Search results for: effective equation
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 11298

Search results for: effective equation

678 Ambient Factors in the Perception of Crowding in Public Transport

Authors: John Zacharias, Bin Wang

Abstract:

Travel comfort is increasingly seen as crucial to effecting the switch from private motorized modes to public transit. Surveys suggest that travel comfort is closely related to perceived crowding, that may involve lack of available seating, difficulty entering and exiting, jostling and other physical contacts with strangers. As found in studies on environmental stress, other factors may moderate perceptions of crowding–in this case, we hypothesize that the ambient environment may play a significant role. Travel comfort was measured by applying a structured survey to randomly selected passengers (n=369) on 3 lines of the Beijing metro on workdays. Respondents were standing with all seats occupied and with car occupancy at 14 levels. A second research assistant filmed the metro car while passengers were interviewed, to obtain the total number of passengers. Metro lines 4, 6 and 10 were selected that travel through the central city north-south, east-west and circumferentially. Respondents evaluated the following factors: crowding, noise, smell, air quality, temperature, illumination, vibration and perceived safety as they experienced them at the time of interview, and then were asked to rank these 8 factors according to their importance for their travel comfort. Evaluations were semantic differentials on a 7-point scale from highly unsatisfactory (-3) to highly satisfactory (+3). The control variables included age, sex, annual income and trip purpose. Crowding was assessed most negatively, with 41% of the scores between -3 and -2. Noise and air quality were also assessed negatively, with two-thirds of the evaluations below 0. Illumination was assessed most positively, followed by crime, vibration and temperature, all scoring at indifference (0) or slightly positive. Perception of crowding was linearly and positively related to the number of passengers in the car. Linear regression tested the impact of ambient environmental factors on perception of crowding. Noise intensity accounted for more than the actual number of individuals in the car in the perception of crowding, with smell also contributing. Other variables do not interact with the crowding variable although the evaluations are distinct. In all, only one-third of the perception of crowding (R2=.154) is explained by the number of people, with the other ambient environmental variables accounting for two-thirds of the variance (R2=.316). However, when ranking the factors by their importance to travel comfort, perceived crowding made up 69% of the first rank, followed by noise at 11%. At rank 2, smell dominates (25%), followed by noise and air quality (17%). Commuting to work induces significantly lower evaluations of travel comfort with shopping the most positive. Clearly, travel comfort is particularly important to commuters. Moreover, their perception of crowding while travelling on metro is highly conditioned by the ambient environment in the metro car. Focussing attention on the ambient environmental conditions of the metro is an effective way to address the primary concerns of travellers with overcrowding. In general, the strongly held opinions on travel comfort require more attention in the effort to induce ridership in public transit.

Keywords: ambient environment, mass rail transit, public transit, travel comfort

Procedia PDF Downloads 262
677 Mental Illness, Dargahs and Healing: A Qualitative Exploration in a North Indian City

Authors: Reetinder Kaur, R. K. Pathak

Abstract:

Mental health is recognised as an important global health concern. World Health Organisation in 2004 estimated that neuropsychiatric illnesses in India account for 10.8 percent of the global burden. The prevalence of serious mental illnesses is estimated as 6.5 percent by National Commission of Macroeconomics and Health in 2005. India spends only 0.06 percent of its health budget on mental health. One of the major problems that exist in Indian mental health care is the treatment gap due to scarcity of manpower, inadequate infrastructure and deficiencies in policy initiatives. As a result, traditional healing is a popular resource for mentally ill individuals and their families. The various traditional healing resources include faith healers, healers at temples and Dargahs. Chandigarh is a Union Territory located in North India. It has surplus manpower and infrastructure available for mental health care. Inspite of availability of mental health care services, mentally ill individuals and their families seek help from traditional healers at various Dargahs within or outside Chandigarh. For the present study, the data was collected from four dargahs. A total of thirty patients medically diagnosed with various mental illnesses, their family members who accompanied them and healers were part of this study. The aim of the study was to: Understand the interactions between healer, patient and family members during the course of treatment, understand explanations of mental illnesses and analyse the healing practices in context of culture. The interviews were conducted using an interview guide for the three sets of informants: Healers, patients and family members. The interview guide for healer focussed on the healing process, healer’s understanding of patient’s explanatory models, healer’s knowledge about mental illnesses and types of these illnesses cured by the healer. The interview guide for patients and family members focussed on their understanding of the symptoms, explanations for illness and help-seeking behaviour. The patients were observed over the weeks (every Thursday, the day of pir and healing) during their visits to the healer. Detailed discussions were made with the healer regarding the healing process and benefits of healing. The data was analysed thematically and the themes: The role of sacred, holistic healing, healer’s understanding of patient’s explanatory models of mental illness, the patient’s, and family’s understanding of mental illnesses, healer’s knowledge about mental illnesses, types of mental illnesses cured by the healer, bad dreams and their interpretation emerged. From the analysis of data, it was found that the healers concentrate their interventions in the social arena, ‘curing’ distressed patients by bringing significant changes in their social environment. It is suggested that in order to make the mental health care services effective in India, the collaboration between healers and psychiatrist is essential. However, certain specifications need to be made to make this kind of collaboration successful and beneficial for the stakeholders.

Keywords: Dargah, mental illness, traditional healing, policy

Procedia PDF Downloads 316
676 Phage Display-Derived Vaccine Candidates for Control of Bovine Anaplasmosis

Authors: Itzel Amaro-Estrada, Eduardo Vergara-Rivera, Virginia Juarez-Flores, Mayra Cobaxin-Cardenas, Rosa Estela Quiroz, Jesus F. Preciado, Sergio Rodriguez-Camarillo

Abstract:

Bovine anaplasmosis is an infectious, tick-borne disease caused mainly by Anaplasma marginale; typical signs include anemia, fever, abortion, weight loss, decreased milk production, jaundice, and potentially death. Sick bovine can recover when antibiotics are administered; however, it usually remains as carrier for life, being a risk of infection for susceptible cattle. Anaplasma marginale is an obligate intracellular Gram-negative bacterium with genetic composition highly diverse among geographical isolates. There are currently no vaccines fully effective against bovine anaplasmosis; therefore, the economic losses due to disease are present. Vaccine formulation became a hard task for several pathogens as Anaplasma marginale, but peptide-based vaccines are an interesting proposal way to induce specific responses. Phage-displayed peptide libraries have been proved one of the most powerful technologies for identifying specific ligands. Screening of these peptides libraries is also a tool for studying interactions between proteins or peptides. Thus, it has allowed the identification of ligands recognized by polyclonal antiserums, and it has been successful for the identification of relevant epitopes in chronic diseases and toxicological conditions. Protective immune response to bovine anaplasmosis includes high levels of immunoglobulins subclass G2 (IgG2) but not subclass IgG1. Therefore, IgG2 from the serum of protected bovine can be useful to identify ligands, which can be part of an immunogen for cattle. In this work, phage display random peptide library Ph.D. ™ -12 was incubating with IgG2 or blood sera of immunized bovines against A. marginale as targets. After three rounds of biopanning, several candidates were selected for additional analysis. Subsequently, their reactivity with sera immunized against A. marginale, as well as with positive and negative sera to A. marginale was evaluated by immunoassays. A collection of recognized peptides tested by ELISA was generated. More than three hundred phage-peptides were separately evaluated against molecules which were used during panning. At least ten different peptides sequences were determined from their nucleotide composition. In this approach, three phage-peptides were selected by their binding and affinity properties. In the case of the development of vaccines or diagnostic reagents, it is important to evaluate the immunogenic and antigenic properties of the peptides. Immunogenic in vitro and in vivo behavior of peptides will be assayed as synthetic and as phage-peptide for to determinate their vaccine potential. Acknowledgment: This work was supported by grant SEP-CONACYT 252577 given to I. Amaro-Estrada.

Keywords: bovine anaplasmosis, peptides, phage display, veterinary vaccines

Procedia PDF Downloads 140
675 Methodology to Assess the Circularity of Industrial Processes

Authors: Bruna F. Oliveira, Teresa I. Gonçalves, Marcelo M. Sousa, Sandra M. Pimenta, Octávio F. Ramalho, José B. Cruz, Flávia V. Barbosa

Abstract:

The EU Circular Economy action plan, launched in 2020, is one of the major initiatives to promote the transition into a more sustainable industry. The circular economy is a popular concept used by many companies nowadays. Some industries are better forwarded to this reality than others, and the tannery industry is a sector that needs more attention due to its strong environmental impact caused by its dimension, intensive resources consumption, lack of recyclability, and second use of its products, as well as the industrial effluents generated by the manufacturing processes. For these reasons, the zero-waste goal and the European objectives are further being achieved. In this context, a need arises to provide an effective methodology that allows to determine the level of circularity of tannery companies. Regarding the complexity of the circular economy concept, few factories have a specialist in sustainability to assess the company’s circularity or have the ability to implement circular strategies that could benefit the manufacturing processes. Although there are several methodologies to assess circularity in specific industrial sectors, there is not an easy go-to methodology applied in factories aiming for cleaner production. Therefore, a straightforward methodology to assess the level of circularity, in this case of a tannery industry, is presented and discussed in this work, allowing any company to measure the impact of its activities. The methodology developed consists in calculating the Overall Circular Index (OCI) by evaluating the circularity of four key areas -energy, material, economy and social- in a specific factory. The index is a value between 0 and 1, where 0 means a linear economy, and 1 is a complete circular economy. Each key area has a sub-index, obtained through key performance indicators (KPIs) regarding each theme, and the OCI reflects the average of the four sub-indexes. Some fieldwork in the appointed company was required in order to obtain all the necessary data. By having separate sub-indexes, one can observe which areas are more linear than others. Thus, it is possible to work on the most critical areas by implementing strategies to increase the OCI. After these strategies are implemented, the OCI is recalculated to check the improvements made and any other changes in the remaining sub-indexes. As such, the methodology in discussion works through continuous improvement, constantly reevaluating and improving the circularity of the factory. The methodology is also flexible enough to be implemented in any industrial sector by adapting the KPIs. This methodology was implemented in a selected Portuguese small and medium-sized enterprises (SME) tannery industry and proved to be a relevant tool to measure the circularity level of the factory. It was witnessed that it is easier for non-specialists to evaluate circularity and identify possible solutions to increase its value, as well as learn how one action can impact their environment. In the end, energetic and environmental inefficiencies were identified and corrected, increasing the sustainability and circularity of the company. Through this work, important contributions were provided, helping the Portuguese SMEs to achieve the European and UN 2030 sustainable goals.

Keywords: circular economy, circularity index, sustainability, tannery industry, zero-waste

Procedia PDF Downloads 66
674 Speech Acts of Selected Classroom Encounters: Analyzing the Speech Acts of a Career Technology Lesson

Authors: Michael Amankwaa Adu

Abstract:

Effective communication in the classroom plays a vital role in ensuring successful teaching and learning. In particular, the types of language and speech acts teachers use shape classroom interactions and influence student engagement. This study aims to analyze the speech acts employed by a Career Technology teacher in a junior high school. While much research has focused on speech acts in language classrooms, less attention has been given to how these acts operate in non-language subject areas like technical education. The study explores how different types of speech acts—directives, assertives, expressives, and commissives—are used during three classroom encounters: lesson introduction, content delivery, and classroom management. This research seeks to fill the gap in understanding how teachers of non-language subjects use speech acts to manage classroom dynamics and facilitate learning. The study employs a mixed-methods design, combining qualitative and quantitative approaches. Data was collected through direct classroom observation and audio recordings of a one-hour Career Technology lesson. The transcriptions of the lesson were analyzed using John Searle’s taxonomy of speech acts, classifying the teacher’s utterances into directives, assertives, expressives, and commissives. Results show that directives were the most frequently used speech act, accounting for 59.3% of the teacher's utterances. These speech acts were essential in guiding student behavior, giving instructions, and maintaining classroom control. Assertives made up 20.4% of the speech acts, primarily used for stating facts and reinforcing content. Expressives, at 14.2%, expressed emotions such as approval or frustration, helping to manage the emotional atmosphere of the classroom. Commissives were the least used, representing 6.2% of the speech acts, often used to set expectations or outline future actions. No declarations were observed during the lesson. The findings of this study reveal the critical role that speech acts play in managing classroom behavior and delivering content in technical subjects. Directives were crucial for ensuring students followed instructions and completed tasks, while assertives helped in reinforcing lesson objectives. Expressives contributed to motivating or disciplining students, and commissives, though less frequent, helped set clear expectations for students’ future actions. The absence of declarations suggests that the teacher prioritized guiding students over making formal pronouncements. These insights can inform teaching strategies across various subject areas, demonstrating that a diverse use of speech acts can create a balanced and interactive learning environment. This study contributes to the growing field of pragmatics in education and offers practical recommendations for educators, particularly in non-language classrooms, on how to utilize speech acts to enhance both classroom management and student engagement.

Keywords: classroom interaction, pragmatics, speech acts, teacher communication, career technology

Procedia PDF Downloads 20
673 Difficulties for Implementation of Telenursing: An Experience Report

Authors: Jacqueline A. G. Sachett, Cláudia S. Nogueira, Diana C. P. Lima, Jessica T. S. Oliveira, Guilherme K. M. Salazar, Lílian K. Aguiar

Abstract:

The Polo Amazon Telehealth offers several tools for professionals working in Primary Health Care as a second formative opinion, teleconsulting and training between the different areas, whether medicine, dentistry, nursing, physiotherapy, among others. These activities have a monthly schedule of free access to the municipalities of Amazonas registered. With this premise, and in partnership with the University of the State of Amazonas (UEA), is promoting the practice of the triad; teaching-research-extension in order to collaborate with the enrichment and acquisition of knowledge through educational practices carried out through teleconferences. Therefore, nursing is to join efforts and inserts as a collaborator of this project running, contributing to the education and training of these professionals who are part of the health system in full Amazon. The aim of this study is to report the experience of academic of Amazonas State University nursing course, about the experience in the extension project underway in Polo Telemedicine Amazon. This was a descriptive study, the experience report type, about the experience of nursing academic UEA, by extension 'Telenursing: teleconsulting and second formative opinion for FHS professionals in the state of Amazonas' project, held in Polo Telemedicine Amazon, through an agreement with the UEA and funded by the Foundation of Amazonas Research from July / 2012 to July / 2016. Initially developed active search of members of the Family Health Strategy professionals, in order to provide training and training teams to use the virtual clinic, as well as the virtual environment is the focus of this tool design. The election period was an aggravating factor for the implementation of teleconsulting proposal, due to change of managers in each municipality, requiring the stoppage until they assume their positions. From this definition, we established the need for new training. The first video conference took place on 03.14.2013 for learning and training in the use of Virtual Learning Environment and Virtual Clinic, with the participation of municipalities of Novo Aripuanã, São Paulo de Olivença and Manacapuru. During the whole project was carried out literature about what is being done and produced at the national level about the subject. By the time the telenursing project has received twenty-five (25) consultancy requests. The consultants sent by nursing professionals, all have been answered to date. Faced with the lived experience, particularly in video conferencing, face to cause difficulties issues, such as the fluctuation in the number of participants in activities, difficulty of participants to reconcile the opening hours of the units with the schedule of video conferencing, transmission difficulties and changes schedule. It was concluded that the establishment of connection between the Telehealth points is one of the main factors for the implementation of Telenursing and that this feature is still new for nursing. However, effective training and updating, may provide to these professional category subsidies to quality health care in the Amazon.

Keywords: Amazon, teleconsulting, telehealth, telenursing

Procedia PDF Downloads 310
672 Identification and Quantification of Lisinopril from Pure, Formulated and Urine Samples by Micellar Thin Layer Chromatography

Authors: Sudhanshu Sharma

Abstract:

Lisinopril, 1-[N-{(s)-I-carboxy-3 phenyl propyl}-L-proline dehydrate is a lysine analog of enalaprilat, the active metabolite of enalapril. It is long-acting, non-sulhydryl angiotensin-converting enzyme (ACE) inhibitor that is used for the treatment of hypertension and congestive heart failure in daily dosage 10-80 mg. Pharmacological activity of lisinopril has been proved in various experimental and clinical studies. Owing to its importance and widespread use, efforts have been made towards the development of simple and reliable analytical methods. As per our literature survey, lisinopril in pharmaceutical formulations has been determined by various analytical methodologies like polaragraphy, potentiometry, and spectrophotometry, but most of these analytical methods are not too suitable for the Identification of lisinopril from clinical samples because of the interferences caused by the amino acids and amino groups containing metabolites present in biological samples. This report is an attempt in the direction of developing a simple and reliable method for on plate identification and quantification of lisinopril in pharmaceutical formulations as well as from human urine samples using silica gel H layers developed with a new mobile phase comprising of micellar solutions of N-cetyl-N, N, N-trimethylammonium bromide (CTAB). Micellar solutions have found numerous practical applications in many areas of separation science. Micellar liquid chromatography (MLC) has gained immense popularity and wider applicability due to operational simplicity, cost effectiveness, relatively non-toxicity and enhanced separation efficiency, low aggressiveness. Incorporation of aqueous micellar solutions as mobile phase was pioneered by Armstrong and Terrill as they accentuated the importance of TLC where simultaneous separation of ionic or non-ionic species in a variety of matrices is required. A peculiarity of the micellar mobile phases (MMPs) is that they have no macroscopic analogues, as a result the typical separations can be easily achieved by using MMPs than aqueous organic mobile phases. Previously MMPs were successfully employed in TLC based critical separations of aromatic hydrocarbons, nucleotides, vitamin K1 and K5, o-, m- and p- aminophenol, amino acids, separation of penicillins. The human urine analysis for identification of selected drugs and their metabolites has emerged as an important investigation tool in forensic drug analysis. Among all chromatographic methods available only thin layer chromatography (TLC) enables a simple fast and effective separation of the complex mixtures present in various biological samples and is recommended as an approved testing for forensic drug analysis by federal Law. TLC proved its applicability during successful separation of bio-active amines, carbohydrates, enzymes, porphyrins, and their precursors, alkaloid and drugs from urine samples.

Keywords: lisnopril, surfactant, chromatography, micellar solutions

Procedia PDF Downloads 366
671 Precise Determination of the Residual Stress Gradient in Composite Laminates Using a Configurable Numerical-Experimental Coupling Based on the Incremental Hole Drilling Method

Authors: A. S. Ibrahim Mamane, S. Giljean, M.-J. Pac, G. L’Hostis

Abstract:

Fiber reinforced composite laminates are particularly subject to residual stresses due to their heterogeneity and the complex chemical, mechanical and thermal mechanisms that occur during their processing. Residual stresses are now well known to cause damage accumulation, shape instability, and behavior disturbance in composite parts. Many works exist in the literature on techniques for minimizing residual stresses in thermosetting and thermoplastic composites mainly. To study in-depth the influence of processing mechanisms on the formation of residual stresses and to minimize them by establishing a reliable correlation, it is essential to be able to measure very precisely the profile of residual stresses in the composite. Residual stresses are important data to consider when sizing composite parts and predicting their behavior. The incremental hole drilling is very effective in measuring the gradient of residual stresses in composite laminates. This method is semi-destructive and consists of drilling incrementally a hole through the thickness of the material and measuring relaxation strains around the hole for each increment using three strain gauges. These strains are then converted into residual stresses using a matrix of coefficients. These coefficients, called calibration coefficients, depending on the diameter of the hole and the dimensions of the gauges used. The reliability of the incremental hole drilling depends on the accuracy with which the calibration coefficients are determined. These coefficients are calculated using a finite element model. The samples’ features and the experimental conditions must be considered in the simulation. Any mismatch can lead to inadequate calibration coefficients, thus introducing errors on residual stresses. Several calibration coefficient correction methods exist for isotropic material, but there is a lack of information on this subject concerning composite laminates. In this work, a Python program was developed to automatically generate the adequate finite element model. This model allowed us to perform a parametric study to assess the influence of experimental errors on the calibration coefficients. The results highlighted the sensitivity of the calibration coefficients to the considered errors and gave an order of magnitude of the precisions required on the experimental device to have reliable measurements. On the basis of these results, improvements were proposed on the experimental device. Furthermore, a numerical method was proposed to correct the calibration coefficients for different types of materials, including thick composite parts for which the analytical approach is too complex. This method consists of taking into account the experimental errors in the simulation. Accurate measurement of the experimental errors (such as eccentricity of the hole, angular deviation of the gauges from their theoretical position, or errors on increment depth) is therefore necessary. The aim is to determine more precisely the residual stresses and to expand the validity domain of the incremental hole drilling technique.

Keywords: fiber reinforced composites, finite element simulation, incremental hole drilling method, numerical correction of the calibration coefficients, residual stresses

Procedia PDF Downloads 131
670 Bactericidal Efficacy of Quaternary Ammonium Compound on Carriers with Food Additive Grade Calcium Hydroxide against Salmonella Infantis and Escherichia coli

Authors: M. Shahin Alam, Satoru Takahashi, Mariko Itoh, Miyuki Komura, Mayuko Suzuki, Natthanan Sangsriratanakul, Kazuaki Takehara

Abstract:

Cleaning and disinfection are key components of routine biosecurity in livestock farming and food processing industry. The usage of suitable disinfectants and their proper concentration are important factors for a successful biosecurity program. Disinfectants have optimum bactericidal and virucidal efficacies at temperatures above 20°C, but very few studies on application and effectiveness of disinfectants at low temperatures have been done. In the present study, the bactericidal efficacies of food additive grade calcium hydroxide (FdCa(OH)), quaternary ammonium compound (QAC) and their mixture, were investigated under different conditions, including time, organic materials (fetal bovine serum: FBS) and temperature, either in suspension or in carrier test. Salmonella Infantis and Escherichia coli, which are the most prevalent gram negative bacteria in commercial poultry housing and food processing industry, were used in this study. Initially, we evaluated these disinfectants at two different temperatures (4°C and room temperature (RT) (25°C ± 2°C)) and 7 contact times (0, 5 and 30 sec, 1, 3, 20 and 30 min), with suspension tests either in the presence or absence of 5% FBS. Secondly, we investigated the bactericidal efficacies of these disinfectants by carrier tests (rubber, stainless steel and plastic) at same temperatures and 4 contact times (30 sec, 1, 3, and 5 min). Then, we compared the bactericidal efficacies of each disinfectant within their mixtures, as follows. When QAC was diluted with redistilled water (dW2) at 1: 500 (QACx500) to obtain the final concentration of didecyl-dimethylammonium chloride (DDAC) of 200 ppm, it could inactivate Salmonella Infantis within 5 sec at RT either with or without 5% FBS in suspension test; however, at 4°C it required 30 min in presence of 5% FBS. FdCa(OH)2 solution alone could inactivate bacteria within 1 min both at RT and 4°C even with 5% FBS. While FdCa(OH)2 powder was added at final concentration 0.2% to QACx500 (Mix500), the mixture could inactivate bacteria within 30 sec and 5 sec, respectively, with or without 5% FBS at 4°C. The findings from the suspension test indicated that low temperature inhibited the bactericidal efficacy of QAC, whereas Mix500 was effective, regardless of short contact time and low temperature, even with 5% FBS. In the carrier test, single disinfectant required bit more time to inactivate bacteria on rubber and plastic surfaces than on stainless steel. However, Mix500 could inactivate S. Infantis on rubber, stainless steel and plastic surfaces within 30 sec and 1 min, respectively, at RT and 4°C; but, for E. coli, it required only 30 sec at both temperatures. So, synergistic effects were observed on different carriers at both temperatures. For a successful enhancement of biosecurity during winter, the disinfectants should be selected that could have short contact times with optimum efficacy against the target pathogen. The present study findings help farmers to make proper strategies for application of disinfectants in their livestock farming and food processing industry.

Keywords: carrier, food additive grade calcium hydroxide (FdCa(OH)₂), quaternary ammonium compound, synergistic effects

Procedia PDF Downloads 293
669 A New Model to Perform Preliminary Evaluations of Complex Systems for the Production of Energy for Buildings: Case Study

Authors: Roberto de Lieto Vollaro, Emanuele de Lieto Vollaro, Gianluca Coltrinari

Abstract:

The building sector is responsible, in many industrialized countries, for about 40% of the total energy requirements, so it seems necessary to devote some efforts in this area in order to achieve a significant reduction of energy consumption and of greenhouse gases emissions. The paper presents a study aiming at providing a design methodology able to identify the best configuration of the system building/plant, from a technical, economic and environmentally point of view. Normally, the classical approach involves a building's energy loads analysis under steady state conditions, and subsequent selection of measures aimed at improving the energy performance, based on previous experience made by architects and engineers in the design team. Instead, the proposed approach uses a sequence of two well known scientifically validated calculation methods (TRNSYS and RETScreen), that allow quite a detailed feasibility analysis. To assess the validity of the calculation model, an existing, historical building in Central Italy, that will be the object of restoration and preservative redevelopment, was selected as a case-study. The building is made of a basement and three floors, with a total floor area of about 3,000 square meters. The first step has been the determination of the heating and cooling energy loads of the building in a dynamic regime by means of TRNSYS, which allows to simulate the real energy needs of the building in function of its use. Traditional methodologies, based as they are on steady-state conditions, cannot faithfully reproduce the effects of varying climatic conditions and of inertial properties of the structure. With TRNSYS it is possible to obtain quite accurate and reliable results, that allow to identify effective combinations building-HVAC system. The second step has consisted of using output data obtained with TRNSYS as input to the calculation model RETScreen, which enables to compare different system configurations from the energy, environmental and financial point of view, with an analysis of investment, and operation and maintenance costs, so allowing to determine the economic benefit of possible interventions. The classical methodology often leads to the choice of conventional plant systems, while RETScreen provides a financial-economic assessment for innovative energy systems and low environmental impact. Computational analysis can help in the design phase, particularly in the case of complex structures with centralized plant systems, by comparing the data returned by the calculation model RETScreen for different design options. For example, the analysis performed on the building, taken as a case study, found that the most suitable plant solution, taking into account technical, economic and environmental aspects, is the one based on a CCHP system (Combined Cooling, Heating, and Power) using an internal combustion engine.

Keywords: energy, system, building, cooling, electrical

Procedia PDF Downloads 571
668 An Exploration of the Emergency Staff’s Perceptions and Experiences of Teamwork and the Skills Required in the Emergency Department in Saudi Arabia

Authors: Sami Alanazi

Abstract:

Teamwork practices have been recognized as a significant strategy to improve patient safety, quality of care, and staff and patient satisfaction in healthcare settings, particularly within the emergency department (ED). The EDs depend heavily on teams of interdisciplinary healthcare staff to carry out their operational goals and core business of providing care to the serious illness and injured. The ED is also recognized as a high-risk area in relation to service demand and the potential for human error. Few studies have considered the perceptions and experiences of the ED staff (physicians, nurses, allied health professionals, and administration staff) about the practice of teamwork, especially in Saudi Arabia (SA), and no studies have been conducted to explore the practices of teamwork in the EDs. Aim: To explore the practices of teamwork from the perspectives and experiences of staff (physicians, nurses, allied health professionals, and administration staff) when interacting with each other in the admission areas in the ED of a public hospital in the Northern Border region of SA. Method: A qualitative case study design was utilized, drawing on two methods for the data collection, comprising of semi-structured interviews (n=22) with physicians (6), nurses (10), allied health professionals (3), and administrative members (3) working in the ED of a hospital in the Northern Border region of SA. The second method is non-participant direct observation. All data were analyzed using thematic analysis. Findings: The main themes that emerged from the analysis were as follows: the meaningful of teamwork, reasons of teamwork, the ED environmental factors, the organizational factors, the value of communication, leadership, teamwork skills in the ED, team members' behaviors, multicultural teamwork, and patients and families behaviors theme. Discussion: Working in the ED environment played a major role in affecting work performance as well as team dynamics. However, Communication, time management, fast-paced performance, multitasking, motivation, leadership, and stress management were highlighted by the participants as fundamental skills that have a major impact on team members and patients in the ED. It was found that the behaviors of the team members impacted the team dynamics as well as ED health services. Behaviors such as disputes among team members, conflict, cooperation, uncooperative members, neglect, and emotions of the members. Besides that, the behaviors of the patients and their accompanies had a direct impact on the team and the quality of the services. In addition, the differences in the cultures have separated the team members and created undesirable gaps such the gender segregation, national origin discrimination, and similarity and different in interests. Conclusion: Effective teamwork, in the context of the emergency department, was recognized as an essential element to obtain the quality of care as well as improve staff satisfaction.

Keywords: teamwork, barrier, facilitator, emergencydepartment

Procedia PDF Downloads 139
667 Predicting Loss of Containment in Surface Pipeline using Computational Fluid Dynamics and Supervised Machine Learning Model to Improve Process Safety in Oil and Gas Operations

Authors: Muhammmad Riandhy Anindika Yudhy, Harry Patria, Ramadhani Santoso

Abstract:

Loss of containment is the primary hazard that process safety management is concerned within the oil and gas industry. Escalation to more serious consequences all begins with the loss of containment, starting with oil and gas release from leakage or spillage from primary containment resulting in pool fire, jet fire and even explosion when reacted with various ignition sources in the operations. Therefore, the heart of process safety management is avoiding loss of containment and mitigating its impact through the implementation of safeguards. The most effective safeguard for the case is an early detection system to alert Operations to take action prior to a potential case of loss of containment. The detection system value increases when applied to a long surface pipeline that is naturally difficult to monitor at all times and is exposed to multiple causes of loss of containment, from natural corrosion to illegal tapping. Based on prior researches and studies, detecting loss of containment accurately in the surface pipeline is difficult. The trade-off between cost-effectiveness and high accuracy has been the main issue when selecting the traditional detection method. The current best-performing method, Real-Time Transient Model (RTTM), requires analysis of closely positioned pressure, flow and temperature (PVT) points in the pipeline to be accurate. Having multiple adjacent PVT sensors along the pipeline is expensive, hence generally not a viable alternative from an economic standpoint.A conceptual approach to combine mathematical modeling using computational fluid dynamics and a supervised machine learning model has shown promising results to predict leakage in the pipeline. Mathematical modeling is used to generate simulation data where this data is used to train the leak detection and localization models. Mathematical models and simulation software have also been shown to provide comparable results with experimental data with very high levels of accuracy. While the supervised machine learning model requires a large training dataset for the development of accurate models, mathematical modeling has been shown to be able to generate the required datasets to justify the application of data analytics for the development of model-based leak detection systems for petroleum pipelines. This paper presents a review of key leak detection strategies for oil and gas pipelines, with a specific focus on crude oil applications, and presents the opportunities for the use of data analytics tools and mathematical modeling for the development of robust real-time leak detection and localization system for surface pipelines. A case study is also presented.

Keywords: pipeline, leakage, detection, AI

Procedia PDF Downloads 189
666 The Role of Structural Poverty in the Know-How and Moral Economy of Doctors in Africa: An Anthropological Perspective

Authors: Isabelle Gobatto

Abstract:

Based on an anthropological approach, this paper explores the medical profession and the construction of medical practices by considering the multiform articulations between structural poverty and the production of care from a low-resource francophone West African country, Burkina Faso. This country is considered in its exemplary dimension of culturally differentiated countries of the African continent that share the same situation of structural poverty. The objective is to expose the effects of structural poverty on the ways of constructing professional knowledge and thinking about the sense of the medical profession. If doctors are trained to have the same capacities in South and West countries, which are to treat and save lives whatever the cultural contexts of the practice of medicine, the ways of investing their role and of dealing with this context of action fracture the homogenization of the medical profession. In the line of anthropology of biomedicine, this paper outlines the complex effects of structural poverty on health care, care relations, and the moral economy of doctors. The materials analyzed are based on an ethnography including two temporalities located thirty years apart (1990-1994 and 2020-2021), based on long-term observations of care practices conducted in healthcare institutions, interviews coupled with the life histories of physicians. The findings reveal that disabilities faced by doctors to deliver care are interpreted as policy gaps, but they are also considered by physicians as constitutive of the social and cultural characteristics of patients, making their capacities and incapacities in terms of accompanying caregivers in the production of care. These perceptions have effects on know-how, structured around the need to act even when diagnoses are not made so as not to see patients desert health structures if the costs of care are too high for them. But these interpretations of highly individualizing dimensions of these difficulties place part of the blame on patients for the difficulties in using learned knowledge and delivering effective care. These situations challenge the ethics of caregivers but also of ethnologists. Firstly because the interpretations of disabilities prevent caregivers from considering vulnerabilities of care as constituting a common condition shared with their patients in these health systems, affecting them in an identical way although in different places in the production of care. Correlatively, these results underline that these professional conceptions prevent the emergence of a figure of victim, which could be shared between patients and caregivers who, together, undergo working and care conditions at the limit of the acceptable. This dimension directly involves politics. Secondly, structural poverty and its effects on care challenge the ethics of the anthropologist who observes caregivers producing, without intent to arm, experiences of care marked by an ordinary violence, by not giving them the care they need. It is worth asking how anthropologists could get doctors to think in this light in west-African societies.

Keywords: Africa, care, ethics, poverty

Procedia PDF Downloads 67
665 For Whom Is Legal Aid: A Critical Analysis of the State-Funded Legal Aid in Criminal Cases in Tajikistan

Authors: Umeda Junaydova

Abstract:

Legal aid is a key element of access to justice. According to UN Principles and Guidelines on Access to Legal Aid in Criminal Justice Systems, state members bear the obligation to put in place accessible, effective, sustainable, and credible legal aid systems. Regarding this obligation, developing countries, such as Tajikistan, faced challenges in terms of financing this system. Thus, many developed nations have launched rule-of-law programs to support these states and ensure access to justice for all. Following independence from the Soviet Union, Tajikistan committed to introducing the rule of law and providing access to justice. This newly established country was weak, and the sudden outbreak of civil war aggravated the situation even more. The country needed external support and opened its door to attract foreign donors to assist it in its way to development. In 2015, Tajikistan, with the financial support of development partners, was able to establish a state-funded legal aid system that provides legal assistance to vulnerable and marginalized populations, including in criminal cases. In the beginning, almost the whole system was financed from donor funds; by that time, the contribution of the government gradually increased, and currently, it covers 80% of the total budget. All these governments' actions toward ensuring access to criminal legal aid for disadvantaged groups look promising; however, the reality is completely different. Currently, not all disadvantaged people are covered by these services, and their cases are most of the time considered without appropriate defense, which leads to violation of fundamental human rights. This research presents a comprehensive exploration of the interplay between donor assistance and the effectiveness of legal aid services in Tajikistan, with a specific focus on criminal cases involving vulnerable groups, such as women and children. In the context of Tajikistan, this study addresses a pressing concern: despite substantial financial support from international donors, state-funded legal aid services often fall short of meeting the needs of poor and vulnerable populations. The study delves into the underlying complexities of this issue and examines the structural, operational, and systemic challenges faced by legal aid providers, shedding light on the factors contributing to the ineffectiveness of legal aid services. Furthermore, it seeks to identify the root causes of these issues, revealing the barriers that hinder the delivery of adequate legal aid services. The research adopts a socio-legal methodology to ensure an appropriate combination of multiple methodologies. The findings of this research hold significant implications for both policymakers and practitioners, offering insights into the enhancement of legal aid services and access to justice for disadvantaged and marginalized populations in Tajikistan. By addressing these pressing questions, this study aims to fill the gap in legal literature and contribute to the development of a more equitable and efficient legal aid system that better serves the needs of the most vulnerable members of society.

Keywords: access to justice, legal aid, rule of law, rights for council

Procedia PDF Downloads 49
664 Computer Aide Discrimination of Benign and Malignant Thyroid Nodules by Ultrasound Imaging

Authors: Akbar Gharbali, Ali Abbasian Ardekani, Afshin Mohammadi

Abstract:

Introduction: Thyroid nodules have an incidence of 33-68% in the general population. More than 5-15% of these nodules are malignant. Early detection and treatment of thyroid nodules increase the cure rate and provide optimal treatment. Between the medical imaging methods, Ultrasound is the chosen imaging technique for assessment of thyroid nodules. The confirming of the diagnosis usually demands repeated fine-needle aspiration biopsy (FNAB). So, current management has morbidity and non-zero mortality. Objective: To explore diagnostic potential of automatic texture analysis (TA) methods in differentiation benign and malignant thyroid nodules by ultrasound imaging in order to help for reliable diagnosis and monitoring of the thyroid nodules in their early stages with no need biopsy. Material and Methods: The thyroid US image database consists of 70 patients (26 benign and 44 malignant) which were reported by Radiologist and proven by the biopsy. Two slices per patient were loaded in Mazda Software version 4.6 for automatic texture analysis. Regions of interests (ROIs) were defined within the abnormal part of the thyroid nodules ultrasound images. Gray levels within an ROI normalized according to three normalization schemes: N1: default or original gray levels, N2: +/- 3 Sigma or dynamic intensity limited to µ+/- 3σ, and N3: present intensity limited to 1% - 99%. Up to 270 multiscale texture features parameters per ROIs per each normalization schemes were computed from well-known statistical methods employed in Mazda software. From the statistical point of view, all calculated texture features parameters are not useful for texture analysis. So, the features based on maximum Fisher coefficient and the minimum probability of classification error and average correlation coefficients (POE+ACC) eliminated to 10 best and most effective features per normalization schemes. We analyze this feature under two standardization states (standard (S) and non-standard (NS)) with Principle Component Analysis (PCA), Linear Discriminant Analysis (LDA) and Non-Linear Discriminant Analysis (NDA). The 1NN classifier was performed to distinguish between benign and malignant tumors. The confusion matrix and Receiver operating characteristic (ROC) curve analysis were used for the formulation of more reliable criteria of the performance of employed texture analysis methods. Results: The results demonstrated the influence of the normalization schemes and reduction methods on the effectiveness of the obtained features as a descriptor on discrimination power and classification results. The selected subset features under 1%-99% normalization, POE+ACC reduction and NDA texture analysis yielded a high discrimination performance with the area under the ROC curve (Az) of 0.9722, in distinguishing Benign from Malignant Thyroid Nodules which correspond to sensitivity of 94.45%, specificity of 100%, and accuracy of 97.14%. Conclusions: Our results indicate computer-aided diagnosis is a reliable method, and can provide useful information to help radiologists in the detection and classification of benign and malignant thyroid nodules.

Keywords: ultrasound imaging, thyroid nodules, computer aided diagnosis, texture analysis, PCA, LDA, NDA

Procedia PDF Downloads 277
663 An Algebraic Geometric Imaging Approach for Automatic Dairy Cow Body Condition Scoring System

Authors: Thi Thi Zin, Pyke Tin, Ikuo Kobayashi, Yoichiro Horii

Abstract:

Today dairy farm experts and farmers have well recognized the importance of dairy cow Body Condition Score (BCS) since these scores can be used to optimize milk production, managing feeding system and as an indicator for abnormality in health even can be utilized to manage for having healthy calving times and process. In tradition, BCS measures are done by animal experts or trained technicians based on visual observations focusing on pin bones, pin, thurl and hook area, tail heads shapes, hook angles and short and long ribs. Since the traditional technique is very manual and subjective, the results can lead to different scores as well as not cost effective. Thus this paper proposes an algebraic geometric imaging approach for an automatic dairy cow BCS system. The proposed system consists of three functional modules. In the first module, significant landmarks or anatomical points from the cow image region are automatically extracted by using image processing techniques. To be specific, there are 23 anatomical points in the regions of ribs, hook bones, pin bone, thurl and tail head. These points are extracted by using block region based vertical and horizontal histogram methods. According to animal experts, the body condition scores depend mainly on the shape structure these regions. Therefore the second module will investigate some algebraic and geometric properties of the extracted anatomical points. Specifically, the second order polynomial regression is employed to a subset of anatomical points to produce the regression coefficients which are to be utilized as a part of feature vector in scoring process. In addition, the angles at thurl, pin, tail head and hook bone area are computed to extend the feature vector. Finally, in the third module, the extracted feature vectors are trained by using Markov Classification process to assign BCS for individual cows. Then the assigned BCS are revised by using multiple regression method to produce the final BCS score for dairy cows. In order to confirm the validity of proposed method, a monitoring video camera is set up at the milk rotary parlor to take top view images of cows. The proposed method extracts the key anatomical points and the corresponding feature vectors for each individual cows. Then the multiple regression calculator and Markov Chain Classification process are utilized to produce the estimated body condition score for each cow. The experimental results tested on 100 dairy cows from self-collected dataset and public bench mark dataset show very promising with accuracy of 98%.

Keywords: algebraic geometric imaging approach, body condition score, Markov classification, polynomial regression

Procedia PDF Downloads 156
662 Threats to the Business Value: The Case of Mechanical Engineering Companies in the Czech Republic

Authors: Maria Reznakova, Michala Strnadova, Lukas Reznak

Abstract:

Successful achievement of strategic goals requires an effective performance management system, i.e. determining the appropriate indicators measuring the rate of goal achievement. Assuming that the goal of the owners is to grow the assets they invested in, it is vital to identify the key performance indicators, which contribute to value creation. These indicators are known as value drivers. Based on the undertaken literature search, a value driver is defined as any factor that affects the value of an enterprise. The important factors are then monitored by both financial and non-financial indicators. Financial performance indicators are most useful in strategic management, since they indicate whether a company's strategy implementation and execution are contributing to bottom line improvement. Non-financial indicators are mainly used for short-term decisions. The identification of value drivers, however, is problematic for companies which are not publicly traded. Therefore financial ratios continue to be used to measure the performance of companies, despite their considerable criticism. The main drawback of such indicators is the fact that they are calculated based on accounting data, while accounting rules may differ considerably across different environments. For successful enterprise performance management it is vital to avoid factors that may reduce (or even destroy) its value. Among the known factors reducing the enterprise value are the lack of capital, lack of strategic management system and poor quality of production. In order to gain further insight into the topic, the paper presents results of the research identifying factors that adversely affect the performance of mechanical engineering enterprises in the Czech Republic. The research methodology focuses on both the qualitative and the quantitative aspect of the topic. The qualitative data were obtained from a questionnaire survey of the enterprises senior management, while the quantitative financial data were obtained from the Analysis Major Database for European Sources (AMADEUS). The questionnaire prompted managers to list factors which negatively affect business performance of their enterprises. The range of potential factors was based on a secondary research – analysis of previously undertaken questionnaire surveys and research of studies published in the scientific literature. The results of the survey were evaluated both in general, by average scores, and by detailed sub-analyses of additional criteria. These include the company specific characteristics, such as its size and ownership structure. The evaluation also included a comparison of the managers’ opinions and the performance of their enterprises – measured by return on equity and return on assets ratios. The comparisons were tested by a series of non-parametric tests of statistical significance. The results of the analyses show that the factors most detrimental to the enterprise performance include the incompetence of responsible employees and the disregard to the customers‘ requirements.

Keywords: business value, financial ratios, performance measurement, value drivers

Procedia PDF Downloads 222
661 Preparedness is Overrated: Community Responses to Floods in a Context of (Perceived) Low Probability

Authors: Kim Anema, Matthias Max, Chris Zevenbergen

Abstract:

For any flood risk manager the 'safety paradox' has to be a familiar concept: low probability leads to a sense of safety, which leads to more investments in the area, which leads to higher potential consequences: keeping the aggregated risk (probability*consequences) at the same level. Therefore, it is important to mitigate potential consequences apart from probability. However, when the (perceived) probability is so low that there is no recognizable trend for society to adapt to, addressing the potential consequences will always be the lagging point on the agenda. Preparedness programs fail because of lack of interest and urgency, policy makers are distracted by their day to day business and there's always a more urgent issue to spend the taxpayer's money on. The leading question in this study was how to address the social consequences of flooding in a context of (perceived) low probability. Disruptions of everyday urban life, large or small, can be caused by a variety of (un)expected things - of which flooding is only one possibility. Variability like this is typically addressed with resilience - and we used the concept of Community Resilience as the framework for this study. Drawing on face to face interviews, an extensive questionnaire and publicly available statistical data we explored the 'whole society response' to two recent urban flood events; the Brisbane Floods (AUS) in 2011 and the Dresden Floods (GE) in 2013. In Brisbane, we studied how the societal impacts of the floods were counteracted by both authorities and the public, and in Dresden we were able to validate our findings. A large part of the reactions, both public as institutional, to these two urban flood events were not fuelled by preparedness or proper planning. Instead, more important success factors in counteracting social impacts like demographic changes in neighborhoods and (non-)economic losses were dynamics like community action, flexibility and creativity from authorities, leadership, informal connections and a shared narrative. These proved to be the determining factors for the quality and speed of recovery in both cities. The resilience of the community in Brisbane was good, due to (i) the approachability of (local) authorities, (ii) a big group of ‘secondary victims’ and (iii) clear leadership. All three of these elements were amplified by the use of social media and/ or web 2.0 by both the communities and the authorities involved. The numerous contacts and social connections made through the web were fast, need driven and, in their own way, orderly. Similarly in Dresden large groups of 'unprepared', ad hoc organized citizens managed to work together with authorities in a way that was effective and speeded up recovery. The concept of community resilience is better fitted than 'social adaptation' to deal with the potential consequences of an (im)probable flood. Community resilience is built on capacities and dynamics that are part of everyday life and which can be invested in pre-event to minimize the social impact of urban flooding. Investing in these might even have beneficial trade-offs in other policy fields.

Keywords: community resilience, disaster response, social consequences, preparedness

Procedia PDF Downloads 352
660 Challenging Role of Talent Management, Career Development and Compensation Management toward Employee Retention and Organizational Performance with Mediating Effect of Employee Motivation in Service Sector of Pakistan

Authors: Muhammad Younas, Sidra Sawati, M. Razzaq Athar

Abstract:

Organizational development history reveals that it has ever been a challenge to identify and fathom the role of talent management, career development and compensation management towards employees’ retention and organizational performance. Organizations strive hard to measure the impact of all those factors which affect employee retention and organizational performance. Researchers have worked in great deal in order to know the relationship of independent variables i.e. Talent Management, Career Development and Compensation Management on dependent variables i.e. Employee Retention and Organizational Performance. Employees adorned with latest skills with long lasting loyalty play a significant role towards successful achievement of short term as well as long term goals of the organizations. Retention of valuable and resourceful employees for a longer time is equally essential for meeting the set goals. The organizations which spend reasonable chunk of their resources for taking such measures that help to retain their employees through talent management and satisfactory career development always enjoy a competitive edge over their competitors. Human resource is regarded as one of the most precious and difficult resource to management. It has its own needs and requirement. It becomes an easy prey to monotony when lacks career development. Wants and aspirations of this resource are seldom met completely but can be managed through career development and compensation management. In this era of competition, organizations have to take viable steps to management their resources especially human resource. Top management and Managers keep on working for an amenable solution in order to address the challenges relating career development and compensation management as their ultimate goal is to ensure the organizational performance on optimum level. The current study was conducted to examine the impact of Talent Management, Career Development and Compensation Management towards Employees Retention and Organizational Performance with mediating effect of Employees Motivation in Service Sector of Pakistan. The current study is based on Resource Based View (RBV) and Ability Motivation Opportunity (AMO) theories. It explains that by increasing internal resources we can manage employee talent, career development through compensation management and employee motivation more effectively. It will result in effective execution of HRM practices for employee retention enabling an organization to achieve and sustain competitive advantage through optimal performance. Data collection was made through a structured questionnaire which was based upon adopted instruments after testing reliability and validity. A total 300 employees of 30 firms in service sector of Pakistan were sampled through non-probability sampling technique. Regression analysis revealed that talent management, career development and compensation management have significant positive impact on employee retention and perceived organizational performance. The results further showed that employee motivation have a significant mediating effect on employee retention and organizational performance. The interpretation of the findings and limitations, theoretical and managerial implications are also discussed.

Keywords: career development, compensation management, employee retention, organizational performance, talent management

Procedia PDF Downloads 319
659 Impact of 6-Week Brain Endurance Training on Cognitive and Cycling Performance in Highly Trained Individuals

Authors: W. Staiano, S. Marcora

Abstract:

Introduction: It has been proposed that acute negative effect of mental fatigue (MF) could potentially become a training stimulus for the brain (Brain endurance training (BET)) to adapt and improve its ability to attenuate MF states during sport competitions. Purpose: The aim of this study was to test the efficacy of 6 weeks of BET on cognitive and cycling tests in a group of well-trained subjects. We hypothesised that combination of BET and standard physical training (SPT) would increase cognitive capacity and cycling performance by reducing rating of perceived exertion (RPE) and increase resilience to fatigue more than SPT alone. Methods: In a randomized controlled trial design, 26 well trained participants, after a familiarization session, cycled to exhaustion (TTE) at 80% peak power output (PPO) and, after 90 min rest, at 65% PPO, before and after random allocation to a 6 week BET or active placebo control. Cognitive performance was measured using 30 min of STROOP coloured task performed before cycling performance. During the training, BET group performed a series of cognitive tasks for a total of 30 sessions (5 sessions per week) with duration increasing from 30 to 60 min per session. Placebo engaged in a breathing relaxation training. Both groups were monitored for physical training and were naïve to the purpose of the study. Physiological and perceptual parameters of heart rate, lactate (LA) and RPE were recorded during cycling performances, while subjective workload (NASA TLX scale) was measured during the training. Results: Group (BET vs. Placebo) x Test (Pre-test vs. Post-test) mixed model ANOVA’s revealed significant interaction for performance at 80% PPO (p = .038) or 65% PPO (p = .011). In both tests, groups improved their TTE performance; however, BET group improved significantly more compared to placebo. No significant differences were found for heart rate during the TTE cycling tests. LA did not change significantly at rest in both groups. However, at completion of 65% TTE, it was significantly higher (p = 0.043) in the placebo condition compared to BET. RPE measured at ISO-time in BET was significantly lower (80% PPO, p = 0.041; 65% PPO p= 0.021) compared to placebo. Cognitive results in the STROOP task showed that reaction time in both groups decreased at post-test. However, BET decreased significantly (p = 0.01) more compared to placebo despite no differences accuracy. During training sessions, participants in the BET showed, through NASA TLX questionnaires, constantly significantly higher (p < 0.01) mental demand rates compared to placebo. No significant differences were found for physical demand. Conclusion: The results of this study provide evidences that combining BET and SPT seems to be more effective than SPT alone in increasing cognitive and cycling performance in well trained endurance participants. The cognitive overload produced during the 6-week training of BET can induce a reduction in perception of effort at a specific power, and thus improving cycling performance. Moreover, it provides evidence that including neurocognitive interventions will benefit athletes by increasing their mental resilience, without affecting their physical training load and routine.

Keywords: cognitive training, perception of effort, endurance performance, neuro-performance

Procedia PDF Downloads 118
658 Contextual Toxicity Detection with Data Augmentation

Authors: Julia Ive, Lucia Specia

Abstract:

Understanding and detecting toxicity is an important problem to support safer human interactions online. Our work focuses on the important problem of contextual toxicity detection, where automated classifiers are tasked with determining whether a short textual segment (usually a sentence) is toxic within its conversational context. We use “toxicity” as an umbrella term to denote a number of variants commonly named in the literature, including hate, abuse, offence, among others. Detecting toxicity in context is a non-trivial problem and has been addressed by very few previous studies. These previous studies have analysed the influence of conversational context in human perception of toxicity in controlled experiments and concluded that humans rarely change their judgements in the presence of context. They have also evaluated contextual detection models based on state-of-the-art Deep Learning and Natural Language Processing (NLP) techniques. Counterintuitively, they reached the general conclusion that computational models tend to suffer performance degradation in the presence of context. We challenge these empirical observations by devising better contextual predictive models that also rely on NLP data augmentation techniques to create larger and better data. In our study, we start by further analysing the human perception of toxicity in conversational data (i.e., tweets), in the absence versus presence of context, in this case, previous tweets in the same conversational thread. We observed that the conclusions of previous work on human perception are mainly due to data issues: The contextual data available does not provide sufficient evidence that context is indeed important (even for humans). The data problem is common in current toxicity datasets: cases labelled as toxic are either obviously toxic (i.e., overt toxicity with swear, racist, etc. words), and thus context does is not needed for a decision, or are ambiguous, vague or unclear even in the presence of context; in addition, the data contains labeling inconsistencies. To address this problem, we propose to automatically generate contextual samples where toxicity is not obvious (i.e., covert cases) without context or where different contexts can lead to different toxicity judgements for the same tweet. We generate toxic and non-toxic utterances conditioned on the context or on target tweets using a range of techniques for controlled text generation(e.g., Generative Adversarial Networks and steering techniques). On the contextual detection models, we posit that their poor performance is due to limitations on both of the data they are trained on (same problems stated above) and the architectures they use, which are not able to leverage context in effective ways. To improve on that, we propose text classification architectures that take the hierarchy of conversational utterances into account. In experiments benchmarking ours against previous models on existing and automatically generated data, we show that both data and architectural choices are very important. Our model achieves substantial performance improvements as compared to the baselines that are non-contextual or contextual but agnostic of the conversation structure.

Keywords: contextual toxicity detection, data augmentation, hierarchical text classification models, natural language processing

Procedia PDF Downloads 169
657 Assessment of Taiwan Railway Occurrences Investigations Using Causal Factor Analysis System and Bayesian Network Modeling Method

Authors: Lee Yan Nian

Abstract:

Safety investigation is different from an administrative investigation in that the former is conducted by an independent agency and the purpose of such investigation is to prevent accidents in the future and not to apportion blame or determine liability. Before October 2018, Taiwan railway occurrences were investigated by local supervisory authority. Characteristics of this kind of investigation are that enforcement actions, such as administrative penalty, are usually imposed on those persons or units involved in occurrence. On October 21, 2018, due to a Taiwan Railway accident, which caused 18 fatalities and injured another 267, establishing an agency to independently investigate this catastrophic railway accident was quickly decided. The Taiwan Transportation Safety Board (TTSB) was then established on August 1, 2019 to take charge of investigating major aviation, marine, railway and highway occurrences. The objective of this study is to assess the effectiveness of safety investigations conducted by the TTSB. In this study, the major railway occurrence investigation reports published by the TTSB are used for modeling and analysis. According to the classification of railway occurrences investigated by the TTSB, accident types of Taiwan railway occurrences can be categorized into: derailment, fire, Signal Passed at Danger and others. A Causal Factor Analysis System (CFAS) developed by the TTSB is used to identify the influencing causal factors and their causal relationships in the investigation reports. All terminologies used in the CFAS are equivalent to the Human Factors Analysis and Classification System (HFACS) terminologies, except for “Technical Events” which was added to classify causal factors resulting from mechanical failure. Accordingly, the Bayesian network structure of each occurrence category is established based on the identified causal factors in the CFAS. In the Bayesian networks, the prior probabilities of identified causal factors are obtained from the number of times in the investigation reports. Conditional Probability Table of each parent node is determined from domain experts’ experience and judgement. The resulting networks are quantitatively assessed under different scenarios to evaluate their forward predictions and backward diagnostic capabilities. Finally, the established Bayesian network of derailment is assessed using investigation reports of the same accident which was investigated by the TTSB and the local supervisory authority respectively. Based on the assessment results, findings of the administrative investigation is more closely tied to errors of front line personnel than to organizational related factors. Safety investigation can identify not only unsafe acts of individual but also in-depth causal factors of organizational influences. The results show that the proposed methodology can identify differences between safety investigation and administrative investigation. Therefore, effective intervention strategies in associated areas can be better addressed for safety improvement and future accident prevention through safety investigation.

Keywords: administrative investigation, bayesian network, causal factor analysis system, safety investigation

Procedia PDF Downloads 123
656 Modeling the International Economic Relations Development: The Prospects for Regional and Global Economic Integration

Authors: M. G. Shilina

Abstract:

The interstate economic interaction phenomenon is complex. ‘Economic integration’, as one of its types, can be explored through the prism of international law, the theories of the world economy, politics and international relations. The most objective study of the phenomenon requires a comprehensive multifactoral approach. In new geopolitical realities, the problems of coexistence and possible interconnection of various mechanisms of interstate economic interaction are actively discussed. Currently, the Eurasian continent states support the direction to economic integration. At the same time, the existing international economic law fragmentation in Eurasia is seen as the important problem. The Eurasian space is characterized by a various types of interstate relations: international agreements (multilateral and bilateral), and a large number of cooperation formats (from discussion platforms to organizations aimed at deep integration). For their harmonization, it is necessary to have a clear vision to the phased international economic relations regulation options. In the conditions of rapid development of international economic relations, the modeling (including prognostic) can be optimally used as the main scientific method for presenting the phenomenon. On the basis of this method, it is possible to form the current situation vision and the best options for further action. In order to determine the most objective version of the integration development, the combination of several approaches were used. The normative legal approach- the descriptive method of legal modeling- was taken as the basis for the analysis. A set of legal methods was supplemented by the international relations science prognostic methods. The key elements of the model are the international economic organizations and states' associations existing in the Eurasian space (the Eurasian Economic Union (EAEU), the European Union (EU), the Shanghai Cooperation Organization (SCO), Chinese project ‘One belt-one road’ (OBOR), the Commonwealth of Independent States (CIS), BRICS, etc.). A general term for the elements of the model is proposed - the interstate interaction mechanisms (IIM). The aim of building a model of current and future Eurasian economic integration is to show optimal options for joint economic development of the states and IIMs. The long-term goal of this development is the new economic and political space, so-called the ‘Great Eurasian Community’. The process of achievement this long-term goal consists of successive steps. Modeling the integration architecture and dividing the interaction into stages led us to the following conclusion: the SCO is able to transform Eurasia into a single economic space. Gradual implementation of the complex phased model, in which the SCO+ plays a key role, will allow building an effective economic integration for all its participants, to create an economically strong community. The model can have practical value for politicians, lawyers, economists and other participants involved in the economic integration process. A clear, systematic structure can serve as a basis for further governmental action.

Keywords: economic integration, The Eurasian Economic Union, The European Union, The Shanghai Cooperation Organization, The Silk Road Economic Belt

Procedia PDF Downloads 147
655 Enhancing Food Quality and Safety Management in Ethiopia's Food Processing Industry: Challenges, Causes, and Solutions

Authors: Tuji Jemal Ahmed

Abstract:

Food quality and safety challenges are prevalent in Ethiopia's food processing industry, which can have adverse effects on consumers' health and wellbeing. The country is known for its diverse range of agricultural products, which are essential to its economy. However, poor food quality and safety policies and management systems in the food processing industry have led to several health problems, foodborne illnesses, and economic losses. This paper aims to highlight the causes and effects of food safety and quality issues in the food processing industry of Ethiopia and discuss potential solutions to address these issues. One of the main causes of poor food quality and safety in Ethiopia's food processing industry is the lack of adequate regulations and enforcement mechanisms. The absence of comprehensive food safety and quality policies and guidelines has led to substandard practices in the food manufacturing process. Moreover, the lack of monitoring and enforcement of existing regulations has created a conducive environment for unscrupulous businesses to engage in unsafe practices that endanger the public's health. The effects of poor food quality and safety are significant, ranging from the loss of human lives, increased healthcare costs, and loss of consumer confidence in the food processing industry. Foodborne illnesses, such as diarrhea, typhoid fever, and cholera, are prevalent in Ethiopia, and poor food quality and safety practices contribute significantly to their prevalence. Additionally, food recalls due to contamination or mislabeling often result in significant economic losses for businesses in the food processing industry. To address these challenges, the Ethiopian government has begun to take steps to improve food quality and safety in the food processing industry. One of the most notable initiatives is the Ethiopian Food and Drug Administration (EFDA), which was established in 2010 to regulate and monitor the quality and safety of food and drug products in the country. The EFDA has implemented several measures to enhance food safety, such as conducting routine inspections, monitoring the importation of food products, and enforcing strict labeling requirements. Another potential solution to improve food quality and safety in Ethiopia's food processing industry is the implementation of food safety management systems (FSMS). An FSMS is a set of procedures and policies designed to identify, assess, and control food safety hazards throughout the food manufacturing process. Implementing an FSMS can help businesses in the food processing industry identify and address potential hazards before they cause harm to consumers. Additionally, the implementation of an FSMS can help businesses comply with existing food safety regulations and guidelines. In conclusion, improving food quality and safety policies and management systems in Ethiopia's food processing industry is critical to protecting public health and enhancing the country's economy. Addressing the root causes of poor food quality and safety and implementing effective solutions, such as the establishment of regulatory agencies and the implementation of food safety management systems, can help to improve the overall safety and quality of the country's food supply.

Keywords: food quality, food safety, policy, management system, food processing industry

Procedia PDF Downloads 85
654 Business Intelligent to a Decision Support Tool for Green Entrepreneurship: Meso and Macro Regions

Authors: Anishur Rahman, Maria Areias, Diogo Simões, Ana Figeuiredo, Filipa Figueiredo, João Nunes

Abstract:

The circular economy (CE) has gained increased awareness among academics, businesses, and decision-makers as it stimulates resource circularity in the production and consumption systems. A large epistemological study has explored the principles of CE, but scant attention eagerly focused on analysing how CE is evaluated, consented to, and enforced using economic metabolism data and business intelligent framework. Economic metabolism involves the ongoing exchange of materials and energy within and across socio-economic systems and requires the assessment of vast amounts of data to provide quantitative analysis related to effective resource management. Limited concern, the present work has focused on the regional flows pilot region from Portugal. By addressing this gap, this study aims to promote eco-innovation and sustainability in the regions of Intermunicipal Communities Região de Coimbra, Viseu Dão Lafões and Beiras e Serra da Estrela, using this data to find precise synergies in terms of material flows and give companies a competitive advantage in form of valuable waste destinations, access to new resources and new markets, cost reduction and risk sharing benefits. In our work, emphasis on applying artificial intelligence (AI) and, more specifically, on implementing state-of-the-art deep learning algorithms is placed, contributing to construction a business intelligent approach. With the emergence of new approaches generally highlighted under the sub-heading of AI and machine learning (ML), the methods for statistical analysis of complex and uncertain production systems are facing significant changes. Therefore, various definitions of AI and its differences from traditional statistics are presented, and furthermore, ML is introduced to identify its place in data science and the differences in topics such as big data analytics and in production problems that using AI and ML are identified. A lifecycle-based approach is then taken to analyse the use of different methods in each phase to identify the most useful technologies and unifying attributes of AI in manufacturing. Most of macroeconomic metabolisms models are mainly direct to contexts of large metropolis, neglecting rural territories, so within this project, a dynamic decision support model coupled with artificial intelligence tools and information platforms will be developed, focused on the reality of these transition zones between the rural and urban. Thus, a real decision support tool is under development, which will surpass the scientific developments carried out to date and will allow to overcome imitations related to the availability and reliability of data.

Keywords: circular economy, artificial intelligence, economic metabolisms, machine learning

Procedia PDF Downloads 70
653 Application of Typha domingensis Pers. in Artificial Floating for Sewage Treatment

Authors: Tatiane Benvenuti, Fernando Hamerski, Alexandre Giacobbo, Andrea M. Bernardes, Marco A. S. Rodrigues

Abstract:

Population growth in urban areas has caused damages to the environment, a consequence of the uncontrolled dumping of domestic and industrial wastewater. The capacity of some plants to purify domestic and agricultural wastewater has been demonstrated by several studies. Since natural wetlands have the ability to transform, retain and remove nutrients, constructed wetlands have been used for wastewater treatment. They are widely recognized as an economical, efficient and environmentally acceptable means of treating many different types of wastewater. T. domingensis Pers. species have shown a good performance and low deployment cost to extract, detoxify and sequester pollutants. Constructed Floating Wetlands (CFWs) consist of emergent vegetation established upon a buoyant structure, floating on surface waters. The upper parts of the vegetation grow and remain primarily above the water level, while the roots extend down in the water column, developing an extensive under water-level root system. Thus, the vegetation grows hydroponically, performing direct nutrient uptake from the water column. Biofilm is attached on the roots and rhizomes, and as physical and biochemical processes take place, the system functions as a natural filter. The aim of this study is to diagnose the application of macrophytes in artificial floating in the treatment of domestic sewage in south Brazil. The T. domingensis Pers. plants were placed in a flotation system (polymer structure), in full scale, in a sewage treatment plant. The sewage feed rate was 67.4 m³.d⁻¹ ± 8.0, and the hydraulic retention time was 11.5 d ± 1.3. This CFW treat the sewage generated by 600 inhabitants, which corresponds to 12% of the population served by this municipal treatment plant. During 12 months, samples were collected every two weeks, in order to evaluate parameters as chemical oxygen demand (COD), biochemical oxygen demand in 5 days (BOD5), total Kjeldahl nitrogen (TKN), total phosphorus, total solids, and metals. The average removal of organic matter was around 55% for both COD and BOD5. For nutrients, TKN was reduced in 45.9% what was similar to the total phosphorus removal, while for total solids the reduction was 33%. For metals, aluminum, copper, and cadmium, besides in low concentrations, presented the highest percentage reduction, 82.7, 74.4 and 68.8% respectively. Chromium, iron, and manganese removal achieved values around 40-55%. The use of T. domingensis Pers. in artificial floating for sewage treatment is an effective and innovative alternative in Brazilian sewage treatment systems. The evaluation of additional parameters in the treatment system may give useful information in order to improve the removal efficiency and increase the quality of the water bodies.

Keywords: constructed wetland, floating system, sewage treatment, Typha domingensis Pers.

Procedia PDF Downloads 210
652 Automatic Identification and Classification of Contaminated Biodegradable Plastics using Machine Learning Algorithms and Hyperspectral Imaging Technology

Authors: Nutcha Taneepanichskul, Helen C. Hailes, Mark Miodownik

Abstract:

Plastic waste has emerged as a critical global environmental challenge, primarily driven by the prevalent use of conventional plastics derived from petrochemical refining and manufacturing processes in modern packaging. While these plastics serve vital functions, their persistence in the environment post-disposal poses significant threats to ecosystems. Addressing this issue necessitates approaches, one of which involves the development of biodegradable plastics designed to degrade under controlled conditions, such as industrial composting facilities. It is imperative to note that compostable plastics are engineered for degradation within specific environments and are not suited for uncontrolled settings, including natural landscapes and aquatic ecosystems. The full benefits of compostable packaging are realized when subjected to industrial composting, preventing environmental contamination and waste stream pollution. Therefore, effective sorting technologies are essential to enhance composting rates for these materials and diminish the risk of contaminating recycling streams. In this study, it leverage hyperspectral imaging technology (HSI) coupled with advanced machine learning algorithms to accurately identify various types of plastics, encompassing conventional variants like Polyethylene terephthalate (PET), Polypropylene (PP), Low density polyethylene (LDPE), High density polyethylene (HDPE) and biodegradable alternatives such as Polybutylene adipate terephthalate (PBAT), Polylactic acid (PLA), and Polyhydroxyalkanoates (PHA). The dataset is partitioned into three subsets: a training dataset comprising uncontaminated conventional and biodegradable plastics, a validation dataset encompassing contaminated plastics of both types, and a testing dataset featuring real-world packaging items in both pristine and contaminated states. Five distinct machine learning algorithms, namely Partial Least Squares Discriminant Analysis (PLS-DA), Support Vector Machine (SVM), Convolutional Neural Network (CNN), Logistic Regression, and Decision Tree Algorithm, were developed and evaluated for their classification performance. Remarkably, the Logistic Regression and CNN model exhibited the most promising outcomes, achieving a perfect accuracy rate of 100% for the training and validation datasets. Notably, the testing dataset yielded an accuracy exceeding 80%. The successful implementation of this sorting technology within recycling and composting facilities holds the potential to significantly elevate recycling and composting rates. As a result, the envisioned circular economy for plastics can be established, thereby offering a viable solution to mitigate plastic pollution.

Keywords: biodegradable plastics, sorting technology, hyperspectral imaging technology, machine learning algorithms

Procedia PDF Downloads 77
651 Anti-Hyperglycemic Effects and Chemical Analysis of Allium sativum Bulbs Growing in Sudan

Authors: Ikram Mohamed Eltayeb Elsiddig, Yacouba Amina Djamila, Amna El Hassan Hamad

Abstract:

Hyperglycemia and diabetes have been treated with several medicinal plants for a long time, meanwhile reduce associated side effects than the synthetic ones. Therefore, the search for more effective and safer anti-diabetic agents derived from plants has become an interest area of active research. A. sativum, belonging to the Liliaceae family is well known for its medicinal uses in African traditional medicine, it used for treating of many human diseases mainly diabetes, high cholesterol, and high blood pressure. The present study was carried out to investigate the anti-hyperglycemic effect of the extracts of A. sativum bulb growing in Sudan on glucose-loaded Wistar albino rats. A. sativum bulbs were collected from local vegetable market at Khourtoum/ Sudan in a fresh form, identified and authenticated by taxonomist, then dried, and extracted with solvents of increasing polarity: petroleum ether, chloroform, ethyl acetate and methanol by using Soxhlet apparatus. The effect of the extracts on glucose uptake was evaluated by using the isolated rats hemidiaphgrams after loading the fasting rats with glucose, and the anti-hyperglycemic effect was investigated on glucose-loaded Wistar albino rats. Their effects were compared to control rats administered with the vehicle and to a standard group administered with Metformin standard drug. The most active extract was analyzed chemically using GC-MS analysis compared to NIST library. The results showed significant anti-diabetic effect of extracts of A. sativum bulb growing in Sudan. Addition to the hypoglycemic activity of A. sativum extracts was found to be decreased with increase in the polarity of the extraction solvent; this may explain the less polarity of substance responsible for the activity and their concentration decreased with polarity increase. The petroleum ether extract possess anti-hyperglycemic activity more significant than the other extracts and the Metformin standard drug with p-value 0.000** of 400mg/kg at 1 hour, 2 hour and four hour; and p-value 0.019*, 0.015* and 0.010* of 200mg/kg at 1 hour, 2 hour and four hour respectively. The GC-MS analysis of petroleum ether extract, with highest anti -diabetes activity showed the presence of Methyl linolate (42.75%), Hexadecanoic acid, methyl ester (10.54%), Methyl α-linolenate (8.36%), Dotriacontane (6.83), Tetrapentacontane (6.33), Methyl 18-methylnonadecanoate (4.8), Phenol,2,2’-methylenebis[6-(1,1-dimethylethyl)-4-methyl] (3.25), Methyl 20-methyl-heneicosanoate (2.70), Pentatriacontane (2.13) and many other minor compounds. The most of these compounds are well known for their anti-diabetic activity. The study concluded that A. sativum bulbs extracts were found to enhanced the reuptake of glucose in the isolated rat hemidiaphragm and have antihyperglycemic effect when evaluated on glucose-loaded albino rats with petroleum ether extract activity more significant than the Metformin standard drug.

Keywords: Allium, anti-hyperglycemic, bulbs, sativum

Procedia PDF Downloads 167
650 Exploring Drivers and Barriers to Environmental Supply Chain Management in the Pharmaceutical Industry of Ghana

Authors: Gifty Kumadey, Albert Tchey Agbenyegah

Abstract:

(i) Overview and research goal(s): This study aims to address research gaps in the Ghanaian pharmaceutical industry by examining the impact of environmental supply chain management (ESCM) practices on environmental and operational performance. Previous studies have provided inconclusive evidence on the relationship between ESCM practices and environmental and operational performance. The research aims to provide a clearer understanding of the impact of ESCM practices on environmental and operational performance in the context of the Ghanaian pharmaceutical industry. Limited research has been conducted on ESCM practices in developing countries, particularly in Africa. The study aims to bridge this gap by examining the drivers and barriers specific to the pharmaceutical industry in Ghana. The research aims to analyze the impact of ESCM practices on the achievement of Sustainable Development Goals (SDGs) in the Ghanaian pharmaceutical industry, focusing on SDGs 3, 12, 13, and 17. It also explores the potential for partnerships and collaborations to advance ESCM practices in the pharmaceutical industry. The research hypotheses suggest that pressure from stakeholder positively influences the adoption of ESCM practices in the Ghanaian pharmaceutical industry. By addressing these goals, the study aims to contribute to sustainable development initiatives and offer practical recommendations to enhance ESCM A practices in the industry. (ii) Research methods and data: This study uses a quantitative research design to examine the drivers and barriers to environmental supply chain management in the pharmaceutical industry in Accra.The sample size is approximately 150 employees, with senior and middle-level managers from pharmaceutical industry of Ghana. A purposive sampling technique is used to select participants with relevant knowledge and experience in environmental supply chain management. Data will be collected using a structured questionnaire using Likert scale responses. Descriptive statistics will be used to analyze the data and provide insights into current practices and their impact on environmental and operational performance. (iii) Preliminary results and conclusions: Main contributions: Identifying drivers/barriers to ESCM in Ghana's pharmaceutical industry, evaluating current ESCM practices, examining impact on performance, providing practical insights, contributing to knowledge on ESCM in Ghanaian context. The research contributes to SDGs 3, 9, and 12 by promoting sustainable practices and responsible consumption in the industry. The study found that government rules and regulations are the most critical drivers for ESCM adoption, with senior managers playing a significant role. However, employee and competitor pressures have a lesser impact. The industry has made progress in implementing certain ESCM practices, but there is room for improvement in areas like green distribution and reverse logistics. The study emphasizes the importance of government support, management engagement, and comprehensive implementation of ESCM practices in the industry. Future research should focus on overcoming barriers and challenges to effective ESCM implementation.

Keywords: environmental supply chain, sustainable development goal, ghana pharmaceutical industry, government regulations

Procedia PDF Downloads 91
649 Customer Focus in Digital Economy: Case of Russian Companies

Authors: Maria Evnevich

Abstract:

In modern conditions, in most markets, price competition is becoming less effective. On the one hand, there is a gradual decrease in the level of marginality in main traditional sectors of the economy, so further price reduction becomes too ‘expensive’ for the company. On the other hand, the effect of price reduction is leveled, and the reason for this phenomenon is likely to be informational. As a result, it turns out that even if the company reduces prices, making its products more accessible to the buyer, there is a high probability that this will not lead to increase in sales unless additional large-scale advertising and information campaigns are conducted. Similarly, a large-scale information and advertising campaign have a much greater effect itself than price reductions. At the same time, the cost of mass informing is growing every year, especially when using the main information channels. The article presents generalization, systematization and development of theoretical approaches and best practices in the field of customer focus approach to business management and in the field of relationship marketing in the modern digital economy. The research methodology is based on the synthesis and content-analysis of sociological and marketing research and on the study of the systems of working with consumer appeals and loyalty programs in the 50 largest client-oriented companies in Russia. Also, the analysis of internal documentation on customers’ purchases in one of the largest retail companies in Russia allowed to identify if buyers prefer to buy goods for complex purchases in one retail store with the best price image for them. The cost of attracting a new client is now quite high and continues to grow, so it becomes more important to keep him and increase the involvement through marketing tools. A huge role is played by modern digital technologies used both in advertising (e-mailing, SEO, contextual advertising, banner advertising, SMM, etc.) and in service. To implement the above-described client-oriented omnichannel service, it is necessary to identify the client and work with personal data provided when filling in the loyalty program application form. The analysis of loyalty programs of 50 companies identified the following types of cards: discount cards, bonus cards, mixed cards, coalition loyalty cards, bank loyalty programs, aviation loyalty programs, hybrid loyalty cards, situational loyalty cards. The use of loyalty cards allows not only to stimulate the customer to purchase ‘untargeted’, but also to provide individualized offers, as well as to produce more targeted information. The development of digital technologies and modern means of communication has significantly changed not only the sphere of marketing and promotion, but also the economic landscape as a whole. Factors of competitiveness are the digital opportunities of companies in the field of customer orientation: personalization of service, customization of advertising offers, optimization of marketing activity and improvement of logistics.

Keywords: customer focus, digital economy, loyalty program, relationship marketing

Procedia PDF Downloads 163