Search results for: accessible natural green space standards (ANGSt)
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 12749

Search results for: accessible natural green space standards (ANGSt)

2009 Seawater Desalination for Production of Highly Pure Water Using a Hydrophobic PTFE Membrane and Direct Contact Membrane Distillation (DCMD)

Authors: Ahmad Kayvani Fard, Yehia Manawi

Abstract:

Qatar’s primary source of fresh water is through seawater desalination. Amongst the major processes that are commercially available on the market, the most common large scale techniques are Multi-Stage Flash distillation (MSF), Multi Effect distillation (MED), and Reverse Osmosis (RO). Although commonly used, these three processes are highly expensive down to high energy input requirements and high operating costs allied with maintenance and stress induced on the systems in harsh alkaline media. Beside that cost, environmental footprint of these desalination techniques are significant; from damaging marine eco-system, to huge land use, to discharge of tons of GHG and huge carbon footprint. Other less energy consuming techniques based on membrane separation are being sought to reduce both the carbon footprint and operating costs is membrane distillation (MD). Emerged in 1960s, MD is an alternative technology for water desalination attracting more attention since 1980s. MD process involves the evaporation of a hot feed, typically below boiling point of brine at standard conditions, by creating a water vapor pressure difference across the porous, hydrophobic membrane. Main advantages of MD compared to other commercially available technologies (MSF and MED) and specially RO are reduction of membrane and module stress due to absence of trans-membrane pressure, less impact of contaminant fouling on distillate due to transfer of only water vapor, utilization of low grade or waste heat from oil and gas industries to heat up the feed up to required temperature difference across the membrane, superior water quality, and relatively lower capital and operating cost. To achieve the objective of this study, state of the art flat-sheet cross-flow DCMD bench scale unit was designed, commissioned, and tested. The objective of this study is to analyze the characteristics and morphology of the membrane suitable for DCMD through SEM imaging and contact angle measurement and to study the water quality of distillate produced by DCMD bench scale unit. Comparison with available literature data is undertaken where appropriate and laboratory data is used to compare a DCMD distillate quality with that of other desalination techniques and standards. Membrane SEM analysis showed that the PTFE membrane used for the study has contact angle of 127º with highly porous surface supported with less porous and bigger pore size PP membrane. Study on the effect of feed solution (salinity) and temperature on water quality of distillate produced from ICP and IC analysis showed that with any salinity and different feed temperature (up to 70ºC) the electric conductivity of distillate is less than 5 μS/cm with 99.99% salt rejection and proved to be feasible and effective process capable of consistently producing high quality distillate from very high feed salinity solution (i.e. 100000 mg/L TDS) even with substantial quality difference compared to other desalination methods such as RO and MSF.

Keywords: membrane distillation, waste heat, seawater desalination, membrane, freshwater, direct contact membrane distillation

Procedia PDF Downloads 216
2008 Effect of Using PCMs and Transparency Rations on Energy Efficiency and Thermal Performance of Buildings in Hot Climatic Regions. A Simulation-Based Evaluation

Authors: Eda K. Murathan, Gulten Manioglu

Abstract:

In the building design process, reducing heating and cooling energy consumption according to the climatic region conditions of the building are important issues to be considered in order to provide thermal comfort conditions in the indoor environment. Applying a phase-change material (PCM) on the surface of a building envelope is the new approach for controlling heat transfer through the building envelope during the year. The transparency ratios of the window are also the determinants of the amount of solar radiation gain in the space, thus thermal comfort and energy expenditure. In this study, a simulation-based evaluation was carried out by using Energyplus to determine the effect of coupling PCM and transparency ratio when integrated into the building envelope. A three-storey building, a 30m x 30m sized floor area and 10m x 10m sized courtyard are taken as an example of the courtyard building model, which is frequently seen in the traditional architecture of hot climatic regions. 8 zones (10m x10m sized) with 2 exterior façades oriented in different directions on each floor were obtained. The percentage of transparent components on the PCM applied surface was increased at every step (%30, %40, %50). For every zone differently oriented, annual heating, cooling energy consumptions, and thermal comfort based on the Fanger method were calculated. All calculations are made for the zones of the intermediate floor of the building. The study was carried out for Diyarbakır provinces representing the hot-dry climate region and Antalya representing the hot-humid climate region. The increase in the transparency ratio has led to a decrease in heating energy consumption but an increase in cooling energy consumption for both provinces. When PCM is applied to all developed options, It was observed that heating and cooling energy consumption decreased in both Antalya (6.06%-19.78% and %1-%3.74) and Diyarbakır (2.79%-3.43% and 2.32%-4.64%) respectively. When the considered building is evaluated under passive conditions for the 21st of July, which represents the hottest day of the year, it is seen that the user feels comfortable between 11 pm-10 am with the effect of night ventilation for both provinces.

Keywords: building envelope, heating and cooling energy consumptions, phase change material, transparency ratio

Procedia PDF Downloads 164
2007 Unitary Federalism in Nigeria: Implications for Continued Corporate Existence of Nigeria

Authors: Chukwudi S. Osondu

Abstract:

Currently, the two most economically viable states in Nigeria, Lagos State and Rivers, are challenging the National Government over the legality of the latter’s continued collection and disbursement of the Value Added Tax (VAT) in their respective states. These states recently enacted laws empowering their respective states agencies to collect and administer the Value Added Tax (VAT) in their states. Before now, it was the Federal Inland Revenue Service (FIRS) that is mandated by the National Government to collect VAT throughout the Federation, and have same administered by the Federal Revenue Mobilization Allocation and Fiscal Commission, another Federal agency. Most states in the South-South and South-West geopolitical zones and a handful of states in the South-East are supportive of the actions taken by Lagos and Rivers states and are ready to follow suit. This action is seen as the beginning of resistance by the states over the continued strangulating over-centralized systems operating in the country. The Nigeria Federation has over the years operated a unitary system with grave consequences for development and possible implosion of the polity. The Quota System, the Federal Character policy, the control of the natural resources, and the security infrastructure by the National Government have been in place for decades with the attendant misgivings by some sections in the Nigeria Project. This paper evaluates the impact of the over-centralization power on the National Government with reference to fiscal policies, security, resource exploitation, infrastructural development, and national cohesion. It concludes that “unitary federalism” scuttles national development, inflames disunity, and stokes dissatisfaction among states in the federation. The paper concludes by suggesting a federation where power is devolved to the states, with the states as the federating units allowed to, each develop at its own pace.

Keywords: peace, conflict, insecurity, corporate existence, sustainable development, peaceful coexistence

Procedia PDF Downloads 361
2006 Instrumental Characterization of Cyanobacteria as Polyhydroxybutyrate Producer

Authors: Eva Slaninova, Diana Cernayova, Zuzana Sedrlova, Katerina Mrazova, Petr Sedlacek, Jana Nebesarova, Stanislav Obruca

Abstract:

Cyanobacteria are gram-negative prokaryotes belonging to a group of photosynthetic bacteria. In comparison with heterotrophic microorganisms, cyanobacteria utilize atmospheric nitrogen and carbon dioxide without any additional substrates. This ability of these microorganisms could be employed in biotechnology for the production of bioplastics, concretely polyhydroxyalkanoates (PHAs) which are primarily accumulated as a storage material in cells in the form of intracellular granules. In this study, there two cyanobacterial cultures from genera Synechocystis were used, namely Synechocystic sp. PCC 6803 and Synechocystis salina CCALA 192. There were optimized and used several various approaches, including microscopic techniques such as cryo-scanning electron microscopy (Cryo-SEM) and transmission electron microscopy (TEM), and fluorescence lifetime imaging microscopy using Nile red as a fluorescent probe (FLIM). Due to these instrumental techniques, the morphology of intracellular space and surface of cells were characterized. The next group of methods which were employed was spectroscopic techniques such as UV-Vis spectroscopy measured in two modes (turbidimetry and integration sphere) and Fourier transform infrared spectroscopy (FTIR). All these diverse techniques were used for the detection and characterization of pigments (chlorophylls, carotenoids, phycocyanin, etc.) and PHAs, in our case poly (3-hydroxybutyrate) (P3HB). To verify results, gas chromatography (GC) was employed concretely for the determination of the amount of P3HB in biomass. Cyanobacteria were also characterized as polyhydroxybutyrate producers by flow cytometer, which could count cells and at the same time distinguish cells including P3HB and without due to fluorescent probe called BODIPY and live/dead fluorescent probe SYTO Blue. Based on results, P3HB content in cyanobacteria cells was determined, as also the overall fitness of the cells. Acknowledgment: Funding: This study was partly funded by the projectGA19-29651L of the Czech Science Foundation (GACR) and partly funded by the Austrian Science Fund (FWF), project I 4082-B25.

Keywords: cyanobacteria, fluorescent probe, microscopic techniques, poly(3hydroxybutyrate), spectroscopy, chromatography

Procedia PDF Downloads 218
2005 Geo-Spatial Distribution of Radio Refractivity and the Influence of Fade Depth on Microwave Propagation Signals over Nigeria

Authors: Olalekan Lawrence Ojo

Abstract:

Designing microwave terrestrial propagation networks requires a thorough evaluation of the severity of multipath fading, especially at frequencies below 10 GHz. In nations like Nigeria, without a large enough databases to support the existing empirical models, the mistakes in the prediction technique intended for the evaluation may be severe. The need for higher bandwidth for various satellite applications makes the investigation of the effects of radio refractivity, fading due to multipath, and Geoclimatic factors on satellite propagation links more important. One of the key elements to take into account for the best functioning of microwave frequencies is the clear air effects. This work has taken into account the geographical distribution of radio refractivity and fades depth over a number of stations in Nigeria. Data from five locations in Nigeria—Akure, Enugu, Jos, Minna, and Sokoto—based on five-year (2017–2021) measurement methods of atmospheric pressure, relative, and humidity temperature—at two levels (ground surface and 100 m heights)—are studied to deduced their effects on signals propagated through a µwave communication links. The assessments included considerations for µwave communication systems as well as the impacts of the dry and wet components of radio refractivity, the effects of the fade depth at various frequencies, and a 20 km link distance. The results demonstrate that the percentage occurrence of the dry terms dominated the radio refractivity constituent at the surface level, contributing a minimum of about 78% and a maximum of about 92%, while at heights of 100 meters, the percentage occurrence of the dry terms dominated the radio refractivity constituent, contributing a minimum of about 79% and a maximum of about 92%. The spatial distribution reveals that, regardless of height, the country's tropical rainforest (TRF) and freshwater swampy mangrove (FWSM) regions reported the greatest values of radio refractivity. The statistical estimate shows that fading values can differ by as much as 1.5 dB, especially near the TRF and FWSM coastlines, even during clear air conditions. The current findings will be helpful for budgeting Earth-space microwave links, particularly for the rollout of Nigeria's 5G and 6G projected microcellular networks.

Keywords: fade depth, geoclimatic factor, refractivity, refractivity gradient

Procedia PDF Downloads 62
2004 Ultrafiltration Process Intensification for Municipal Wastewater Reuse: Water Quality, Optimization of Operating Conditions and Fouling Management

Authors: J. Yang, M. Monnot, T. Eljaddi, L. Simonian, L. Ercolei, P. Moulin

Abstract:

The application of membrane technology to wastewater treatment has expanded rapidly under increasing stringent legislation and environmental protection requirements. At the same time, the water resource is becoming precious, and water reuse has gained popularity. Particularly, ultrafiltration (UF) is a very promising technology for water reuse as it can retain organic matters, suspended solids, colloids, and microorganisms. Nevertheless, few studies dealing with operating optimization of UF as a tertiary treatment for water reuse on a semi-industrial scale appear in the literature. Therefore, this study aims to explore the permeate water quality and to optimize operating parameters (maximizing productivity and minimizing irreversible fouling) through the operation of a UF pilot plant under real conditions. The fully automatic semi-industrial UF pilot plant with periodic classic backwashes (CB) and air backwashes (AB) was set up to filtrate the secondary effluent of an urban wastewater treatment plant (WWTP) in France. In this plant, the secondary treatment consists of a conventional activated sludge process followed by a sedimentation tank. The UF process was thus defined as a tertiary treatment and was operated under constant flux. It is important to note that a combination of CB and chlorinated AB was used for better fouling management. The 200 kDa hollow fiber membrane was used in the UF module, with an initial permeability (for WWTP outlet water) of 600 L·m-2·h⁻¹·bar⁻¹ and a total filtration surface of 9 m². Fifteen filtration conditions with different fluxes, filtration times, and air backwash frequencies were operated for more than 40 hours of each to observe their hydraulic filtration performances. Through comparison, the best sustainable condition was flux at 60 L·h⁻¹·m⁻², filtration time at 60 min, and backwash frequency of 1 AB every 3 CBs. The optimized condition stands out from the others with > 92% water recovery rates, better irreversible fouling control, stable permeability variation, efficient backwash reversibility (80% for CB and 150% for AB), and no chemical washing occurrence in 40h’s filtration. For all tested conditions, the permeate water quality met the water reuse guidelines of the World Health Organization (WHO), French standards, and the regulation of the European Parliament adopted in May 2020, setting minimum requirements for water reuse in agriculture. In permeate: the total suspended solids, biochemical oxygen demand, and turbidity were decreased to < 2 mg·L-1, ≤ 10 mg·L⁻¹, < 0.5 NTU respectively; the Escherichia coli and Enterococci were > 5 log removal reduction, the other required microorganisms’ analysis were below the detection limits. Additionally, because of the COVID-19 pandemic, coronavirus SARS-CoV-2 was measured in raw wastewater of WWTP, UF feed, and UF permeate in November 2020. As a result, the raw wastewater was tested positive above the detection limit but below the quantification limit. Interestingly, the UF feed and UF permeate were tested negative to SARS-CoV-2 by these PCR assays. In summary, this work confirms the great interest in UF as intensified tertiary treatment for water reuse and gives operational indications for future industrial-scale production of reclaimed water.

Keywords: semi-industrial UF pilot plant, water reuse, fouling management, coronavirus

Procedia PDF Downloads 101
2003 Northern Ghana’s Sustainable Food Systems: Evaluating the Impact of International Development

Authors: Maxwell Ladogo Abilla

Abstract:

As evidence from the 2007–2008 and 2010 global food and financial crises revealed that food systems were under stress, the idea of sustainable food systems rose to prominence in the discussion of food security. The idea suggests moving away from a conception of food security that emphasizes production in favor of one that is more socially and environmentally conscious and interested in tackling a wide range of issues that have rendered the food system dysfunctional. This study evaluates the efforts made by international development organizations to increase food security in the area, taking into account the persistence of poverty and food insecurity in northern Ghana, utilizing the idea of sustainable food systems as the evaluation criterion. The study used triangulation to address the research questions by combining qualitative interview data with documentary analysis. To better comprehend the concept of sustainability, a variety of discourses and concepts are used, which results in the development of eight doable objectives for attaining sustainable food systems. The study finds that the food system in northern Ghana is unsustainable because of three kinds of barriers, with the practical objectives of developing sustainable food systems serving as the assessment criteria (natural, cultural and economic, and institutional). According to an evaluation of the World Food Programme's development support in northern Ghana, regional challenges to attaining sustainable food systems continue to be unaddressed by global development initiatives. Due to institutional constraints, WFP's interventions fell short of their promise. By demonstrating the need for development partners to enhance institutional efficiency and coordination, enable marginalized communities to access their rights, and prioritize agricultural irrigation in the area, the study makes a contribution to development policy and practice in northern Ghana.

Keywords: sustainable, food security, development, institutional

Procedia PDF Downloads 77
2002 Online Multilingual Dictionary Using Hamburg Notation for Avatar-Based Indian Sign Language Generation System

Authors: Sugandhi, Parteek Kumar, Sanmeet Kaur

Abstract:

Sign Language (SL) is used by deaf and other people who cannot speak but can hear or have a problem with spoken languages due to some disability. It is a visual gesture language that makes use of either one hand or both hands, arms, face, body to convey meanings and thoughts. SL automation system is an effective way which provides an interface to communicate with normal people using a computer. In this paper, an avatar based dictionary has been proposed for text to Indian Sign Language (ISL) generation system. This research work will also depict a literature review on SL corpus available for various SL s over the years. For ISL generation system, a written form of SL is required and there are certain techniques available for writing the SL. The system uses Hamburg sign language Notation System (HamNoSys) and Signing Gesture Mark-up Language (SiGML) for ISL generation. It is developed in PHP using Web Graphics Library (WebGL) technology for 3D avatar animation. A multilingual ISL dictionary is developed using HamNoSys for both English and Hindi Language. This dictionary will be used as a database to associate signs with words or phrases of a spoken language. It provides an interface for admin panel to manage the dictionary, i.e., modification, addition, or deletion of a word. Through this interface, HamNoSys can be developed and stored in a database and these notations can be converted into its corresponding SiGML file manually. The system takes natural language input sentence in English and Hindi language and generate 3D sign animation using an avatar. SL generation systems have potential applications in many domains such as healthcare sector, media, educational institutes, commercial sectors, transportation services etc. This research work will help the researchers to understand various techniques used for writing SL and generation of Sign Language systems.

Keywords: avatar, dictionary, HamNoSys, hearing impaired, Indian sign language (ISL), sign language

Procedia PDF Downloads 212
2001 Review of Carbon Materials: Application in Alternative Energy Sources and Catalysis

Authors: Marita Pigłowska, Beata Kurc, Maciej Galiński

Abstract:

The application of carbon materials in the branches of the electrochemical industry shows an increasing tendency each year due to the many interesting properties they possess. These are, among others, a well-developed specific surface, porosity, high sorption capacity, good adsorption properties, low bulk density, electrical conductivity and chemical resistance. All these properties allow for their effective use, among others in supercapacitors, which can store electric charges of the order of 100 F due to carbon electrodes constituting the capacitor plates. Coals (including expanded graphite, carbon black, graphite carbon fibers, activated carbon) are commonly used in electrochemical methods of removing oil derivatives from water after tanker disasters, e.g. phenols and their derivatives by their electrochemical anodic oxidation. Phenol can occupy practically the entire surface of carbon material and leave the water clean of hydrophobic impurities. Regeneration of such electrodes is also not complicated, it is carried out by electrochemical methods consisting in unblocking the pores and reducing resistances, and thus their reactivation for subsequent adsorption processes. Graphite is commonly used as an anode material in lithium-ion cells, while due to the limited capacity it offers (372 mAh g-1), new solutions are sought that meet both capacitive, efficiency and economic criteria. Increasingly, biodegradable materials, green materials, biomass, waste (including agricultural waste) are used in order to reuse them and reduce greenhouse effects and, above all, to meet the biodegradability criterion necessary for the production of lithium-ion cells as chemical power sources. The most common of these materials are cellulose, starch, wheat, rice, and corn waste, e.g. from agricultural, paper and pharmaceutical production. Such products are subjected to appropriate treatments depending on the desired application (including chemical, thermal, electrochemical). Starch is a biodegradable polysaccharide that consists of polymeric units such as amylose and amylopectin that build an ordered (linear) and amorphous (branched) structure of the polymer. Carbon is also used as a catalyst. Elemental carbon has become available in many nano-structured forms representing the hybridization combinations found in the primary carbon allotropes, and the materials can be enriched with a large number of surface functional groups. There are many examples of catalytic applications of coal in the literature, but the development of this field has been hampered by the lack of a conceptual approach combining structure and function and a lack of understanding of material synthesis. In the context of catalytic applications, the integrity of carbon environmental management properties and parameters such as metal conductivity range and bond sequence management should be characterized. Such data, along with surface and textured information, can form the basis for the provision of network support services.

Keywords: carbon materials, catalysis, BET, capacitors, lithium ion cell

Procedia PDF Downloads 154
2000 Anticancer Lantadene Derivatives: Synthesis, Cytotoxic and Docking Studies

Authors: A. Monika, Manu Sharma, Hong Boo Lee, Richa Dhingra, Neelima Dhingra

Abstract:

Nuclear factor-κappa B serve as a molecular lynchpin that links persistent infections and chronic inflammation to increased cancer risk. Inflammation has been recognized as a hallmark and cause of cancer. Natural products present a privileged source of inspiration for chemical probe and drug design. Herbal remedies were the first medicines used by humans due to the many pharmacologically active secondary metabolites produced by plants. Some of the metabolites like Lantadene (pentacyclic triterpenoids) from the weed Lantana camara has been known to inhibit cell division and showed anti-antitumor potential. The C-3 aromatic esters of lantadenes were synthesized, characterized and evaluated for cytotoxicity and inhibitory potential against Tumor necrosis factor alpha-induced activation of Nuclear factor-κappa B in lung cancer cell line A549. The 3-methoxybenzoyloxy substituted lead analogue inhibited kinase activity of the inhibitor of nuclear factor-kappa B kinase in a single-digit micromolar concentration. At the same time, the lead compound showed promising cytotoxicity against A549 lung cancer cells with IC50 ( half maximal inhibitory concentration) of 0.98l µM. Further, molecular docking of 3-methoxybenzoyloxy substituted analogue against Inhibitor of nuclear factor-kappa B kinase (Protein data bank ID: 3QA8) showed hydrogen bonding interaction involving oxygen atom of 3-methoxybenzoyloxy with the Arginine-31 and Glutamine-110. Encouraging results indicate the Lantadene’s potential to be developed as anticancer agents.

Keywords: anticancer, lantadenes, pentacyclic triterpenoids, weed

Procedia PDF Downloads 150
1999 Solar Panel Design Aspects and Challenges for a Lunar Mission

Authors: Mannika Garg, N. Srinivas Murthy, Sunish Nair

Abstract:

TeamIndus is only Indian team participated in the Google Lunar X Prize (GLXP). GLXP is an incentive prize space competition which is organized by the XPrize Foundation and sponsored by Google. The main objective of the mission is to soft land a rover on the moon surface, travel minimum displacement of 500 meters and transmit HD and NRT videos and images to the Earth. Team Indus is designing a Lunar Lander which carries Rover with it and deliver onto the surface of the moon with a soft landing. For lander to survive throughout the mission, energy is required to operate all attitude control sensors, actuators, heaters and other necessary components. Photovoltaic solar array systems are the most common and primary source of power generation for any spacecraft. The scope of this paper is to provide a system-level approach for designing the solar array systems of the lander to generate required power to accomplish the mission. For this mission, the direction of design effort is to higher efficiency, high reliability and high specific power. Towards this approach, highly efficient multi-junction cells have been considered. The design is influenced by other constraints also like; mission profile, chosen spacecraft attitude, overall lander configuration, cost effectiveness and sizing requirements. This paper also addresses the various solar array design challenges such as operating temperature, shadowing, radiation environment and mission life and strategy of supporting required power levels (peak and average). The challenge to generate sufficient power at the time of surface touchdown, due to low sun elevation (El) and azimuth (Az) angle which depends on Lunar landing site, has also been showcased in this paper. To achieve this goal, energy balance analysis has been carried out to study the impact of the above-mentioned factors and to meet the requirements and has been discussed in this paper.

Keywords: energy balance analysis, multi junction solar cells, photovoltaic, reliability, spacecraft attitude

Procedia PDF Downloads 219
1998 A Prototype for Biological Breakdown of Plastic Bags in Desert Areas

Authors: Yassets Egaña, Patricio Núñez, Juan C. Rios, Ivan Balic, Alex Manquez, Yarela Flores, Maria C. Gatica, Sergio Diez De Medina, Rocio Tijaro-Rojas

Abstract:

Globally, humans produce millions of tons of waste per year. An important percentage of this waste is plastic, which frequently ends up in landfills and oceans. During the last decades, the greatest plastics production in history have been made, a few amount of this plastic is recycled, the rest ending up as plastic pollution in soils and seas. Plastic pollution is disastrous for the environment, affecting essential species, quality of consumption water, and some economic activities such as tourism, in different parts of the world. Due to its durability and decomposition on micro-plastics, animals and humans are accumulating a variety of plastic components without having clear their effects on human health, economy, and wildlife. In dry regions as the Atacama Desert, up to 95% of the water consumption comes from underground reservoirs, therefore preventing the soil pollution is an urgent need. This contribution focused on isolating, genotyping and optimizing microorganisms that use plastic waste as the only source of food to construct a batch-type bioreactor able to degrade in a faster way the plastic waste before it gets the desert soils and groundwater consumed by people living in this areas. Preliminary results, under laboratory conditions, has shown an improved degradation of polyethylene when three species of bacteria and three of fungi act on a selected plastic material. These microorganisms have been inoculated in dry soils, initially lacking organic matter, under environmental conditions in the laboratory. Our team designed and constructed a prototype using the natural conditions of the region and the best experimental results.

Keywords: biological breakdown, plastic bags, prototype, desert regions

Procedia PDF Downloads 275
1997 Beneficial Effect of Micropropagation Coupled with Mycorrhization on Enhancement of Growth Performance of Medicinal Plants

Authors: D. H. Tejavathi

Abstract:

Medicinal plants are globally valuable sources of herbal products. Wild populations of many medicinal plants are facing threat of extinction because of their narrow distribution, endemicity, and degradation of specific habitats. Micropropagation is an established in vitro technique by which large number of clones can be obtained from a small bit of explants in a short span of time within a limited space. Mycorrhization can minimize the transient transplantation shock, experienced by the micropropagated plants when they are transferred from lab to land. AM fungal association improves the physiological status of the host plants through better uptake of water and nutrients, particularly phosphorus. Consequently, the growth performance and biosynthesis of active principles are significantly enhanced in AM fungal treated plants. Bacopa monnieri, Andrographis paniculata, Agave vera-curz, Drymaria cordata and Majorana hortensis, important medicinal plants used in various indigenous systems of medicines, are selected for the present study. They form the main constituents of many herbal formulations. Standard in vitro techniques were followed to obtain the micropropagated plants. Shoot tips and nodal segments were used as explants. Explants were cultured on Murashige and Skoog, and Phillips and Collins media supplemented with various combinations of growth regulators. Multiple shoots were obtained on a media containing both auxins and cytokinins at various concentrations and combinations. Multiple shoots were then transferred to rooting media containing auxins for root induction. Thus, obtained in vitro regenerated plants were subjected to brief acclimatization before transferring them to land. One-month-old in vitro plants were treated with AM fungi, and the symbiotic effect on the overall growth parameters was analyzed. It was found that micropropagation coupled with mycorrhization has significant effect on the enhancement of biomass and biosynthesis of active principles in these selected medicinal plants. In vitro techniques coupled with mycorrhization have opened a possibility of obtaining better clones in respect of enhancement of biomass and biosynthesis of active principles. Beneficial effects of AM fungal association with medicinal plants are discussed.

Keywords: cultivation, medicinal plants, micropropagation, mycorrhization

Procedia PDF Downloads 157
1996 A Geometrical Multiscale Approach to Blood Flow Simulation: Coupling 2-D Navier-Stokes and 0-D Lumped Parameter Models

Authors: Azadeh Jafari, Robert G. Owens

Abstract:

In this study, a geometrical multiscale approach which means coupling together the 2-D Navier-Stokes equations, constitutive equations and 0-D lumped parameter models is investigated. A multiscale approach, suggest a natural way of coupling detailed local models (in the flow domain) with coarser models able to describe the dynamics over a large part or even the whole cardiovascular system at acceptable computational cost. In this study we introduce a new velocity correction scheme to decouple the velocity computation from the pressure one. To evaluate the capability of our new scheme, a comparison between the results obtained with Neumann outflow boundary conditions on the velocity and Dirichlet outflow boundary conditions on the pressure and those obtained using coupling with the lumped parameter model has been performed. Comprehensive studies have been done based on the sensitivity of numerical scheme to the initial conditions, elasticity and number of spectral modes. Improvement of the computational algorithm with stable convergence has been demonstrated for at least moderate Weissenberg number. We comment on mathematical properties of the reduced model, its limitations in yielding realistic and accurate numerical simulations, and its contribution to a better understanding of microvascular blood flow. We discuss the sophistication and reliability of multiscale models for computing correct boundary conditions at the outflow boundaries of a section of the cardiovascular system of interest. In this respect the geometrical multiscale approach can be regarded as a new method for solving a class of biofluids problems, whose application goes significantly beyond the one addressed in this work.

Keywords: geometrical multiscale models, haemorheology model, coupled 2-D navier-stokes 0-D lumped parameter modeling, computational fluid dynamics

Procedia PDF Downloads 347
1995 The Recommended Summary Plan for Emergency Care and Treatment (ReSPECT) Process: An Audit of Its Utilisation on a UK Tertiary Specialist Intensive Care Unit

Authors: Gokulan Vethanayakam, Daniel Aston

Abstract:

Introduction: The ReSPECT process supports healthcare professionals when making patient-centered decisions in the event of an emergency. It has been widely adopted by the NHS in England and allows patients to express thoughts and wishes about treatments and outcomes that they consider acceptable. It includes (but is not limited to) cardiopulmonary resuscitation decisions. ReSPECT conversations should ideally occur prior to ICU admission and should be documented in the eight sections of the nationally-standardised ReSPECT form. This audit evaluated the use of ReSPECT on a busy cardiothoracic ICU in an NHS Trust where established policies advocating its use exist. Methods: This audit was a retrospective review of ReSPECT forms for a sample of high-risk patients admitted to ICU at the Royal Papworth Hospital between January 2021 and March 2022. Patients all received one of the following interventions: Veno-Venous Extra-Corporeal Membrane Oxygenation (VV-ECMO) for severe respiratory failure (retrieved via the national ECMO service); cardiac or pulmonary transplantation-related surgical procedures (including organ transplants and Ventricular Assist Device (VAD) implantation); or elective non-transplant cardiac surgery. The quality of documentation on ReSPECT forms was evaluated using national standards and a graded ranking tool devised by the authors which was used to assess narrative aspects of the forms. Quality was ranked as A (excellent) to D (poor). Results: Of 230 patients (74 VV-ECMO, 104 transplant, 52 elective non-transplant surgery), 43 (18.7%) had a ReSPECT form and only one (0.43%) patient had a ReSPECT form completed prior to ICU admission. Of the 43 forms completed, 38 (88.4%) were completed due to the commencement of End of Life (EoL) care. No non-transplant surgical patients included in the audit had a ReSPECT form. There was documentation of balance of care (section 4a), CPR status (section 4c), capacity assessment (section 5), and patient involvement in completing the form (section 6a) on all 43 forms. Of the 34 patients assessed as lacking capacity to make decisions, only 22 (64.7%) had reasons documented. Other sections were variably completed; 29 (67.4%) forms had relevant background information included to a good standard (section 2a). Clinical guidance for the patient (section 4b) was given in 25 (58.1%), of which 11 stated the rationale that underpinned it. Seven forms (16.3%) contained information in an inappropriate section. In a comparison of ReSPECT forms completed ahead of an EoL trigger with those completed when EoL care began, there was a higher number of entries in section 3 (considering patient’s values/fears) that were assessed at grades A-B in the former group (p = 0.014), suggesting higher quality. Similarly, forms from the transplant group contained higher quality information in section 3 than those from the VV-ECMO group (p = 0.0005). Conclusions: Utilisation of the ReSPECT process in high-risk patients is yet to be well-adopted in this trust. Teams who meet patients before hospital admission for transplant or high-risk surgery should be encouraged to engage with the ReSPECT process at this point in the patient's journey. VV-ECMO retrieval teams should consider ReSPECT conversations with patients’ relatives at the time of retrieval.

Keywords: audit, critical care, end of life, ICU, ReSPECT, resuscitation

Procedia PDF Downloads 57
1994 Courtyard Evolution in Contemporary Sustainable Living

Authors: Yiorgos Hadjichristou

Abstract:

The paper will focus on the strategic development deriving from the evolution of the traditional courtyard spatial organization towards a new, contemporary sustainable way of living. New sustainable approaches that engulf the social issues, the notion of place, the understanding of weather architecture blended together with the bioclimatic behaviour will be seen through a series of experimental case studies in the island of Cyprus, inspired and originated from its traditional wisdom, ranging from small scale of living to urban interventions. Weather and nature will be seen as co-architectural authors with architects as intelligently claimed by Jonathan Hill in his Weather Architecture discourse. Furthermore, following Pallasmaa’s understanding, the building will be seen not as an end itself and the elements of an architectural experience as having a verb form rather than being nouns. This will further enhance the notion of merging the subject-human and the object-building as discussed by Julio Bermudez. This eventually will enable to generate the discussion of the understanding of the building constructed according to the specifics of place and inhabitants, shaped by its physical and human topography as referred by Adam Sharr in relation to Heidegger’s thinking. The specificities of the divided island and the dealing with sites that are in vicinity with the diving Green Line will further trigger explorations dealing with the regeneration issues and the social sustainability offering unprecedented opportunities for innovative sustainable ways of living. The above premises will lead us to develop innovative strategies for a profound, both technical and social sustainability, which fruitfully yields to innovative living built environments, responding to the ever changing environmental and social needs. As a starting point, a case study in Kaimakli in Nicosia a refurbishment with an extension of a traditional house, already engulfs all the traditional/ vernacular wisdom of the bioclimatic architecture. It aims at capturing not only its direct and quite obvious bioclimatic features, but rather to evolve them by adjusting the whole house in a contemporary living environment. In order to succeed this, evolutions of traditional architectural elements and spatial conditions are integrated in a way that does not only respond to some certain weather conditions, but they integrate and blend the weather within the built environment. A series of innovations aiming at maximum flexibility is proposed. The house can finally be transformed into a winter enclosure, while for the most part of the year it turns into a ‘camping’ living environment. Parallel to experimental interventions in existing traditional units, we will proceed examining the implementation of the same developed methodology in designing living units and complexes. Malleable courtyard organizations that attempt to blend the traditional wisdom with the contemporary needs for living, the weather and nature with the built environment will be seen tested in both horizontal and vertical developments. A new social identity of people, directly involved and interacting with the weather and climatic conditions will be seen as the result of balancing the social with the technological sustainability, the immaterial and the material aspects of the built environment.

Keywords: building as a verb, contemporary living, traditional bioclimatic wisdom, weather architecture

Procedia PDF Downloads 408
1993 Evaluation of Alternative Approaches for Additional Damping in Dynamic Calculations of Railway Bridges under High-Speed Traffic

Authors: Lara Bettinelli, Bernhard Glatz, Josef Fink

Abstract:

Planning engineers and researchers use various calculation models with different levels of complexity, calculation efficiency and accuracy in dynamic calculations of railway bridges under high-speed traffic. When choosing a vehicle model to depict the dynamic loading on the bridge structure caused by passing high-speed trains, different goals are pursued: On the one hand, the selected vehicle models should allow the calculation of a bridge’s vibrations as realistic as possible. On the other hand, the computational efficiency and manageability of the models should be preferably high to enable a wide range of applications. The commonly adopted and straightforward vehicle model is the moving load model (MLM), which simplifies the train to a sequence of static axle loads moving at a constant speed over the structure. However, the MLM can significantly overestimate the structure vibrations, especially when resonance events occur. More complex vehicle models, which depict the train as a system of oscillating and coupled masses, can reproduce the interaction dynamics between the vehicle and the bridge superstructure to some extent and enable the calculation of more realistic bridge accelerations. At the same time, such multi-body models require significantly greater processing capacities and precise knowledge of various vehicle properties. The European standards allow for applying the so-called additional damping method when simple load models, such as the MLM, are used in dynamic calculations. An additional damping factor depending on the bridge span, which should take into account the vibration-reducing benefits of the vehicle-bridge interaction, is assigned to the supporting structure in the calculations. However, numerous studies show that when the current standard specifications are applied, the calculation results for the bridge accelerations are in many cases still too high compared to the measured bridge accelerations, while in other cases, they are not on the safe side. A proposal to calculate the additional damping based on extensive dynamic calculations for a parametric field of simply supported bridges with a ballasted track was developed to address this issue. In this contribution, several different approaches to determine the additional damping of the supporting structure considering the vehicle-bridge interaction when using the MLM are compared with one another. Besides the standard specifications, this includes the approach mentioned above and two additional recently published alternative formulations derived from analytical approaches. For a bridge catalogue of 65 existing bridges in Austria in steel, concrete or composite construction, calculations are carried out with the MLM for two different high-speed trains and the different approaches for additional damping. The results are compared with the calculation results obtained by applying a more sophisticated multi-body model of the trains used. The evaluation and comparison of the results allow assessing the benefits of different calculation concepts for the additional damping regarding their accuracy and possible applications. The evaluation shows that by applying one of the recently published redesigned additional damping methods, the calculation results can reflect the influence of the vehicle-bridge interaction on the design-relevant structural accelerations considerably more reliable than by using normative specifications.

Keywords: Additional Damping Method, Bridge Dynamics, High-Speed Railway Traffic, Vehicle-Bridge-Interaction

Procedia PDF Downloads 153
1992 Lifting Body Concepts for Unmanned Fixed-Wing Transport Aircrafts

Authors: Anand R. Nair, Markus Trenker

Abstract:

Lifting body concepts were conceived as early as 1917 and patented by Roy Scroggs. It was an idea of using the fuselage as a lift producing body with no or small wings. Many of these designs were developed and even flight tested between 1920’s to 1970’s, but it was not pursued further for commercial flight as at lower airspeeds, such a configuration was incapable to produce sufficient lift for the entire aircraft. The concept presented in this contribution is combining the lifting body design along with a fixed wing to maximise the lift produced by the aircraft. Conventional aircraft fuselages are designed to be aerodynamically efficient, which is to minimise the drag; however, these fuselages produce very minimal or negligible lift. For the design of an unmanned fixed wing transport aircraft, many of the restrictions which are present for commercial aircraft in terms of fuselage design can be excluded, such as windows for the passengers/pilots, cabin-environment systems, emergency exits, and pressurization systems. This gives new flexibility to design fuselages which are unconventionally shaped to contribute to the lift of the aircraft. The two lifting body concepts presented in this contribution are targeting different applications: For a fast cargo delivery drone, the fuselage is based on a scaled airfoil shape with a cargo capacity of 500 kg for euro pallets. The aircraft has a span of 14 m and reaches 1500 km at a cruising speed of 90 m/s. The aircraft could also easily be adapted to accommodate pilot and passengers with modifications to the internal structures, but pressurization is not included as the service ceiling envisioned for this type of aircraft is limited to 10,000 ft. The next concept to be investigated is called a multi-purpose drone, which incorporates a different type of lifting body and is a much more versatile aircraft as it will have a VTOL capability. The aircraft will have a wingspan of approximately 6 m and flight speeds of 60 m/s within the same service ceiling as the fast cargo delivery drone. The multi-purpose drone can be easily adapted for various applications such as firefighting, agricultural purposes, surveillance, and even passenger transport. Lifting body designs are not a new concept, but their effectiveness in terms of cargo transportation has not been widely investigated. Due to their enhanced lift producing capability, lifting body designs enable the reduction of the wing area and the overall weight of the aircraft. This will, in turn, reduce the thrust requirement and ultimately the fuel consumption. The various designs proposed in this contribution will be based on the general aviation category of aircrafts and will be focussed on unmanned methods of operation. These unmanned fixed-wing transport drones will feature appropriate cargo loading/unloading concepts which can accommodate large size cargo for efficient time management and ease of operation. The various designs will be compared in performance to their conventional counterpart to understand their benefits/shortcomings in terms of design, performance, complexity, and ease of operation. The majority of the performance analysis will be carried out using industry relevant standards in computational fluid dynamics software packages.

Keywords: lifting body concept, computational fluid dynamics, unmanned fixed-wing aircraft, cargo drone

Procedia PDF Downloads 224
1991 The Estimation Method of Stress Distribution for Beam Structures Using the Terrestrial Laser Scanning

Authors: Sang Wook Park, Jun Su Park, Byung Kwan Oh, Yousok Kim, Hyo Seon Park

Abstract:

This study suggests the estimation method of stress distribution for the beam structures based on TLS (Terrestrial Laser Scanning). The main components of method are the creation of the lattices of raw data from TLS to satisfy the suitable condition and application of CSSI (Cubic Smoothing Spline Interpolation) for estimating stress distribution. Estimation of stress distribution for the structural member or the whole structure is one of the important factors for safety evaluation of the structure. Existing sensors which include ESG (Electric strain gauge) and LVDT (Linear Variable Differential Transformer) can be categorized as contact type sensor which should be installed on the structural members and also there are various limitations such as the need of separate space where the network cables are installed and the difficulty of access for sensor installation in real buildings. To overcome these problems inherent in the contact type sensors, TLS system of LiDAR (light detection and ranging), which can measure the displacement of a target in a long range without the influence of surrounding environment and also get the whole shape of the structure, has been applied to the field of structural health monitoring. The important characteristic of TLS measuring is a formation of point clouds which has many points including the local coordinate. Point clouds is not linear distribution but dispersed shape. Thus, to analyze point clouds, the interpolation is needed vitally. Through formation of averaged lattices and CSSI for the raw data, the method which can estimate the displacement of simple beam was developed. Also, the developed method can be extended to calculate the strain and finally applicable to estimate a stress distribution of a structural member. To verify the validity of the method, the loading test on a simple beam was conducted and TLS measured it. Through a comparison of the estimated stress and reference stress, the validity of the method is confirmed.

Keywords: structural healthcare monitoring, terrestrial laser scanning, estimation of stress distribution, coordinate transformation, cubic smoothing spline interpolation

Procedia PDF Downloads 426
1990 Evaluation to Assess the Impact of Newcastle Infant Partnership Approach

Authors: Samantha Burns, Melissa Brown, Judith Rankin

Abstract:

Background: As a specialised intervention, NEWPIP provides a service which supports both parents and their babies from conception to two years, who are experiencing issues which may affect the quality of their relationship and development of the infant. This evaluation of the NEWPIP approach was undertaken in response to the need for rich, in-depth data to understand the lived experiences of the parents who experienced the service to improve the service. NEWPIP is currently one of 34 specialised parent–infant relationship teams across England. This evaluation contributes to increasing understanding of the impact and effectiveness of this specialised service to inform future practice. Aim: The aim of this evaluation was to explore the perspectives and experiences of parents or caregivers (service users), to assess the impact of the NEWPIP service on the parents themselves and the relationship with their baby. Methods: The exploratory nature of the aim and focus on service users’ experience and perspectives provided scope for a qualitative approach for this evaluation. This consisted of 10 semi-structured interviews with parents who had received the service within the last two years. Recruitment involved both purposive and convenience sampling. The interviews took place between February 2021 – March 2021, lasting between 30-90 minutes and were guided by open-ended questions from a topic guide. The interviews adopted a narrative approach to enable the parents to share their lived experiences. The researchers transcribed the interviews and analysed the data thematically by using a coding method which is grounded in the data. Results: The analysis and findings from the data gathered illuminated an approach which supports parents to build a better bond with their baby and provides a safe space for parents to heal through their relationships. While the parents shared their experiences, the interviews were intended to receive feedback, so questions were asked about what could be improved and what recommendations could be offered to Children North East. Guided by the voice of the parents, this evaluation provides recommendations to support the future of the NEWPIP approach. Conclusions: The NEWPIP approach appears to successfully provide early and flexible support for new parents, increasing a parent’s confidence in their ability to not only cope but thrive as a new parent.

Keywords: maternal health, mental health, parent infant relationship, therapy

Procedia PDF Downloads 176
1989 Women Perception of Spatial Safety Relating to Working in Historic Cairo’s Retail Street Markets

Authors: Toka M. Abufarag

Abstract:

This research primarily studies the correlation between the existence of different spatial factors in relation to the perception of females towards safely participating in the labor force within selected areas of economic bustle in Historic Cairo. This research measures the following independent variables: (1) perception regarding spatial safety on the street as controlled by street network, (2) vegetation as a facilitator and inhibitor of feeling safe in public places, and (3) outdoor lighting; in relation to the following dependent variable: the perception of females towards safely participating in the labor force in Historic Cairo. The objective of this research lies within adding to the design guidelines of urban design and planning in terms of design recommendations, making them more inclusive, especially those dealing with conserving and enhancing the built environment of old and historic cities. It is hypothesized that a balanced male-to-female ratio in terms of street activity, increased visibility of street in terms of its volume, a decrease in street obstacles, creation of open sighted vegetation, and increased visibility due to proper lighting will show up as positive response relating to the female perception of safety. The site chosen as an area to host this exercise of data collection is Al-Ataba. The site is within the borders of Historic Cairo and was chosen for two reasons: firstly, it provides a major source of economic bustle in Historic Cairo; and secondly, it hosts retail economic activities. This is a cross-sectional study. The data collected will consist of three parts: (1) observations by the researcher regarding the percentage of female participation, as well as perception of females on site, (2) interviews with women working on-site regarding the percentage of female participation, as well as their perception on participating, and (3) an anonymous online survey that studies the perception of a random sample of women towards the site as a place to exist in. The survey will aid in producing design recommendations on how to design an open 'souk' that suits women’s perception of a safe space.

Keywords: urban design, women empowerment, safety perception, street markets, historic Cairo

Procedia PDF Downloads 114
1988 Determination of the Structural Parameters of Calcium Phosphate for Biomedical Use

Authors: María Magdalena Méndez-González, Miguel García Rocha, Carlos Manuel Yermo De la Cruz

Abstract:

Calcium phosphate (Ca5(PO4)3(X)) is widely used in orthopedic applications and is widely used as powder and granules. However, their presence in bone is in the form of nanometric needles 60 nm in length with a non-stoichiometric phase of apatite contains CO3-2, Na+, OH-, F-, and other ions in a matrix of collagen fibers. The crystal size, morphology control and interaction with cells are essential for the development of nanotechnology. The structural results of calcium phosphate, synthesized by chemical precipitation with crystal size of 22.85 nm are presented in this paper. The calcium phosphate powders were analyzed by X-ray diffraction, energy dispersive spectroscopy (EDS), infrared spectroscopy and FT-IR transmission electron microscopy. Network parameters, atomic positions, the indexing of the planes and the calculation of FWHM (full width at half maximum) were obtained. The crystal size was also calculated using the Scherer equation d (hkl) = cλ/βcosѲ. Where c is a constant related to the shape of the crystal, the wavelength of the radiation used for a copper anode is 1.54060Å, Ѳ is the Bragg diffraction angle, and β is the width average peak height of greater intensity. Diffraction pattern corresponding to the calcium phosphate called hydroxyapatite phase of a hexagonal crystal system was obtained. It belongs to the space group P63m with lattice parameters a = 9.4394 Å and c = 6.8861 Å. The most intense peak is obtained 2Ѳ = 31.55 (FWHM = 0.4798), with a preferred orientation in 121. The intensity difference between the experimental data and the calculated values is attributable to the temperature at which the sintering was performed. The intensity of the highest peak is at angle 2Ѳ = 32.11. The structure of calcium phosphate obtained was a hexagonal configuration. The intensity changes in the peaks of the diffraction pattern, in the lattice parameters at the corners, indicating the possible presence of a dopant. That each calcium atom is surrounded by a tetrahedron of oxygen and hydrogen was observed by infrared spectra. The unit cell pattern corresponds to hydroxyapatite and transmission electron microscopic crystal morphology corresponding to the hexagonal phase with a preferential growth along the c-plane was obtained.

Keywords: structure, nanoparticles, calcium phosphate, metallurgical and materials engineering

Procedia PDF Downloads 491
1987 Energy Certification Labels and Comfort Assessment for Dwellings Located in a Mild Climate

Authors: Silvia A. Magalhaes, Vasco P. De Freitas, Jose L. Alexandre

Abstract:

Most of the European literature concerning energy efficiency and thermal comfort of dwellings assumes permanent heating and focuses on energy-saving measures. European National regulations are designed for those permanent comfort conditions. On the other hand, very few studies focus on the effect of the improvement measures in comfort reduction, for free-floating conditions or intermittent heating, in fuel poverty vulnerable countries. In Portugal, only 21% of the household energy consumptions (and 10% of the cost) are spent in space heating, while, on average European bills, this value rises to 67%. The mild climate, but mainly fuel poverty and cultural background, justifies these low heating practices. This study proposes a “passive discomfort” index definition, considering free-floating temperatures or with intermittent heating profiles (more realistic conditions), putting the focus on comfort rather than energy consumption (which is low for these countries). The aim is to compare both energy (regarding the legal framework of national regulation) and comfort (considering realistic conditions of use) to identify some correlation. It was developed an experimental campaign of indoor thermal conditions in a 19th building located in Porto with several apartments. One dwelling was chosen as a case study to carry out a sensitivity analysis. The results are discussed comparing both theoretical energy consumption (energy rates from national regulation) and discomfort (new index defined), for different insulation thicknesses, orientations, and intermittent heating profiles. The results show that the different passive options (walls insulation and glazing options) have a small impact on winter discomfort, which is always high for low heating profiles. Moreover, it was shown that the insulation thickness on walls has no influence, and the minimum insulation thickness considered is enough to achieve the same impact on discomfort reduction. Plus, for these low heating profiles, other conditions are critical, as the orientation. Finally, there isn’t an unequivocal relation between the energy label and the discomfort index. These and other results are surprising when compared with the most usual approaches, which assume permanent heating.

Keywords: dwellings in historical buildings, low-heating countries, mild climates, thermal comfort

Procedia PDF Downloads 122
1986 A Critical Analysis on Traditional Bases of Indian Society

Authors: Sujit Kumar, Anita Surroch

Abstract:

Indian culture, religions, literature and philosophy has attracted attention of the scholars across the globe since time immemorial. They endeavoured to interpret these dimensions as per their comprehension of Indian Society. The present paper is an attempt to portray a critical analysis of traditional bases of Indian Society as articulated by the great Indians who immensely contributed by shaping, practicing and passing these sub-systems on to the successive generations. India was endowed with a class of intellectuals par excellence during ancient times that traversed lengths and breaths of the country, interacted with the people, understood their capabilities & limitations and needs and churned such knowledge with their fellow beings. It witnessed an era of emergence of Varnashrama, Purushartha, Dharma and Sanskara system. Mention of Varna system in the Purush hymn of Rigveda, Vrihadyaranyak Upnishda. Shantiparva of Mahabharata, the Gita and the interpretations offered by Lord Krishna, Bhrigua Rishi, Yudhishtra and philosophers of modern times give a glimpse of macro level division of labour in ancient Indian Society. The Ashrama system, the four stages of life as referred to in Upnishdas (Chandogaya, Jawali) Sutras (Vashisht Dharma Sutra, Gautma Dharma Sutra), Smritis (Manusmiriti) and four step ladder described by Ved Vyasa is a comprehensive scheme of harmonious development of physical, mental and spiritual capabilities of human beings during different stages of life. The Purushartha, the four broad duties (Dharama, Artha, Kama & Moksha) of human being, lays emphasis on discharging duties as per ones Varna, Ashrama and also keeping in view the time, space and circumstances. Sanskaras are methods and a process to purify mind, body and soul. Today, one gets refraction (not reflection as shades of beliefs, customs practices and interpretations of Varnashrama, Purushartha, Dharma and Sanskara in letter and spirit has undergone changes) of such traditional bases from the writings of Indologists and other scholars.

Keywords: intellectuals, Rigveda, Sanskaras, traditional

Procedia PDF Downloads 148
1985 Entrepreneurship Education: The Impact in Today’s World

Authors: Oghenerume V. Edah, Damilola T. Aladejana

Abstract:

Entrepreneurship Education is the process of developing and acquiring entrepreneur skills on how to identify a new business and launching the business with the realization of yielding profit optimally. It’s the process of knowing how to take risk and handle challenges that accompanies a new business without the mindset of closing it when it fails. It includes steps to take when a business is recognized, combined with acquiring resources (e.g. finances, labor, land) in the face of risk and launching the new business. Additionally, Entrepreneurship is defined as the ability and willingness to set a business in the event of making profit. It is the act of starting up a business to solve big problems or present a new life-changing solution in the society to generate profit. It’s a process where a business opportunity is identified; planned, acquired and needful steps are taken to launch a business. This involves taking up financial risk, acquiring natural resources, combined with land, capital and building up a team of people who would individually contribute or add value in order to make the new business a success. Moreover, Education is the learning of new skills or value. It’s the acquiring of knowledge and capability of doing new things. It is been able to differentiate what you know and what you don’t know yet. In this modern world, the emergence of entrepreneurship education has been magnificent. An average of 60 percent humans wants to start a business or become an entrepreneur without knowing the steps on how to startup. Moreover, many of them are good starters and they end up failing when the business is not managed well. The introduction of Entrepreneur Education in our world today would change the face of business phenomenally. It would involve the acquisition of entrepreneur skills, knowledge and attitude towards initiating a business venture. The impact of Entrepreneurship Education in our world today would increase the chances of business success because it would generate better entrepreneurs. The skills, values, concept and processes acquired through learning have changed the face of business to a positive direction globally and the impact can be felt. Entrepreneurship can be taught and also can be learnt. Like any skills it can be known.

Keywords: entrepreneurship, education, business, entrepreneur, skills

Procedia PDF Downloads 131
1984 Characterization of Natural Polymers for Guided Bone Regeneration Applications

Authors: Benedetta Isella, Aleksander Drinic, Alissa Heim, Phillip Czichowski, Lisa Lauts, Hans Leemhuis

Abstract:

Introduction: Membranes for guided bone regeneration are essential to perform a barrier function between the soft and the regenerating bone tissue. Bioabsorbable membranes are desirable in this field as they do not require a secondary surgery for removal, decreasing patient surgical risk. Collagen was the first bioabsorbable alternative introduced on the market, but its degradation time may be too fast to guarantee bone regeneration, and optimisation is needed. Silk fibroin, being biocompatible, slowly bioabsorbable, and processable into different scaffold types, could be a promising alternative. Objectives: The objective is to compare the general performance of a silk fibroin membrane for guided bone regeneration to current collagen alternatives developing suitable standardized tests for the mechanical and morphological characterization. Methods: Silk fibroin and collagen-based membranes were compared from the morphological and chemical perspective, with techniques such as SEM imaging and from the mechanical point of view with techniques such as tensile and suture retention strength (SRS) tests. Results: Silk fibroin revealed a high degree of reproducibility in surface density. The SRS of silk fibroin (0.76 ± 0.04 N), although lower than collagen, was still comparable to native tissues such as the internal mammary artery (0.56 N), and the same can be extended to general mechanical behaviour in tensile tests. The SRS could be increased by an increase in thickness. Conclusion: Silk fibroin is a promising material in the field of guided bone regeneration, covering the interesting position of not being considered a product containing cells or tissues of animal origin from the regulatory perspective and having longer degradation times with respect to collagen.

Keywords: guided bone regeneration, mechanical characterization, membrane, silk fibroin

Procedia PDF Downloads 15
1983 Puerto Rico and Pittsburg: A Social Psychology Perspective on How Perceived Infringement on Job and Cultural Identity Unite Racially Different Working-Class Groups

Authors: Reagan Rodriguez

Abstract:

With a growing divide between political echo chambers in the United States, exacerbated by race and income inequality, it might seem to be unfathomable to draw connections that tie working class in an industrial city and a U.S. territory. Yet, in regions where either the economy has been hit due to dwindling job infrastructure or natural disasters have left indelible marks on an island already once marked by colonial imperialism, a larger social shared identity is at play. Fracking has long been an intergenerational and stable work opportunity for many in the Pittsburg PA, yet the rising severity of global climate change may soon impact the policy and even presidential elections which could result in the reduction of jobs in the industry. Cock-fighting, considered a cultural mainstay within the island of Puerto Rico, has already had legislation banning activity and thus cutting out one of the most lucrative aspects of a severely injured economy. Insecurity, infringement, and isolation while being tied to a working-class bracket with no other opportunities in proximity have left both groups expressing similar frustration and while another larger shared identity politic is giving little other options to develop social mobility. This paper utilizes a thematic analysis and compares convergent and divergent themes on internet forums amongst unionized fracking workers in Pittsburg and cockfighters in Puerto Rico. This research examines how group identity in relation to job and cultural identity is most strong and at which points its most malleable; when intergenerational job identity becomes a part of one’s cultural identity, its override may be strongest when it is perceived as threatened. Final findings and limitations were comprehensively outlined.

Keywords: identity threat, social psychology, group identity, culture and social mobility

Procedia PDF Downloads 134
1982 Performance Evaluation of Cement Mortar with Crushed Stone Dust as Fine Aggregates

Authors: Pradeep Kumar

Abstract:

The present work is based on application of cement mortar with natural sand and discontinuous steel fiber through which bending behavior of skinny beam was evaluated. This research is to study the effects of combining reinforcing steel meshes (continuous steel reinforcement) with discontinuous fibers as reinforcement in skinny walled Portland cement based cement mortar with crushed stone dust as a fine aggregate. The term ‘skinny’ means thickness of the beams is less than 25 mm. The main idea behind this combination is to satisfy the ultimate strength limit state through the steel mesh reinforcement (as a main reinforcement) and to control the cracking under service loads through fiber (Recron 3s) reinforcement (as secondary reinforcement). The main object of this study is to carry out the bending behavior of mortar reinforced thin beam with only one layer of steel mesh (with various transfer wire spacing) and with a recron 3s (Reliance) fifers. The wide experimental program with bending tests is undertaken. The following variables are investigated: (a) the reference mesh size - 25.4 x 25.4 mm and 50.8 x 50.8 mm; (b) the transverse wire spacing - 25.4 mm, 50.8 mm, and no transverse wires; (c) the type of fibers – Reliance (Recron 3s, 6mm length); and (d) the fiber volume fraction – 0.1% and 0.25%. Some of the main conclusions are: (a) the use of recron 3s fibers leads to a little better overall performance than that with no fiber; (b) an increase in equivalent stress is observed when 0.1% RF,0.25% R Fibers are used; (c) when 25.4 x 50.8 size steel mesh is used, no noticeable change in behavior is observed in comparison to specimens without fibers; and (d) for no fibers 0.1% and o.1% RF the transverse wire spacing has some little effect on the equivalent stress for RF fibers, the transverse wire has no influence but the equivalent stress are increased.

Keywords: cement mortar, crushed stone dust, fibre, steel mesh

Procedia PDF Downloads 299
1981 Examining Pre-Consumer Textile Waste Recycling, Barriers to Implementation, and Participant Demographics: A Review of Literature

Authors: Madeline W. Miller

Abstract:

The global textile industry produces pollutants in the form of liquid discharge, solid waste, and emissions into the natural environment. Textile waste resulting from garment production and other manufacturing processes makes a significant contribution to the amount of waste landfilled globally. While the majority of curbside and other convenient recycling methods cater to post-consumer paper and plastics, pre-consumer textile waste is often discarded with trash and is commonly classified as ‘other’ in municipal solid waste breakdowns. On a larger scale, many clothing manufacturers and other companies utilizing textiles have not yet identified or began using the most sustainable methods for discarding their post-industrial, pre-consumer waste. To lessen the amount of waste sent to landfills, there are post-industrial, pre-consumer textile waste recycling methods that can be used to give textiles a new life. This process requires that textile and garment manufacturers redirect their waste to companies that use industrial machinery to shred or fiberize these materials in preparation for their second life. The goal of this literature review is to identify the recycling and reuse challenges faced by producers within the clothing and textile industry that prevent these companies from utilizing the described recycling methods, causing them to opt for landfill. The literature analyzed in this review reflects manufacturer sentiments toward waste disposal and recycling. The results of this review indicate that the cost of logistics is the determining factor when it comes to companies recycling their pre-consumer textile waste and that the most applicable and successful textile waste recycling methods require a company separate from the manufacturer to account for waste production, provide receptacles for waste, arrange waste transport, and identify a secondary use for the material at a price-point below that of traditional waste disposal service.

Keywords: leadership demographics, post-industrial textile waste, pre-consumer textile waste, industrial shoddy

Procedia PDF Downloads 132
1980 Citrullinated Myelin Basic Protein Mediated Inflammation in Astrocytes

Authors: Lali Shanshiashvili, Marika Chikviladze, Nino Mamulashvili, Maia Sepashvili, Nana Narmania, David Mikeladze

Abstract:

Purpose: During demyelinating inflammatory diseases and after the damage of the myelin sheet, myelin-derived proteins, including myelin basic protein (MBP), are secreted into the extracellular space. MBP shows extensive post-translational modifications, including the deimination of arginine residues. Deiminated MBP is structurally less ordered, susceptible to proteolytic attack, and more immunogenic than the unmodified one. It is hypothesized that MBP could change the inflammatory response in astrocytes. Methods: MBP was isolated and purified from bovine brain white matter. Primary astrocyte cultures were prepared from whole brains of 2-day-old Wistar rats. For evaluation of glutamate uptake/release in astrocytes following treatment of cells with MBP charge isomers, Glutamate Assay Kit was used. The expression of EAAT-2 (excitatory amino acid transporters), peroxisome proliferator-activated receptor gamma (PPAR- γ), inhibitor of nuclear factor kappa B (IkB), and high mobility group protein B1 (HMGB1) in astrocytes were assayed by Western Blot analysis. Results: This study investigated the action of deiminated isomer (C8) on the cultured primary astrocytes and compared its effects with the effects of unmodified C1 isomers. The study found that C8 and C1 MBP differently act on the uptake and release of glutamate in astrocytes: nonmodified C1 MBP increases the uptake of glutamate and does not change the release, whereas C8 decreases the release of glutamate but does not alter the uptake. Nevertheless, both isomers increased the expression of PPAR-γ and EAAT2 in the same intensity. However, immunostaining and Western Blots of cell lysates showed a decrease of IkB and increased expression of HMGB1 after the treatment of astrocytes by C8. Moreover, in the presence of C8, astrocytes release more nitric oxide than unmodified C1 isomers. Conclusion: These data suggest that the deiminated isomer of MBP evokes an inflammatory response and enhances the ability of astrocytes to release proinflammatory mediators through activation of NF-kB after the breakdown of myelin sheets. Acknowledgment: This research was supported by the SRNSF Georgia RF17_534 grant.

Keywords: myelin basic protein, glutamate, deimination, astrocytes, inflammation

Procedia PDF Downloads 192