findings are helpful in the underlying mechanism of user experience in human-robot interaction situations and provide important implications for the design of robot behavioral expression and for optimal strategies to improve user experience during human-robot interaction.Keywords: social robots, human-robot interaction, interaction posture, interaction distance, feedback style, user experience
Procedia PDF Downloads 1331228 Lifetime Attachment: Adult Daughters Attachment to Their Old Mothers
Authors: Meltem Anafarta Şendağ, Funda Kutlu
Abstract:
Attachment theory has some major postulates that direct attention of psychologists from many different domains. First, the theory suggests that attachment is a lifetime process. This means that every human being from cradle to grave needs someone stronger to depend on in times of stress. Second, the attachment is a dynamic process and as one goes through developmental stages it is being transferred from one figure to another (friends, romantic partners). Third, the quality of attachment relationships later in time directly affected by the earliest attachment relationship established between the mother and the infant. Depending on these postulates, attachment literature focuses mostly on mother – child attachment during childhood and romantic relationship during adulthood. However, although romantic partners are important attachment figures in adults’ life, parents are not dropped out from the attachment hierarchy but they keep being important attachment figures. Despite the fact that parents could still be an important figure in adults’ life, adult – parent attachment is overlooked in the literature. Accordingly, this study focuses on adult daughters’ current attachment to their old mothers in relation with early parental bonding and current attachment to husbands. Participants of the study were 383 adult women (Average age = 40, ranging between 23 and 70) whose mothers were still alive and who were married at the time of the study. Participants were completed Adult Attachment Scale, Parental Bonding Instrument, and Experiences in Close Relationship – II together with demographic questionnaire. Results revealed that daughters’ attachment to their mothers weakens as they get older, have more children, and have longer marriages. Stronger attachment to mothers was found positively correlated with current satisfaction with the relationship, perception of maternal care before the age of 12 and negatively correlated with perception of controlling behavior before the age 12. Considering the relationship between current parental attachment and romantic attachment, it was found that as the current attachment to mother strengthens attachment avoidance towards husband decreases. Results revealed that although attachment between the adult daughters and old mothers weakens, the relationship is still critical in daughters’ lives. The strength of current attachment with the mother is related both with the early relationship with the mother and current attachment with the husband. The current study is thought to contribute to attachment theory emphasizing the attachment as a lifetime construct.Keywords: adult daughter, attachment, old mothers, parental bonding
Procedia PDF Downloads 3331227 Evidence of Groundwater Reservoirs Associated with Fault Structures and Magmatic Dyke Intrusions: Insights from Geophysics and Well Data Analysis in Central Cameroon
Authors: Mbida Yem, Alessandra Ribodetti, Joseph Quentin Yéné Atangana, Fabrice Jouffray, Dieudonné Bisso
Abstract:
Central Cameroon is a mosaic complex of Proterozoïc litho-tectonic units, with structural deformations mainly inherited from Panafrican orogeny. It consists of a para-derived series with epicontinental affinity, structured as successive nappe thrusting southward on the Ntem complex, considered as the Congo Craton northern margin. A well-developed prograde metamorphic gradient is described from SE (Dja and Yokadouma meta-detritic series) to NW (gneiss and migmatites of the Yaounde series) with ages estimated at 600-620 Ma. Syn- to late phase of the Panafrican deformations crosscut the nappes structured with large mylonitic shear zones (Sanaga fault, Adamawa fault, Tcholiré-Banyo fault) coeval with intrusive granitoids. The scientific and industrial communities interested in exploring the groundwater resources of these litho-tectonic units using geophysics and geohydrology methods have grown steadily since the 1970s. In this paper, we present shallow and deep geophysical cross-sections that describe the most productive groundwater targets of the Central Cameroon litho-tectonic units. This study also discusses geological factors that control groundwater occurrences. The data analyzed were gathered from public and private groundwater surveys conducted in recent years and included 18 well-controlled resistivity sections and hydrogeological parameters of 150 drilling points. The depth of well records extends from 40 to 180m. Also, one of the challenges of geophysics investigations was to image groundwater reservoirs located above 120m depth. Therefore, the resistivity data were acquired using a 1200 m long digital streamer, with a 10 m electrode spacing in the selected sites. The modelled sections derived from these data show that the most productive groundwater targets of the study area include lithological contacts and dyke fault-zones. The average width of dyke fault-zones ranges between 40 and 380 m. These structures display a significant lateral extent, and their spatial distribution is often in correlation with mountain terranes and regional fault zones trending from SW-NE to NNW-SSE. Following these observations, transboundaries aquifers associated with fractured magmatic rocks can be found in the study area.Keywords: Proterozoic, resistivity sections, dyke fault-zones, groundwater target
Procedia PDF Downloads 81226 Evaluation of a Higher Diploma in Mental Health Nursing Using Qualitative and Quantitative Methods: Effects on Student Behavior, Attitude and Perception
Authors: T. Frawley, G. O'Kelly
Abstract:
The UCD School of Nursing, Midwifery and Health Systems Higher Diploma in Mental Health (HDMH) nursing programme commenced in January 2017. Forty students successfully completed the programme. Programme evaluation was conducted from the outset. Research ethics approval was granted by the UCD Human Research Ethics Committee – Sciences in November 2016 (LS-E-16-163). Plan for Sustainability: Each iteration of the programme continues to be evaluated and adjusted accordingly. Aims: The ultimate purpose of the HDMH programme is to prepare registered nurses (registered children’s nurse (RCN), registered nurse in intellectual disability (RNID) and registered general nurse (RGN)) to function as effective registered psychiatric nurses in all settings which provide care and treatment for people experiencing mental health difficulties. Curriculum evaluation is essential to ensure that the programme achieves its purpose, that aims and expected outcomes are met and that required changes are highlighted for the programme’s continuing positive development. Methods: Both quantitative and qualitative methods were used in the evaluation. A series of questionnaires were used (the majority pre and post programme) to determine student perceptions of the programme, behaviour and attitudinal change from commencement to completion. These included the student assessment of learning gains (SALG); mental health knowledge schedule (MAKS); mental health clinician attitudes scale (MICA); reported and intended behaviour scale (RIBS); and community attitudes towards the mentally ill (CAMI). In addition, student and staff focus groups were conducted. Evaluation methods also incorporated module feedback. Outcome/Results: The evaluation highlighted a very positive response in relation to the achievement of programme outcomes and preparation for future work as registered psychiatric nursing. Some areas were highlighted for further development, which have been taken cognisance of in the 2019 iteration of the programme.Keywords: learning gains, mental health, nursing, stigma
Procedia PDF Downloads 1381225 Linking the Built Environment, Activities and Well-Being: Examining the Stories among Older Adults during Ageing-in-Place
Authors: Wenquan Gan, Peiyu Zhao, Xinyu Zhao
Abstract:
Under the background of the rapid development of China’s ageing population, ageing-in-place has become a primary strategy to cope with this problem promoted by the Chinese government. However, most older adults currently living in old residential communities are insufficient to support their ageing-in-place. Therefore, exploring how to retrofit existing communities towards ageing-friendly standards to support older adults is essential for healthy ageing. To better cope with this issue, this study aims to shed light on the inter-relationship among the built environment, daily activities, and well-being of older adults in urban China. Using mixed research methods including GPS tracking, structured observation, and in-depth interview to examine: (a) what specific places or facilities are most commonly used by the elderly in the ageing-in-place process; (b) what specific built environment characteristics attract older adults in these frequently used places; (c) how has the use of these spaces impacted the well-being of older adults. Specifically, structured observation and GPS are used to record and map the older residents’ behaviour and movement in Suzhou, China, a city with a highly aged population and suitable as a research case. Subsequently, a follow-up interview is conducted to explore what impact of activities and the built environment on their well-being. Results showed that for the elderly with good functional ability, the facilities promoted by the Chinese government to support ageing-in-place, such as community nursing homes for the aged, day-care centre, and activity centres for the aged, are rarely used by older adults. Additionally, older adults have their preferred activities and built environment characteristics that contribute to their well-being. Our findings indicate that a complex interrelationship between the built environment and activities can influence the well-being of the elderly. Further investigations are needed to understand how to support healthy ageing-in-place, especially in addition to providing permanent elder-ly-care facilities, but to attend to the design interventions that can enhance these particularly built environment characteristics to facilitate a healthy lifestyle in later life.Keywords: older adults, built environment, spatial behavior, community activity, healthy ageing
Procedia PDF Downloads 1081224 Synthesis and Characterization of PH Sensitive Hydrogel and Its Application in Controlled Drug Release of Tramadol
Authors: Naima Bouslah, Leila Bounabi, Farid Ouazib, Nabila Haddadine
Abstract:
Conventional release dosage forms are known to provide an immediate release of the drug. Controlling the rate of drug release from polymeric matrices is very important for a number of applications, particularly in the pharmaceutical area. Hydrogels are polymers in three-dimensional network arrangement, which can absorb and retain large amounts of water without dissolution. They have been frequently used to develop controlled released formulations for oral administration because they can extend the duration of drug release and thus reduce dose to be administrated improving patient compliance. Tramadol is an opioid pain medication used to treat moderate to moderately severe pain. When taken as an immediate-release oral formulation, the onset of pain relief usually occurs within about an hour. In the present work, we synthesized pH-responsive hydrogels of (hydroxyl ethyl methacrylate-co-acrylic acid), (HEMA-AA) for control drug delivery of tramadol in the gastro-intestinal tractus. The hydrogels with different acrylic acid content, were synthesized by free radical polymerization and characterized by FTIR spectroscopy, X ray diffraction analysis (XRD), differential scanning calorimetry (DSC) and thermo gravimetric analysis (TGA). FTIR spectroscopy has shown specific hydrogen bonding interactions between the carbonyl groups of the hydrogels and hydroxyl groups of tramadol. Both the XRD and DSC studies revealed that the introduction of tramadol in the hydrogel network induced the amorphization of the drug. The swelling behaviour, absorptive kinetics and the release kinetics of tramadol in simulated gastric fluid (pH 1.2) and in simulated intestinal fluid (pH 7.4) were also investigated. The hydrogels exhibited pH-responsive behavior in the swelling study. The (HEMA-AA) hydrogel swelling was much higher in pH =7.4 medium. The tramadol release was significantly increased when pH of the medium was changed from simulated gastric fluid (pH 1.2) to simulated intestinal fluid (pH 7.4). Using suitable mathematical models, the apparent diffusional coefficients and the corresponding kinetic parameters have been calculated.Keywords: biopolymres, drug delivery, hydrogels, tramadol
Procedia PDF Downloads 3581223 The Islamic Perspective in International Relations
Authors: Hakam Junus, Natassha Chrysanti
Abstract:
The international relations theory currently is dominated by the western theoretical perspectives. Although the western theories are often used by many scholars as the universal perspective to explain the phenomena that occur in the world, sometimes the existing theories are failed to explain various issues that occur in the non-western world, for example, in the studies concerning on terrorism issues. Using inappropriate theories to explain the international issues such as terrorism will cause a failure in the decision-making process. The lack of understanding regarding Islamic perspective could be one of the factors that make international society unable to eradicate violent terrorism in the name of religion. Thus, this paper is argued that considering Islamic perspective as one of the major studies in international relations is significant to build a bridge between the Islamic world and the western world. It is believed that enhancing the study of Islamic perspective will create better understanding of the Islamic world and will enrich the study of international relations. This paper is conducted through a qualitative approach, in which data is obtained from the literature analysis. Considering Islamic perspective is important because Islam is listed as one of the major religions in the world. It is also due to the geopolitical spread of the Muslim in the world and the likelihood of the Islamic perspective to shape and influence Muslim’s behavior in the international level. The study of Islamic perspective in the international level is neither to contempt nor to oppose the existing western theories; rather it is needed in order to broaden the perspective in the international relations studies. The Islamic perspective is different compared to the non-western school of thought such as realism, and liberalism in some respects. The Islamic perspective cannot be explained through the lens of rationalist approaches. Compares to the post-positivism international relations perspectives, Islamic perspective is probably closer to the constructivist school of thought. However, the Islamic perspective offers some uniqueness that is not limited to the socially constructed ideas as in the constructivist arguments. This paper will be developed according to the discussion of three aspects that make Islamic perspective different with the existing international relations theories. The first aspect is the main actors in the international level. The second aspect is regarding on what appears to be the most important point for the actors in the international relations. The third aspect is regarding the pattern of relationship between the actors in the international level. In addition, this paper will briefly discuss the perspective of Islam in economics compare to the existing theories in the realm of international political economy.Keywords: international relations, Islam, non-western theories, societies
Procedia PDF Downloads 5021222 Preparation and Characterization of Pectin Based Proton Exchange Membranes Derived by Solution Casting Method for Direct Methanol Fuel Cells
Authors: Mohanapriya Subramanian, V. Raj
Abstract:
Direct methanol fuel cells (DMFCs) are considered to be one of the most promising candidates for portable and stationary applications in the view of their advantages such as high energy density, easy manipulation, high efficiency and they operate with liquid fuel which could be used without requiring any fuel-processing units. Electrolyte membrane of DMFC plays a key role as a proton conductor as well as a separator between electrodes. Increasing concern over environmental protection, biopolymers gain tremendous interest owing to their eco-friendly bio-degradable nature. Pectin is a natural anionic polysaccharide which plays an essential part in regulating mechanical behavior of plant cell wall and it is extracted from outer cells of most of the plants. The aim of this study is to develop and demonstrate pectin based polymer composite membranes as methanol impermeable polymer electrolyte membranes for DMFCs. Pectin based nanocomposites membranes are prepared by solution-casting technique wherein pectin is blended with chitosan followed by the addition of optimal amount of sulphonic acid modified Titanium dioxide nanoparticle (S-TiO2). Nanocomposite membranes are characterized by Fourier Transform-Infra Red spectroscopy, Scanning electron microscopy, and Energy dispersive spectroscopy analyses. Proton conductivity and methanol permeability are determined into order to evaluate their suitability for DMFC application. Pectin-chitosan blends endow with a flexible polymeric network which is appropriate to disperse rigid S-TiO2 nanoparticles. Resulting nanocomposite membranes possess adequate thermo-mechanical stabilities as well as high charge-density per unit volume. Pectin-chitosan natural polymeric nanocomposite comprising optimal S-TiO2 exhibits good electrochemical selectivity and therefore desirable for DMFC application.Keywords: biopolymers, fuel cells, nanocomposite, methanol crossover
Procedia PDF Downloads 1381221 Modeling of Anode Catalyst against CO in Fuel Cell Using Material Informatics
Authors: M. Khorshed Alam, H. Takaba
Abstract:
The catalytic properties of metal usually change by intermixturing with another metal in polymer electrolyte fuel cells. Pt-Ru alloy is one of the much-talked used alloy to enhance the CO oxidation. In this work, we have investigated the CO coverage on the Pt2Ru3 nanoparticle with different atomic conformation of Pt and Ru using a combination of material informatics with computational chemistry. Density functional theory (DFT) calculations used to describe the adsorption strength of CO and H with different conformation of Pt Ru ratio in the Pt2Ru3 slab surface. Then through the Monte Carlo (MC) simulations we examined the segregation behaviour of Pt as a function of surface atom ratio, subsurface atom ratio, particle size of the Pt2Ru3 nanoparticle. We have constructed a regression equation so as to reproduce the results of DFT only from the structural descriptors. Descriptors were selected for the regression equation; xa-b indicates the number of bonds between targeted atom a and neighboring atom b in the same layer (a,b = Pt or Ru). Terms of xa-H2 and xa-CO represent the number of atoms a binding H2 and CO molecules, respectively. xa-S is the number of atom a on the surface. xa-b- is the number of bonds between atom a and neighboring atom b located outside the layer. The surface segregation in the alloying nanoparticles is influenced by their component elements, composition, crystal lattice, shape, size, nature of the adsorbents and its pressure, temperature etc. Simulations were performed on different size (2.0 nm, 3.0 nm) of nanoparticle that were mixing of Pt and Ru atoms in different conformation considering of temperature range 333K. In addition to the Pt2Ru3 alloy we also considered pure Pt and Ru nanoparticle to make comparison of surface coverage by adsorbates (H2, CO). Hence, we assumed the pure and Pt-Ru alloy nanoparticles have an fcc crystal structures as well as a cubo-octahedron shape, which is bounded by (111) and (100) facets. Simulations were performed up to 50 million MC steps. From the results of MC, in the presence of gases (H2, CO), the surfaces are occupied by the gas molecules. In the equilibrium structure the coverage of H and CO as a function of the nature of surface atoms. In the initial structure, the Pt/Ru ratios on the surfaces for different cluster sizes were in range of 0.50 - 0.95. MC simulation was employed when the partial pressure of H2 (PH2) and CO (PCO) were 70 kPa and 100-500 ppm, respectively. The Pt/Ru ratios decrease as the increase in the CO concentration, without little exception only for small nanoparticle. The adsorption strength of CO on the Ru site is higher than the Pt site that would be one of the reason for decreasing the Pt/Ru ratio on the surface. Therefore, our study identifies that controlling the nanoparticle size, composition, conformation of alloying atoms, concentration and chemical potential of adsorbates have impact on the steadiness of nanoparticle alloys which ultimately and also overall catalytic performance during the operations.Keywords: anode catalysts, fuel cells, material informatics, Monte Carlo
Procedia PDF Downloads 1931220 Performance Estimation of Small Scale Wind Turbine Rotor for Very Low Wind Regime Condition
Authors: Vilas Warudkar, Dinkar Janghel, Siraj Ahmed
Abstract:
Rapid development experienced by India requires huge amount of energy. Actual supply capacity additions have been consistently lower than the targets set by the government. According to World Bank 40% of residences are without electricity. In 12th five year plan 30 GW grid interactive renewable capacity is planned in which 17 GW is Wind, 10 GW is from solar and 2.1 GW from small hydro project, and rest is compensated by bio gas. Renewable energy (RE) and energy efficiency (EE) meet not only the environmental and energy security objectives, but also can play a crucial role in reducing chronic power shortages. In remote areas or areas with a weak grid, wind energy can be used for charging batteries or can be combined with a diesel engine to save fuel whenever wind is available. India according to IEC 61400-1 belongs to class IV Wind Condition; it is not possible to set up wind turbine in large scale at every place. So, the best choice is to go for small scale wind turbine at lower height which will have good annual energy production (AEP). Based on the wind characteristic available at MANIT Bhopal, rotor for small scale wind turbine is designed. Various Aero foil data is reviewed for selection of airfoil in the Blade Profile. Airfoil suited of Low wind conditions i.e. at low Reynold’s number is selected based on Coefficient of Lift, Drag and angle of attack. For designing of the rotor blade, standard Blade Element Momentum (BEM) Theory is implanted. Performance of the Blade is estimated using BEM theory in which axial induction factor and angular induction factor is optimized using iterative technique. Rotor performance is estimated for particular designed blade specifically for low wind Conditions. Power production of rotor is determined at different wind speeds for particular pitch angle of the blade. At pitch 15o and velocity 5 m/sec gives good cut in speed of 2 m/sec and power produced is around 350 Watts. Tip speed of the Blade is considered as 6.5 for which Coefficient of Performance of the rotor is calculated 0.35, which is good acceptable value for Small scale Wind turbine. Simple Load Model (SLM, IEC 61400-2) is also discussed to improve the structural strength of the rotor. In SLM, Edge wise Moment and Flap Wise moment is considered which cause bending stress at the root of the blade. Various Load case mentioned in the IEC 61400-2 is calculated and checked for the partial safety factor of the wind turbine blade.Keywords: annual energy production, Blade Element Momentum Theory, low wind Conditions, selection of airfoil
Procedia PDF Downloads 3381219 Prediction of Springback in U-bending of W-Temper AA6082 Aluminum Alloy
Authors: Jemal Ebrahim Dessie, Lukács Zsolt
Abstract:
High-strength aluminum alloys have drawn a lot of attention because of the expanding demand for lightweight vehicle design in the automotive sector. Due to poor formability at room temperature, warm and hot forming have been advised. However, warm and hot forming methods need more steps in the production process and an advanced tooling system. In contrast, since ordinary tools can be used, forming sheets at room temperature in the W temper condition is advantageous. However, springback of supersaturated sheets and their thinning are critical challenges and must be resolved during the use of this technique. In this study, AA6082-T6 aluminum alloy was solution heat treated at different oven temperatures and times using a specially designed and developed furnace in order to optimize the W-temper heat treatment temperature. A U-shaped bending test was carried out at different time periods between W-temper heat treatment and forming operation. Finite element analysis (FEA) of U-bending was conducted using AutoForm aiming to validate the experimental result. The uniaxial tensile and unload test was performed in order to determine the kinematic hardening behavior of the material and has been optimized in the Finite element code using systematic process improvement (SPI). In the simulation, the effect of friction coefficient & blank holder force was considered. Springback parameters were evaluated by the geometry adopted from the NUMISHEET ’93 benchmark problem. It is noted that the change of shape was higher at the more extended time periods between W-temper heat treatment and forming operation. Die radius was the most influential parameter at the flange springback. However, the change of shape shows an overall increasing tendency on the sidewall as the increase of radius of the punch than the radius of the die. The springback angles on the flange and sidewall seem to be highly influenced by the coefficient of friction than blank holding force, and the effect becomes increases as increasing the blank holding force.Keywords: aluminum alloy, FEA, springback, SPI, U-bending, W-temper
Procedia PDF Downloads 1011218 Conceptualizing Psycho-Social Intervention with Juvenile Offenders as Attachment Therapy: A Practical Approach
Authors: Genziana Lay
Abstract:
A wide majority of older children and adolescents who enter the juvenile court system present with an array of problematic symptoms and behaviors including anxiety, depression, aggressive acting out, detachment, and substance abuse. Attachment theory offers a framework for understanding normative and pathological functioning, which during development is influenced by emotional, social and cognitive elements. There is clear evidence that children and adolescents with the highest risk of developing adaptation problems present an insecure attachment profile. Most offending minors have experienced dysfunctional family relationships as well as social and/or economic deprivation. Their maladaptive attachment develops not only through their relationship with caregivers but with the environment at large. Activation of their faulty attachment system leads them to feel emotionally overwhelmed and engage in destructive behaviors and decision-making. A psycho-social intervention with this population conceptualized as attachment therapy is a multi-faceted, practical approach that has shown excellent results in terms of increased psychological well-being and drastically reduced rates of re-offense/ destructive behavior. Through several; components including psychotherapy, monitoring, volunteering, meditation and socialization, the program focuses on seven dimensions: self-efficacy, responsibility, empathy/reparation, autonomy/security, containment/structure, insight building, and relational health. This paper presents the program and illustrates how the framework of attachment theory practically applied to psycho-social intervention has great therapeutic and social reparation potential. Preliminary evidence drawn from the Sassari Juvenile Court is very promising; this paper will illustrate these results and propose an even more comprehensive, applicable approach to psycho-social reparative intervention that leads to greater psychological health and reduced recidivism in the child and adolescent population.Keywords: attachment, child, adolescent, crime, juvenile, psychosocial
Procedia PDF Downloads 1731217 Liposome Sterile Filtration Fouling: The Impact of Transmembrane Pressure on Performance
Authors: Hercules Argyropoulos, Thomas F. Johnson, Nigel B Jackson, Kalliopi Zourna, Daniel G. Bracewell
Abstract:
Lipid encapsulation has become essential in drug delivery, notably for mRNA vaccines during the COVID-19 pandemic. However, their sterile filtration poses challenges due to the risk of deformation, filter fouling and product loss from adsorption onto the membrane. Choosing the right filtration membrane is crucial to maintain sterility and integrity while minimizing product loss. The objective of this study is to develop a rigorous analytical framework utilizing confocal microscopy and filtration blocking models to elucidate the fouling mechanisms of liposomes as a model system for this class of delivery vehicle during sterile filtration, particularly in response to variations in transmembrane pressure (TMP) during the filtration process. Experiments were conducted using fluorescent Lipoid S100 PC liposomes formulated by micro fluidization and characterized by Multi-Angle Dynamic Light Scattering. Dual-layer PES/PES and PES/PVDF membranes with 0.2 μm pores were used for filtration under constant pressure, cycling from 30 psi to 5 psi and back to 30 psi, with 5, 6, and 5-minute intervals. Cross-sectional membrane samples were prepared by microtome slicing and analyzed with confocal microscopy. Liposome characterization revealed a particle size range of 100-140 nm and an average concentration of 2.93x10¹¹ particles/mL. Goodness-of-fit analysis of flux decline data at varying TMPs identified the intermediate blocking model as most accurate at 30 psi and the cake filtration model at 5 psi. Membrane resistance analysis showed atypical behavior compared to therapeutic proteins, with resistance remaining below 1.38×10¹¹ m⁻¹ at 30 psi, increasing over fourfold at 5 psi, and then decreasing to 1-1.3-fold when pressure was returned to 30 psi. This suggests that increased flow/shear deforms liposomes enabling them to more effectively navigate membrane pores. Confocal microscopy indicated that liposome fouling mainly occurred in the upper parts of the dual-layer membrane.Keywords: sterile filtration, membrane resistance, microfluidization, confocal microscopy, liposomes, filtration blocking models
Procedia PDF Downloads 231216 Good Corporate Governance and Accountability in Microfinance Institutions
Authors: A. R. Nor Azlina, H. Salwana, I. Zuraeda, A. R. Rashidah, O. Normah
Abstract:
Transitioning towards globalization in the business environment has necessitated more essential growing changes such as competition, business strategy, innovation in technology and effectiveness of societal trends on adopting corporate governance are seen to be drivers of the future. This transformations on business environment has a significant impact to organizations’ performances. Many organizations are demanding for more proactive entrepreneurs with dynamic team, who can run and steer their business to success. Changing on strategy, roles, tasks, entrepreneurial skills and implementing corporate governance in relationship development is important to enhance the organization’s performance towards being more cost-efficient and subsequently increase its efficiency. Small Medium Enterprises (SMEs) in most developing countries are contributors to the economic growth of a nation. However, the potential of Microfinance Institutions (MFIs) is always overlooked in contributing towards SMEs development. The adoption of corporate governance and accountability in MFIs as driving forces for these SMEs is not incorporated in measurements of organization performance. This paper attempts to address some of the governance issues associated with dimensions of accountability in improving performances of microfinance institutions. Qualitative approach was adopted in this study to analyze the data collected. The qualitative approach emerges as contributing factor in understanding and critiquing accountability processes, as well as addressing the concerns of practitioners and policymakers. A close researcher engagement with the field which concerns process, embracing of situational complexity, as well as critical and reflective understandings of organizational phenomena remain as hallmarks of the tradition. It is concluded that in describing and scrutinizing an understanding of managerial behavior, organizational factors and macro-economic relationship in SMEs firm need to be improved. This is also the case in MFIs. A framework is developed to explore the linkage of corporate governance and accountability issues related to entrepreneurship as factors affecting MFIs performances in facing ongoing transformation of organization performance within Malaysian SMEs industries.Keywords: accountability, corporate governance, microfinance, organization performance
Procedia PDF Downloads 3941215 Structure Clustering for Milestoning Applications of Complex Conformational Transitions
Authors: Amani Tahat, Serdal Kirmizialtin
Abstract:
Trajectory fragment methods such as Markov State Models (MSM), Milestoning (MS) and Transition Path sampling are the prime choice of extending the timescale of all atom Molecular Dynamics simulations. In these approaches, a set of structures that covers the accessible phase space has to be chosen a priori using cluster analysis. Structural clustering serves to partition the conformational state into natural subgroups based on their similarity, an essential statistical methodology that is used for analyzing numerous sets of empirical data produced by Molecular Dynamics (MD) simulations. Local transition kernel among these clusters later used to connect the metastable states using a Markovian kinetic model in MSM and a non-Markovian model in MS. The choice of clustering approach in constructing such kernel is crucial since the high dimensionality of the biomolecular structures might easily confuse the identification of clusters when using the traditional hierarchical clustering methodology. Of particular interest, in the case of MS where the milestones are very close to each other, accurate determination of the milestone identity of the trajectory becomes a challenging issue. Throughout this work we present two cluster analysis methods applied to the cis–trans isomerism of dinucleotide AA. The choice of nucleic acids to commonly used proteins to study the cluster analysis is two fold: i) the energy landscape is rugged; hence transitions are more complex, enabling a more realistic model to study conformational transitions, ii) Nucleic acids conformational space is high dimensional. A diverse set of internal coordinates is necessary to describe the metastable states in nucleic acids, posing a challenge in studying the conformational transitions. Herein, we need improved clustering methods that accurately identify the AA structure in its metastable states in a robust way for a wide range of confused data conditions. The single linkage approach of the hierarchical clustering available in GROMACS MD-package is the first clustering methodology applied to our data. Self Organizing Map (SOM) neural network, that also known as a Kohonen network, is the second data clustering methodology. The performance comparison of the neural network as well as hierarchical clustering method is studied by means of computing the mean first passage times for the cis-trans conformational rates. Our hope is that this study provides insight into the complexities and need in determining the appropriate clustering algorithm for kinetic analysis. Our results can improve the effectiveness of decisions based on clustering confused empirical data in studying conformational transitions in biomolecules.Keywords: milestoning, self organizing map, single linkage, structure clustering
Procedia PDF Downloads 2241214 Euthanasia with Reference to Defective Newborns: An Analysis
Authors: Nibedita Priyadarsini
Abstract:
It is said that Ethics has a wide range of application which mainly deals with human life and human behavior. All ethical decisions are ultimately concerned with life and death. Both life and death must be considered dignified. Medical ethics with its different topics mostly deals with life and death concepts among which euthanasia is one. Various types of debates continue over Euthanasia long since. The question of putting an end to someone’s life has aroused controversial in legal sphere as well as in moral sphere. To permit or not to permit has remained an enigma the world over. Modern medicine is in the stage of transcending limits that cannot be set aside. The morality of allowing people to die without treatment has become more important as methods of treatment have become more sophisticated. Allowing someone to die states an essential recognition that there is some point in any terminal illness when further curative treatment has no purpose and the patient in such situation should allow dying a natural death in comfort, peace, and dignity, without any interference from medical science and technology. But taking a human life is in general sense is illogical in itself. It can be said that when we kill someone, we cause the death; whereas if we merely let someone die, then we will not be responsible for anyone’s death. This point is often made in connection with the euthanasia cases and which is often debatable. Euthanasia in the pediatric age group involves some important issues that are different from those of adult issues. The main distinction that occurs is that the infants and newborns and young children are not able to decide about their future as the adult does. In certain cases, where the child born with some serious deformities with no hope of recovery, in that cases doctor decide not to perform surgery in order to remove the blockage, and let the baby die. Our aim in this paper is to examine, whether it is ethically justified to withhold or to apply euthanasia on the part of the defective infant. What to do with severely defective infants from earliest time if got to know that they are not going to survive at all? Here, it will deal mostly with the ethics in deciding the relevant ethical concerns in the practice of euthanasia with the defective newborns issues. Some cases in relation to disabled infants and newborn baby will be taken in order to show what to do in a critical condition, that the patient and family members undergoes and under which condition those could be eradicated, if not all but some. The final choice must be with the benefit of the patient.Keywords: ethics, medical ethics, euthanasia, defective newborns
Procedia PDF Downloads 2041213 Designing Metal Organic Frameworks for Sustainable CO₂ Utilization
Authors: Matthew E. Potter, Daniel J. Stewart, Lindsay M. Armstrong, Pier J. A. Sazio, Robert R. Raja
Abstract:
Rising CO₂ levels in the atmosphere means that CO₂ is a highly desirable feedstock. This requires specific catalysts to be designed to activate this inert molecule, combining a catalytic site tailored for CO₂ transformations with a support that can readily adsorb CO₂. Metal organic frameworks (MOFs) are regularly used as CO₂ sorbents. The organic nature of the linker molecules, connecting the metal nodes, offers many post-synthesis modifications to introduce catalytic active sites into the frameworks. However, the metal nodes may be coordinatively unsaturated, allowing them to bind to organic moieties. Imidazoles have shown promise catalyzing the formation of cyclic carbonates from epoxides with CO₂. Typically, this synthesis route employs toxic reagents such as phosgene, liberating HCl. Therefore an alternative route with CO₂ is highly appealing. In this work we design active sites for CO₂ activation, by tethering substituted-imidazole organocatalytic species to the available Cr3+ metal nodes of a Cr-MIL-101 MOF, for the first time, to create a tailored species for carbon capture utilization applications. Our tailored design strategy combining a CO₂ sorbent, Cr-MIL-101, with an anchored imidazole results in a highly active and selective multifunctional catalyst, achieving turnover frequencies of over 750 hr-1. These findings demonstrate the synergy between the MOF framework and imidazoles for CO₂ utilization applications. Further, the effect of substrate variation has been explored yielding mechanistic insights into this process. Through characterization, we show that the structural and compositional integrity of the Cr-MIL-101 has been preserved on functionalizing the imidazoles. Further, we show the binding of the imidazoles to the Cr3+ metal nodes. This can be seen through our EPR study, where the distortion of the Cr3+ on binding to the imidazole shows the CO₂ binding site is close to the active imidazole. This has a synergistic effect, improving catalytic performance. We believe the combination of MOF support and organocatalyst allows many possibilities to generate new multifunctional catalysts for CO₂ utilisation. In conclusion, we have validated our design procedure, combining a known CO₂ sorbent, with an active imidazole species to create a unique tailored multifunctional catalyst for CO₂ utilization. This species achieves high activity and selectivity for the formation of cyclic carbonates and offers a sustainable alternative to traditional synthesis methods. This work represents a unique design strategy for CO₂ utilization while offering exciting possibilities for further work in characterization, computational modelling, and post-synthesis modification.Keywords: carbonate, catalysis, MOF, utilisation
Procedia PDF Downloads 1801212 Fluoride Immobilization in Plaster Board Waste: A Safety Measure to Prevent Soil and Water Pollution
Authors: Venkataraman Sivasankar, Kiyoshi Omine, Hideaki Sano
Abstract:
The leaching of fluoride from Plaster Board Waste (PBW) is quite feasible in soil and water environments. The Ministry of Environment, Japan recommended the standard limit of 0.8 mgL⁻¹ or less for fluoride. Although the utilization of PBW as a substitute for cement is rather meritorious, its fluoride leaching behavior deteriorates the quality of soil and water and therefore envisaged as a demerit. In view of this fluoride leaching problem, the present research is focused on immobilizing fluoride in PBW. The immobilization experiments were conducted with four chemical systems operated by DAHP (diammonium hydrogen phosphate) and phosphoric acid carbonization of bamboo mass coupled with certain inorganic reactions using reagents such as calcium hydroxide, sodium hydroxide, and aqueous ammonia. The fluoride immobilization was determined after shaking the reactor contents including the plaster board waste for 24 h at 25˚C. In the DAHP system, the immobilization of fluoride was evident from the leaching of fluoride in the range 0.071-0.12 mgL⁻¹, 0.026-0.14 mgL⁻¹ and 0.068-0.12 mgL⁻¹ for the reaction temperatures at 30˚C, 50˚C, and 90˚C, respectively, with final pH of 6.8. The other chemical systems designated as PACCa, PACAm, and PACNa could immobilize fluoride in PBW, and the resulting solution was analyzed with the fluoride less than the Japanese environmental standard of 0.8 mgL⁻¹. In the case of PACAm and PACCa systems, the calcium concentration was found undetectable and witnessed the formation of phosphate compounds. The immobilization of fluoride was found inversely proportional to the increase in the volume of leaching solvent and dose of PBW. Characterization studies of PBW and the solid after fluoride immobilization was done using FTIR (Fourier transform infrared spectroscopy), Raman spectroscopy, FE-SEM ( Field Emission Scanning Electron Microscopy) with EDAX (Energy Dispersive Spectroscopy), XRD (X-ray diffraction), and XPS (X-ray photoelectron spectroscopy). The results revealed the formation of new calcium phosphate compounds such as apatite, monetite, and hydroxylapatite. The participation of such new compounds in fluoride immobilization seems indispensable through the exchange mechanism of hydroxyl and fluoride groups. Acknowledgment: First author thanks to Japanese Society for the Promotion of Science (JSPS) for the award of the fellowship (ID No. 16544).Keywords: characterization, fluoride, immobilization, plaster board waste
Procedia PDF Downloads 1581211 An Efficient Hardware/Software Workflow for Multi-Cores Simulink Applications
Authors: Asma Rebaya, Kaouther Gasmi, Imen Amari, Salem Hasnaoui
Abstract:
Over these last years, applications such as telecommunications, signal processing, digital communication with advanced features (Multi-antenna, equalization..) witness a rapid evaluation accompanied with an increase of user exigencies in terms of latency, the power of computation… To satisfy these requirements, the use of hardware/software systems is a common solution; where hardware is composed of multi-cores and software is represented by models of computation, synchronous data flow (SDF) graph for instance. Otherwise, the most of the embedded system designers utilize Simulink for modeling. The issue is how to simplify the c code generation, for a multi-cores platform, of an application modeled by Simulink. To overcome this problem, we propose a workflow allowing an automatic transformation from the Simulink model to the SDF graph and providing an efficient schedule permitting to optimize the number of cores and to minimize latency. This workflow goes from a Simulink application and a hardware architecture described by IP.XACT language. Based on the synchronous and hierarchical behavior of both models, the Simulink block diagram is automatically transformed into an SDF graph. Once this process is successfully achieved, the scheduler calculates the optimal cores’ number needful by minimizing the maximum density of the whole application. Then, a core is chosen to execute a specific graph task in a specific order and, subsequently, a compatible C code is generated. In order to perform this proposal, we extend Preesm, a rapid prototyping tool, to take the Simulink model as entry input and to support the optimal schedule. Afterward, we compared our results to this tool results, using a simple illustrative application. The comparison shows that our results strictly dominate the Preesm results in terms of number of cores and latency. In fact, if Preesm needs m processors and latency L, our workflow need processors and latency L'< L.Keywords: hardware/software system, latency, modeling, multi-cores platform, scheduler, SDF graph, Simulink model, workflow
Procedia PDF Downloads 2701210 Understanding Co-Living Experience through University Residential Halls - A Pilot Study
Authors: Michelle W. T. Cheng, Yau Y.
Abstract:
Hong Kong continues to be ranked as the least affordable housing market in the world, making co-living a feasible alternative in this high-density city. Although the number of co-living residences has increased in Hong Kong, co-living as a housing typology is still a new concept for many. Little research has been conducted on this new housing typology, let alone the co-living experience. To address this gap, this study targeted student residents in university residential halls as it is a more controlled environment (e.g., with established rules and guidelines regarding the use of communal facilitates and housing management) for studying co-living experiences in Hong Kong. To date, no research study has systematically identified anti-social behavior (ASB) in co-living spaces. Since ASB can be influenced by factors such as social norms and individual interpretation, it has an elastic definition that results in different levels of acceptance. Unlike other types of housing, co-living spaces can be potentially more influenced by the neighborhood as residents share more time and space. As a pilot study, this research targeted one university residential hall to examine student co-living experiences. To clarify, the research question is focused on identifying the social factors that impact the residential satisfaction of those who co-living in residential halls. Quantitative data (n=100) were collected via a structured questionnaire to measure the residential environment, including ASB, social neighboring, community attachment, and perceived hall management efficacy. The survey was distributed at the end of the academic year to ensure that respondents had at least one year of first-hand experience living in a co-living space. To gather qualitative data, follow-up focus group interviews were conducted with 16 participants who completed the survey. The semi-structured interviews aimed to elicit the participants' perspectives on their co-living experience. Through analyzing their co-living experiences, the researcher identified factors that affected their residential satisfaction and provided recommendations to enhance their co-living experience.Keywords: co-living, university residential hall, anti-social behabiour, neighbour relationship, community attachement
Procedia PDF Downloads 881209 Recognition of a Thinly Bedded Distal Turbidite: A Case Study from a Proterozoic Delta System, Chaossa Formation, Simla Group, Western Lesser Himalaya, India
Authors: Priyanka Mazumdar, Ananya Mukhopadhyay
Abstract:
A lot of progress has been achieved in the research of turbidites during the last decades. However, their relationship to delta systems still deserves further attention. This paper addresses example of fine grained turbidite from a pro-deltaic deposit of a Proterozoic mixed energy delta system exposed along Chaossa-Baliana river section of the Chaossa Formation of the Simla Basin. Lithostratigraphic analysis of the Chaossa Formation reveals three major facies associations (prodelta deposit-FA1, delta slope deposit-FA2 and delta front deposit-FA3) based on lithofacies types, petrography and sedimentary structures. Detailed process-based facies and paleoenvironmental analysis of the study area have led to identification of more than150 m thick coarsening-upwards deltaic successions composed of fine grained turbidites overlain by delta slope deposits. Erosional features are locally common at the base of turbidite beds and still more widespread at the top. The complete sequence has eight sub-divisions that are here termed T1 to T8. The basal subdivision (T1) comprises a massive graded unit with a sharp, scoured base, internal parallel-lamination and cross-lamination. The overlying sequence shows textural and compositional grading through alternating silt and mud laminae (T2). T2 is overlying by T3 which is characterized by climbing ripple and cross lamination. Parallel laminae are the predominant facies attributes of T4 which caps the T3 unit. T5 has a loaded scour base and is mainly characterized laminated silt. The topmost three divisions, graded mud (T6), ungraded mud (T7) and laminated mud (T8). The proposed sequence is analogous to the Bouma (1962) structural scheme for sandy turbidites. Repetition of partial sequences represents deposition from different stages of evolution of a large, muddy, turbidity flow. Detailed facies analysis of the study area reveals that the sediments of the turbidites developed during normal regression at the stage of stable or marginally rising sea level. Thin-bedded turbidites were deposited predominantly by turbidity currents in the relatively shallower part of the Simla basin. The fine-grained turbidites are developed by resedimentation of delta-front sands and slumping of upper pro-delta muds.Keywords: turbidites, prodelta, proterozoic, Simla Basin, Bouma sequence
Procedia PDF Downloads 2701208 Analysis and Design of Offshore Met Mast Supported on Jacket Substructure
Authors: Manu Manu, Pardha J. Saradhi, Ramana M. V. Murthy
Abstract:
Wind Energy is accepted as one of the most developed, cost effective and proven renewable energy technologies to meet increasing electricity demands in a sustainable manner. Preliminary assessment studies along Indian Coastline by Ministry of New and Renewable Energy have indicated prospects for development of offshore wind power along Tamil Nadu Coast, India. The commercial viability of a wind project mainly depends on wind characteristics on site. Hence, it is internationally recommended to perform site-specific wind resource assessment based on two years’ wind profile as a part of the feasibility study. Conventionally, guy wire met mast are used onshore for the collection of wind profile. Installation of similar structure in offshore requires complex marine spread and are very expensive. In the present study, an attempt is made to develop 120 m long lattice tower supported on the jacket, piled to the seabed at Rameshwaram, Tamil Nadu, India. Offshore met-masts are subjected to combined wind and hydrodynamic loads, and these lateral loads should be safely transferred to soil. The wind loads are estimated based on gust factor method, and the hydrodynamic loads are estimated by Morison’s equation along with suitable wave theory. The soil is modeled as three nonlinear orthogonal springs based on API standards. The structure configuration and optimum member sizes are obtained for extreme cyclone events. The dynamic behavior of mast under coupled wind and wave loads is also studied. The static responses of a mast with jacket type offshore platform have been studied using a frame model in SESAM. It is found from the study that the maximum displacement at the top of the mast for the random wave is 0.003 m and that of the tower for wind is 0.08 m during the steady state. The dynamic analysis results indicate that the structure is safe against coupled wind and wave loading.Keywords: offshore wind, mast, static, aerodynamic load, hydrodynamic load
Procedia PDF Downloads 2171207 Low Field Microwave Absorption and Magnetic Anisotropy in TM Co-Doped ZnO System
Authors: J. Das, T. S. Mahule, V. V. Srinivasu
Abstract:
Electron spin resonance (ESR) study at 9.45 GHz and a field modulation frequency of 100Hz was performed on bulk polycrystalline samples of Mn:TM (Fe/Ni) and Mn:RE (Gd/Sm) co doped ZnO samples with composition Zn1-xMn:TM/RE)xO synthesised by solid state reaction route and sintered at 500 0C temperature. The room temperature microwave absorption data collected by sweeping the DC magnetic field from -500 to 9500 G for the Mn:Fe and Mn:Ni co doped ZnO samples exhibit a rarely reported non resonant low field absorption (NRLFA) in addition to a strong absorption at around 3350G, usually associated with ferromagnetic resonance (FMR) satisfying Larmor’s relation due to absorption in the full saturation state. Observed low field absorption is distinct to ferromagnetic resonance even at low temperature and shows hysteresis. Interestingly, it shows a phase opposite with respect to the main ESR signal of the samples, which indicates that the low field absorption has a minimum value at zero magnetic field whereas the ESR signal has a maximum value. The major resonance peak as well as the peak corresponding to low field absorption exhibit asymmetric nature indicating magnetic anisotropy in the sample normally associated with intrinsic ferromagnetism. Anisotropy parameter for Mn:Ni codoped ZnO sample is noticed to be quite higher. The g values also support the presence of oxygen vacancies and clusters in the samples. These samples have shown room temperature ferromagnetism in the SQUID measurement. However, in rare earth (RE) co doped samples (Zn1-x (Mn: Gd/Sm)xO), which show paramagnetic behavior at room temperature, the low field microwave signals are not observed. As microwave currents due to itinerary electrons can lead to ohmic losses inside the sample, we speculate that more delocalized 3d electrons contributed from the TM dopants facilitate such microwave currents leading to the loss and hence absorption at the low field which is also supported by the increase in current with increased micro wave power. Besides, since Fe and Ni has intrinsic spin polarization with polarisability of around 45%, doping of Fe and Ni is expected to enhance the spin polarization related effect in ZnO. We emphasize that in this case Fe and Ni doping contribute to polarized current which interacts with the magnetization (spin) vector and get scattered giving rise to the absorption loss.Keywords: co-doping, electron spin resonance, hysteresis, non-resonant microwave absorption
Procedia PDF Downloads 3141206 A Study on the Effects of Urban Density, Sociodemographic Vulnerability, and Medical Service on the Impact of COVID-19
Authors: Jang-hyun Oh, Kyoung-ho Choi, Jea-sun Lee
Abstract:
The outbreak of the COVID-19 pandemic brought reconsiderations and doubts about urban density as compact cities became epidemic hot spots. Density, though, provides an upside in that medical services required to protect citizens against the spread of disease are concentrated within compact cities, which helps reduce the mortality rate. Sociodemographic characteristics are also a crucial factor in determining the vulnerability of the population, and the purpose of this study is to empirically discover how these three urban factors affect the severity of the epidemic impacts. The study aimed to investigate the influential relationships between urban factors and epidemic impacts and provide answers to whether superb medical service in compact cities can scale down the impacts of COVID-19. SEM (Structural Equation Modeling) was applied as a suitable research method for verifying interrelationships between factors based on theoretical grounds. The study accounted for 144 municipalities in South Korea during periods from the first emergence of COVID-19 to December 31st, 2022. The study collected data related to infection and mortality cases from each municipality, and it holds significance as primary research that enlightens the aspects of epidemic impact concerning urban settings and investigates for the first time the mediated effects of medical service. The result of the evaluation shows that compact cities are most likely to have lower sociodemographic vulnerability and better quality of medical service, while cities with low density contain a higher portion of vulnerable populations and poorer medical services. However, the quality of medical service had no significant influence in reducing neither the infection rate nor the mortality rate. Instead, density acted as the major influencing factor in the infection rate, while sociodemographic vulnerability was the major determinant of the mortality rate. Thus, the findings strongly paraphrase that compact cities, although with high infection rates, tend to have lower mortality rates due to less vulnerability in sociodemographics, Whereas death was more frequent in less dense cities due to higher portions of vulnerable populations such as the elderly and low-income classes. Findings suggest an important lesson for post-pandemic urban planning-intrinsic characteristics of urban settings, such as density and population, must be taken into account to effectively counteract future epidemics and minimize the severity of their impacts. Moreover, the study is expected to contribute as a primary reference material for follow-up studies that further investigate related subjects, including urban medical services during the pandemic.Keywords: urban planning, sociodemographic vulnerability, medical service, COVID-19, pandemic
Procedia PDF Downloads 611205 China's Role in Promoting Regionalism in East Asia in Post-Maoist Era: An Analysis through Uneven and Combined Development
Authors: Ali Jibran
Abstract:
China was considered as a revisionist state by the countries of East Asia during Maoist era; but China’s role changed from a revisionist state to a constructive member of East Asian Community in post-Maoist era. This research will mainly investigate the two phenomena: what were reasons of behavioral change of China in East Asia and what role has China played to promote regionalism in East Asia since Open Door Policy of Deng Xiaoping. To understand these two phenomena, this study applies the international relations theory of Uneven and Combined Development (U&CD). The central finding of this study is that ‘whip of external necessity’ posed by the Western dominance during the Chinese ‘century of ignominy’ resulted in a Maoist regime in China in 1948 which was hostile to its neighbors due to ideological tensions. Maoist regime in China could not solve the challenges posed by the ‘international’; therefore after Mao’s death, a new economic approach was introduced in China to deal with the challenges postured by the ‘international’. Due to Deng Xiaoping’s 'Open Door Policy' era, China used its ‘privilege of historic backwardness’ and witnessed unprecedented economic growth. As the societies are multiple and exist in real time, therefore interaction among societies is pertinent. Export oriented domestic policy pushed China to concentrate less on class struggle and improve its relations with its neighbors in East Asia. As China soon become a global hub of trade after market oriented reforms, therefore friendly relations with the states of East Asia was pertinent. This study will investigate Chinese role in regionalism in East Asia in three area: Chinese role in promoting regionalism in East Asia, China’s role in economic integration in East Asia and China’s role in combatting terrorism in East Asia. This study will be divided in two section. The first section will deal with the transformation in Chinese behavior in East Asia in post Maoist era, and the second section will analyze China’s role in East Asia by looking at Chinese role in institutional mechanism, economic integration and combatting terrorism in East Asia.Keywords: East Asia, regionalism, institutionlism, economic integration
Procedia PDF Downloads 378