Search results for: systems engineering ontology
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 11634

Search results for: systems engineering ontology

1074 An Investigation of Community Radio Broadcasting in Phutthamonthon District, Nakhon Pathom, Thailand

Authors: Anchana Sooksomchitra

Abstract:

This study aims to explore and compare the current condition of community radio stations in Phutthamonthon district, Nakhon Pathom province, Thailand, as well as the challenges they are facing. Qualitative research tools including in-depth interviews; documentary analysis; focus group interviews; and observation, are used to examine the content, programming, and management structure of three community radio stations currently in operation within the district. Research findings indicate that the management and operational approaches adopted by the two non-profit stations included in the study, Salaya Pattana and Voice of Dhamma, are more structured and effective than that of the for-profit Tune Radio. Salaya Pattana – backed by the Faculty of Engineering, Mahidol University, and the charity-funded Voice of Dhamma, are comparatively free from political and commercial influence, and able to provide more relevant and consistent community-oriented content to meet the real demand of the audience. Tune Radio, on the other hand, has to rely solely on financial support from political factions and business groups, which heavily influence its content.

Keywords: radio broadcasting, programming, management, community radio, Thailand

Procedia PDF Downloads 393
1073 Thermodynamic Analysis of a Multi-Generation Plant Driven by Pine Sawdust as Primary Fuel

Authors: Behzad Panahirad, UğUr Atikol

Abstract:

The current study is based on a combined heat and power system with multi-objectives, driven by biomass. The system consists of a combustion chamber (CC), a single effect absorption cooling system (SEACS), an air conditioning unit (AC), a reheat steam Rankine cycle (RRC), an organic Rankine cycle (ORC) and an electrolyzer. The purpose of this system is to produce hydrogen, electricity, heat, cooling, and air conditioning. All the simulations had been performed by Engineering Equation Solver (EES) software. Pine sawdust is the selected biofuel for the combustion process. The overall utilization factor (εₑₙ) and exergetic efficiency (ψₑₓ) were calculated to be 2.096 and 24.03% respectively. The performed renewable and environmental impact analysis indicated a sustainability index of 1.316 (SI) and a specific CO2 emission of 353.8 kg/MWh. The parametric study is conducted based on the variation of ambient (sink) temperature, biofuel mass flow rate, and boilers outlet temperatures. The parametric simulation showed that the increase in biofuel mass flow rate has a positive effect on the sustainability of the system.

Keywords: biomass, exergy assessment, multi-objective plant, CO₂ emission, irreversibility

Procedia PDF Downloads 160
1072 Lightweight Cryptographically Generated Address for IPv6 Neighbor Discovery

Authors: Amjed Sid Ahmed, Rosilah Hassan, Nor Effendy Othman

Abstract:

Limited functioning of the Internet Protocol version 4 (IPv4) has necessitated the development of the Internetworking Protocol next generation (IPng) to curb the challenges. Indeed, the IPng is also referred to as the Internet Protocol version 6 (IPv6) and includes the Neighbor Discovery Protocol (NDP). The latter performs the role of Address Auto-configuration, Router Discovery (RD), and Neighbor Discovery (ND). Furthermore, the role of the NDP entails redirecting the service, detecting the duplicate address, and detecting the unreachable services. Despite the fact that there is an NDP’s assumption regarding the existence of trust the links’ nodes, several crucial attacks may affect the Protocol. Internet Engineering Task Force (IETF) therefore has recommended implementation of Secure Neighbor Discovery Protocol (SEND) to tackle safety issues in NDP. The SEND protocol is mainly used for validation of address rights, malicious response inhibiting techniques and finally router certification procedures. For routine running of these tasks, SEND utilizes on the following options, Cryptographically Generated Address (CGA), RSA Signature, Nonce and Timestamp option. CGA is produced at extra high costs making it the most notable disadvantage of SEND. In this paper a clear description of the constituents of CGA, its operation and also recommendations for improvements in its generation are given.

Keywords: CGA, IPv6, NDP, SEND

Procedia PDF Downloads 377
1071 Shaking Force Balancing of Mechanisms: An Overview

Authors: Vigen Arakelian

Abstract:

The balancing of mechanisms is a well-known problem in the field of mechanical engineering because the variable dynamic loads cause vibrations, as well as noise, wear and fatigue of the machines. A mechanical system with unbalance shaking force and shaking moment transmits substantial vibration to the frame. Therefore, the objective of the balancing is to cancel or reduce the variable dynamic reactions transmitted to the frame. The resolution of this problem consists in the balancing of the shaking force and shaking moment. It can be fully or partially, by internal mass redistribution via adding counterweights or by modification of the mechanism's architecture via adding auxiliary structures. The balancing problems are of continue interest to researchers. Several laboratories around the world are very active in this area and new results are published regularly. However, despite its ancient history, mechanism balancing theory continues to be developed and new approaches and solutions are constantly being reported. Various surveys have been published that disclose particularities of balancing methods. The author believes that this is an appropriate moment to present a state of the art of the shaking force balancing studies completed by new research results. This paper presents an overview of methods devoted to the shaking force balancing of mechanisms, as well as the historical aspects of the origins and the evolution of the balancing theory of mechanisms.

Keywords: inertial forces, shaking forces, balancing, dynamics, mechanism design

Procedia PDF Downloads 115
1070 Cellulose Acetate Nanofiber Modification for Regulating Astrocyte Activity via Simple Heat Treatment

Authors: Sang-Myung Jung, Jeong Hyun Ju, Gwang Heum Yoon, Hwa Sung Shin

Abstract:

Central nervous system (CNS) consists of neuronal cell and supporting cells. Astrocytes are the most common supporting cells and play roles in metabolism between neurons and blood vessel. For this function, engineered astrocytes have been studied as a therapeutic source for CNS injury. In neural tissue engineering, nanofiber has been suggested as an effective scaffold for providing structure and mechanical properties influencing physiology. Cellulose acetate (CA) has been investigated for material to fabricate scaffold because of its biocompatibility, biodegradability and fine thermal stability. In this research, CA nanofiber was modified via heat treatment and its effect on astrocyte activity was evaluated. Adhesion and viability of astrocyte were increased in proportion to stiffness. Additionally, expression of GFAP, a marker of astrocyte activation, was increased via stiffness of scaffold. This research suggests a simple modification method to change stiffness of CA nanofiber and shows cellular behavior affecting stiffness of three-dimensional scaffold independently. For the results, we highlight that the stiffness is a factor to regulate astrocyte activity.

Keywords: astrocyte, cellulose acetate, cell therapy, stiffness of scaffold

Procedia PDF Downloads 469
1069 Recycling Construction Waste Materials to Reduce the Environmental Pollutants

Authors: Mehrdad Abkenari, Alireza Rezaei, Naghmeh Pournayeb

Abstract:

There have recently been many studies and investments in developed and developing countries regarding the possibility of recycling construction waste, which are still ongoing. Since the term 'construction waste' covers a vast spectrum of materials in constructing buildings, roads and etc., many investigations are required to measure their technical performance in use as well as their time and place of use. Concrete is among the major and fundamental materials used in current construction industry. Along with the rise of population in developing countries, it is desperately required to meet the people's primary need in construction industry and on the other hand, dispose existing wastes for reducing the amount of environmental pollutants. Restrictions of natural resources and environmental pollution are the most important problems encountered by civil engineers. Reusing construction waste is an important and economic approach that not only assists the preservation of environment but also, provides us with primary raw materials. In line with consistent municipal development in disposal and reuse of construction waste, several approaches including, management of construction waste and materials, materials recycling and innovation and new inventions in materials have been predicted. This article has accordingly attempted to study the activities related to recycling of construction wastes and then, stated the economic, quantitative, qualitative and environmental results obtained.

Keywords: civil engineering, environment, recycling, construction waste

Procedia PDF Downloads 293
1068 Collocation Method for Coupled System of Boundary Value Problems with Cubic B-Splines

Authors: K. N. S. Kasi Viswanadham

Abstract:

Coupled system of second order linear and nonlinear boundary value problems occur in various fields of Science and Engineering. In the formulation of the problem, any one of 81 possible types of boundary conditions may occur. These 81 possible boundary conditions are written as a combination of four boundary conditions. To solve a coupled system of boundary value problem with these converted boundary conditions, a collocation method with cubic B-splines as basis functions has been developed. In the collocation method, the mesh points of the space variable domain have been selected as the collocation points. The basis functions have been redefined into a new set of basis functions which in number match with the number of mesh points in the space variable domain. The solution of a non-linear boundary value problem has been obtained as the limit of a sequence of solutions of linear boundary value problems generated by quasilinearization technique. Several linear and nonlinear boundary value problems are presented to test the efficiency of the proposed method and found that numerical results obtained by the present method are in good agreement with the exact solutions available in the literature.

Keywords: collocation method, coupled system, cubic b-splines, mesh points

Procedia PDF Downloads 201
1067 Optimal Design Solution in "The Small Module" Within the Possibilities of Ecology, Environmental Science/Engineering, and Economics

Authors: Hassan Wajid

Abstract:

We will commend accommodating an environmentally friendly architectural proposal that is extremely common/usual but whose features will make it a sustainable space. In this experiment, the natural and artificial built space is being proposed in such a way that deals with Environmental, Ecological, and Economic Criteria under different climatic conditions. Moreover, the criteria against ecology-environment-economics reflect in the different modules which are being experimented with and analyzed by multiple research groups. The ecological, environmental, and economic services are provided used as units of production side by side, resulting in local job creation and saving resources, for instance, conservation of rainwater, soil formation or protection, less energy consumption to achieve Net Zero, and a stable climate as a whole. The synthesized results from the collected data suggest several aspects to consider when designing buildings for beginning the design process under the supervision of instructors/directors who are responsible for developing curricula and sustainable goals. Hence, the results of the research and the suggestions will benefit the sustainable design through multiple results, heat analysis of different small modules, and comparisons. As a result, it is depleted as the resources are either consumed or the pollution contaminates the resources.

Keywords: optimization, ecology, environment, sustainable solution

Procedia PDF Downloads 57
1066 Laboratory Studies to Assess the Effect of Recron Fiber on Soil Subgrade Characteristics

Authors: Lokesh Gupta, Rakesh Kumar

Abstract:

Stabilization of weak subgrade soil is mainly aimed for the improvement of soil strength and its durability. Highway engineers are concerned to get the soil material or system that will hold under the design use conditions and for the designed life of the engineering project. The present study envisages the effect of Recron fibres mixed in different proportion (up to 1% by weight of dry soil) on Atterberg limits, Compaction of the soil, California bearing ratio (CBR) values and unconfined compressive strength (UCS) of the soil. The present study deals with the influence of varying in length (20 mm, 30mm, 40mm and 50mm) and percentage (0.25 %, 0.50 %, 0.75 % and 1.0 %) of fibre added to the soil samples. The aim of study is to determine the reinforcing effect of randomly distributed fibres on the Compaction characteristics, penetration resistance and unconfined compressive strength of soils. The addition of fibres leads to an increase in the optimum moisture content and decrease in maximum dry density. With the addition of the fibres, the increases in CBR and UCS values are observed. The test result shows higher CBR and unconfined compressive strength value for the soil reinforced with 0.5% Recron fibre, once keeping aspect ratio as 160.

Keywords: soil, recron fiber, unconfined compressive strength (UCS), California bearing ratio (CBR)

Procedia PDF Downloads 151
1065 Shear Strength Evaluation of Ultra-High-Performance Concrete Flexural Members Using Adaptive Neuro-Fuzzy System

Authors: Minsu Kim, Hae-Chang Cho, Jae Hoon Chung, Inwook Heo, Kang Su Kim

Abstract:

For safe design of the UHPC flexural members, accurate estimations of their shear strengths are very important. However, since the shear strengths are significantly affected by various factors such as tensile strength of concrete, shear span to depth ratio, volume ratio of steel fiber, and steel fiber factor, the accurate estimations of their shear strengths are very challenging. In this study, therefore, the Adaptive Neuro-Fuzzy System (ANFIS), which has been widely used to solve many complex problems in engineering fields, was introduced to estimate the shear strengths of UHPC flexural members. A total of 32 experimental results has been collected from previous studies for training of the ANFIS algorithm, and the well-trained ANFIS algorithm provided good estimations on the shear strengths of the UHPC test specimens. Acknowledgement: This research was supported by Basic Science Research Program through the National Research Foundation of Korea(NRF) funded by the Ministry of Science, ICT & Future Planning(NRF-2016R1A2B2010277).

Keywords: ultra-high-performance concrete, ANFIS, shear strength, flexural member

Procedia PDF Downloads 177
1064 Mimicking of Various ECM Tangible Cues for the Manipulation of Hepatocellular Behaviours

Authors: S. A. Abdellatef, A. Taniguchi, Namiki, Tsukuba, Ibaraki

Abstract:

The alterations in the physicochemical characteristics of bio-materials are renowned for their impact in cellular behaviors. Surface chemistry and substratum topography are separately considered as mutable characteristics with deep impact on the overall cell behaviors. In our recent work, we examined the manipulation of the physical cues on hepatic cellular behaviors. We have proven that the geometrical or dimensional characteristics of nano features are essential for the optimum hepatocellular functions. While here, the collective impact of both physical and chemical cues on hepatocellular behaviors was investigated. On which RGD peptide was immobilized on a TiO2 nano pattern that imitates the hierarchically extend collagen nano fibrillar structures. The hepatocytes morphological and functional changes induced by simultaneously combining the diversified cues were investigated. TiO2 substrates that integrate nano topography with the adhesive peptide motif (RGD) had showed an increase in the hepatocellular functionality to the maximum extent. While a significant enhancement in expression of these liver specific markers on RGD coated surfaces were observed compared to uncoated substrates regardless of topography. Consequently in depth understanding of the relationship between various kind of cues and hepatocytes behaviors would be a paving step in the application of tissue engineering and bio reactor technology.

Keywords: biomaterial, tiO2, hepG2, RGD

Procedia PDF Downloads 386
1063 Physical and Rheological Properties of Asphalt Modified with Cellulose Date Palm Fibers

Authors: Howaidi M. Al-Otaibi, Abdulrahman S. Al-Suhaibani, Hamad A. Alsoliman

Abstract:

Fibers are extensively used in civil engineering applications for many years. In this study, empty fruit bunch of date palm trees were used to produce cellulose fiber that were used as additives in the asphalt binder. Two sizes (coarse and fine) of cellulose fibers were pre-blended in PG64-22 binder with various contents of 1.5%, 3%, 4.5%, 6%, and 7.5% by weight of asphalt binder. The physical and rheological properties of fiber modified asphalt binders were tested by using conventional tests such as penetration, softening point and viscosity; and SHRP test such as dynamic shear rheometer. The results indicated that the fiber modified asphalt binders were higher in softening point, viscosity, and complex shear modulus, and lower in penetration compared to pure asphalt. The fiber modified binders showed an improvement in rheological properties since it was possible to raise the control binder (pure asphalt) PG from 64 to 70 by adding 6% (by weight) of either fine or coarse fibers. Such improvement in stiffness of fiber modified binder is expected to improve pavement resistance to rutting.

Keywords: cellulose date palm fiber, fiber modified asphalt, physical properties, rheological properties

Procedia PDF Downloads 317
1062 Reliability Analysis of Soil Liquefaction Based on Standard Penetration: A Case Study in Babol City

Authors: Mehran Naghizaderokni, Asscar Janalizadechobbasty

Abstract:

There are more probabilistic and deterministic liquefaction evaluation procedures in order to judge whether liquefaction will occur or not. A review of this approach reveals that there is a need for a comprehensive procedure that accounts for different sources of uncertainty in liquefaction evaluation. In fact, for the same set of input parameters, different methods provide different factors of safety and/or probabilities of liquefaction. To account for the different uncertainties, including both the model and measurement uncertainties, reliability analysis is necessary. This paper has obtained information from Standard Penetration Test (SPT) and some empirical approaches such as: Seed et al, Highway bridge of Japan approach to soil liquefaction, The Overseas Coastal Area Development Institute of Japan (OCDI) and reliability method to studying potential of liquefaction in soil of Babol city in the north of Iran are compared. Evaluation potential of liquefaction in soil of Babol city is an important issue since the soil of some area contains sand, seismic area, increasing level of underground waters and consequently saturation of soil; therefore, one of the most important goals of this paper is to gain suitable recognition of liquefaction potential and find the most appropriate procedure of evaluation liquefaction potential to decrease related damages.

Keywords: reliability analysis, liquefaction, Babol, civil, construction and geological engineering

Procedia PDF Downloads 489
1061 Evaluation of Settlement of Coastal Embankments Using Finite Elements Method

Authors: Sina Fadaie, Seyed Abolhassan Naeini

Abstract:

Coastal embankments play an important role in coastal structures by reducing the effect of the wave forces and controlling the movement of sediments. Many coastal areas are underlain by weak and compressible soils. Estimation of during construction settlement of coastal embankments is highly important in design and safety control of embankments and appurtenant structures. Accordingly, selecting and establishing of an appropriate model with a reasonable level of complication is one of the challenges for engineers. Although there are advanced models in the literature regarding design of embankments, there is not enough information on the prediction of their associated settlement, particularly in coastal areas having considerable soft soils. Marine engineering study in Iran is important due to the existence of two important coastal areas located in the northern and southern parts of the country. In the present study, the validity of Terzaghi’s consolidation theory has been investigated. In addition, the settlement of these coastal embankments during construction is predicted by using special methods in PLAXIS software by the help of appropriate boundary conditions and soil layers. The results indicate that, for the existing soil condition at the site, some parameters are important to be considered in analysis. Consequently, a model is introduced to estimate the settlement of the embankments in such geotechnical conditions.

Keywords: consolidation, settlement, coastal embankments, numerical methods, finite elements method

Procedia PDF Downloads 143
1060 Scientometrics Review of Embodied Carbon Benchmarks for Buildings

Authors: A. Rana, M. Badri, D. Lopez Behar, O. Yee, H. Al Bqaei

Abstract:

The building sector is one of the largest emitters of greenhouse gases. However, as operation energy demands of this sector decrease with more effective energy policies and strategies, there is an urgent need to parallel focus on the growing proportion of embodied carbons. In this regard, benchmarks on embodied carbon of buildings can provide a point of reference to compare and improve the environmental performance of buildings for the stakeholders. Therefore, embodied carbon benchmarks can serve as a useful tool to address climate change challenges. This research utilizes the method to provide a knowledge roadmap of embodied carbon benchmarks development and implementation trends. Two main databases, Web of Science and Engineering Village, are considered for the study. The mapping was conducted with the help of VosViewer tool to provide information regarding: the critical research areas; most cited authors and publications; and countries with the highest publications. It is revealed that the role of benchmarks in energy policies is an emerging trend. In addition, the research highlighted that in policies, embodied carbon benchmarks are gaining importance at the material, whole building, and building portfolio levels. This research reveals direction for improvement and future research and of relevance to building industry professionals, policymakers, and researchers.

Keywords: buildings embodied carbon benchmark, methods, policy

Procedia PDF Downloads 161
1059 Experimental and Numerical Investigation on Delaminated Composite Plate

Authors: Sreekanth T. G., Kishorekumar S., Sowndhariya Kumar J., Karthick R., Shanmugasuriyan S.

Abstract:

Composites are increasingly being used in industries due to their unique properties, such as high specific stiffness and specific strength, higher fatigue and wear resistances, and higher damage tolerance capability. Composites are prone to failures or damages that are difficult to identify, locate, and characterize due to their complex design features and complicated loading conditions. The lack of understanding of the damage mechanism of the composites leads to the uncertainties in the structural integrity and durability. Delamination is one of the most critical failure mechanisms in laminated composites because it progressively affects the mechanical performance of fiber-reinforced polymer composite structures over time. The identification and severity characterization of delamination in engineering fields such as the aviation industry is critical for both safety and economic concerns. The presence of delamination alters the vibration properties of composites, such as natural frequencies, mode shapes, and so on. In this study, numerical analysis and experimental analysis were performed on delaminated and non-delaminated glass fiber reinforced polymer (GFRP) plate, and the numerical and experimental analysis results were compared, and error percentage has been found out.

Keywords: composites, delamination, natural frequency, mode shapes

Procedia PDF Downloads 97
1058 Relative Study of the Effect of the Temperature Gradient on Free Vibrations of Clamped Visco-Elastic Rectangular Plates with Linearly and Exponentially Thickness Variations Respectively in Two Directions

Authors: Harvinder Kaur

Abstract:

Rayleigh–Ritz method is a broadly used classical method for the calculation of the natural vibration frequency of a structure in the second or higher order. Here it is used to construct a mathematical model of relative study of the thermal effect on free transverse vibrations of clamped (c-c-c-c type) visco-elastic rectangular plate with linearly and exponentially thickness variations respectively in two directions. Researchers in the field of Engineering always make an effort for better designs of mechanical structures. In-depth study of the vibration behavior of tapered plates with diverse thickness variation under high temperature would ultimately help to finalize the accurate design of a structure. The perfect tapered structure saves weight and as well as expenses. In the present paper, the comparison has been done for deflection and time period corresponding to the first two modes of vibrations of clamped plate for various values of aspect ratio, thermal constants, and taper constants of both the cases.

Keywords: Rayleigh-Ritz Method, tapered plates, transverse vibration, thermal constant, visco-elasticity

Procedia PDF Downloads 219
1057 Optimization of Syngas Quality for Fischer-Tropsch Synthesis

Authors: Ali Rabah

Abstract:

This research received no grant or financial support from any public, commercial, or none governmental agency. The author conducted this work as part of his normal research activities as a professor of Chemical Engineering at the University of Khartoum, Sudan. Abstract While fossil oil reserves have been receding, the demand for diesel and gasoline has been growing. In recent years, syngas of biomass origin has been emerging as a viable feedstock for Fischer-Tropsch (FT) synthesis, a process for manufacturing synthetic gasoline and diesel. This paper reports the optimization of syngas quality to match FT synthesis requirements. The optimization model maximizes the thermal efficiency under the constraint of H2/CO≥2.0 and operating conditions of equivalent ratio (0 ≤ ER ≤ 1.0), steam to biomass ratio (0 ≤ SB ≤ 5), and gasification temperature (500 °C ≤ Tg ≤ 1300 °C). The optimization model is executed using the optimization section of the Model Analysis Tools of the Aspen Plus simulator. The model is tested using eleven (11) types of MSW. The optimum operating conditions under which the objective function and the constraint are satisfied are ER=0, SB=0.66-1.22, and Tg=679 - 763°C. Under the optimum operating conditions, the syngas quality is H2=52.38 - 58.67-mole percent, LHV=12.55 - 17.15 MJ/kg, N2=0.38 - 2.33-mole percent, and H2/CO≥2.15. The generalized optimization model reported could be extended to any other type of biomass and coal. Keywords: MSW, Syngas, Optimization, Fischer-Tropsch.

Keywords: syngas, MSW, optimization, Fisher-Tropsh

Procedia PDF Downloads 63
1056 Research on Sensitivity of Geological Disasters in Road Area Based on Analytic Hierarchy Process

Authors: Li Yongyi

Abstract:

In order to explore the distribution of geological disasters within the expressway area of Shaanxi Province, the Analytic Hierarchy Process theory is applied based on the geographic information system technology platform, and the ground elevation, rainfall, vegetation coverage and other indicators are selected for analysis, and the expressway area is sensitive Sexual evaluation. The results show that the highway area disasters in Shaanxi Province are mainly distributed in the southern mountainous areas and are dominated by landslides; the disaster area ratio basically increases with the increase in ground elevation, surface slope, surface undulation, rainfall, and vegetation coverage. The increase in the distance from the river shows a decreasing trend; after grading the disaster sensitivity within 5km of the expressway, the extremely sensitive area, the highly sensitive area, the medium sensitive area, the low sensitive area, and the extremely low sensitive area respectively account for 8.17%、15.80%、22.99%、26.22%、26.82%. Highly sensitive road areas are mainly distributed in southern Shaanxi.

Keywords: highway engineering, sensitivity, analytic hierarchy process, geological hazard, road area

Procedia PDF Downloads 87
1055 The Emoji Method: An Approach for Identifying and Formulating Problem Ideas

Authors: Thorsten Herrmann, Alexander Laukemann, Hansgeorg Binz, Daniel Roth

Abstract:

For the analysis of already identified and existing problems, the pertinent literature provides a comprehensive collection of approaches as well as methods in order to analyze the problems in detail. But coming up with problems, which are assets worth pursuing further, is often challenging. However, the importance of well-formulated problem ideas and their influence of subsequent creative processes are incontestable and proven. In order to meet the covered challenges, the Institute for Engineering Design and Industrial Design (IKTD) developed the Emoji Method. This paper presents the Emoji Method, which support designers to generate problem ideas in a structured way. Considering research findings from knowledge management and innovation management, research into emojis and emoticons reveal insights by means of identifying and formulating problem ideas within the early design phase. The simple application and the huge supporting potential of the Emoji Method within the early design phase are only few of the many successful results of the conducted evaluation. The Emoji Method encourages designers to identify problem ideas and describe them in a structured way in order to start focused with generating solution ideas for the revealed problem ideas.

Keywords: emojis, problem ideas, innovation management, knowledge management

Procedia PDF Downloads 138
1054 Optimization of Surface Roughness in Turning Process Utilizing Live Tooling via Taguchi Methodology

Authors: Weinian Wang, Joseph C. Chen

Abstract:

The objective of this research is to optimize the process of cutting cylindrical workpieces utilizing live tooling on a HAAS ST-20 lathe. Surface roughness (Ra) has been investigated as the indicator of quality characteristics for machining process. Aluminum alloy was used to conduct experiments due to its wide range usages in engineering structures and components where light weight or corrosion resistance is required. In this study, Taguchi methodology is utilized to determine the effects that each of the parameters has on surface roughness (Ra). A total of 18 experiments of each process were designed according to Taguchi’s L9 orthogonal array (OA) with four control factors at three levels of each and signal-to-noise ratios (S/N) were computed with Smaller the better equation for minimizing the system. The optimal parameters identified for the surface roughness of the turning operation utilizing live tooling were a feed rate of 3 inches/min(A3); a spindle speed of 1300 rpm(B3); a 2-flute titanium nitrite coated 3/8” endmill (C1); and a depth of cut of 0.025 inches (D2). The mean surface roughness of the confirmation runs in turning operation was 8.22 micro inches. The final results demonstrate that Taguchi methodology is a sufficient way of process improvement in turning process on surface roughness.

Keywords: CNC milling operation, CNC turning operation, surface roughness, Taguchi parameter design

Procedia PDF Downloads 164
1053 Modelling of Structures by Advanced Finites Elements Based on the Strain Approach

Authors: Sifeddine Abderrahmani, Sonia Bouafia

Abstract:

The finite element method is the most practical tool for the analysis of structures, whatever the geometrical shape and behavior. It is extensively used in many high-tech industries, such as civil or military engineering, for the modeling of bridges, motor bodies, fuselages, and airplane wings. Additionally, experience demonstrates that engineers like modeling their structures using the most basic finite elements. Numerous models of finite elements may be utilized in the numerical analysis depending on the interpolation field that is selected, and it is generally known that convergence to the proper value will occur considerably more quickly with a good displacement pattern than with a poor pattern, saving computation time. The method for creating finite elements using the strain approach (S.B.A.) is presented in this presentation. When the results are compared with those provided by equivalent displacement-based elements, having the same total number of degrees of freedom, an excellent convergence can be obtained through some application and validation tests using recently developed membrane elements, plate bending elements, and flat shell elements. The effectiveness and performance of the strain-based finite elements in modeling structures are proven by the findings for deflections and stresses.

Keywords: finite elements, plate bending, strain approach, displacement formulation, shell element

Procedia PDF Downloads 90
1052 Enhanced High-Temperature Strength of HfNbTaTiZrV Refractory High-Entropy Alloy via Al₂O₃ Reinforcement

Authors: Bingjie Wang, Qianqian Qang, Nan Lu, Xiubing Liang, Baolong Shen

Abstract:

Novel composites of HfNbTaTiZrV refractory high-entropy alloy (RHEA) reinforced with 0-5 vol.% Al₂O₃ particles have been synthesized by vacuum arc melting. The microstructure evolution, compressive mechanical properties at room and elevated temperatures, as well as strengthening mechanism of the composites, are analyzed. The HfNbTaTiZrV RHEA reinforced with 4 vol.% Al₂O₃ displays excellent phase stability at elevated temperatures. A superior compressive yield strength of 2700 MPa at room temperature, 1392 MPa at 800 °C, and 693 MPa at 1000 °C has been obtained for this composite. The improved yield strength results from multiple strengthening mechanisms caused by Al₂O₃ addition, including interstitial strengthening, grain boundary strengthening, and dispersion strengthening. Besides, the effects of interstitial strengthening increase with the temperature and is the main strengthening mechanism at elevated temperatures. These findings not only promote the development of oxide-reinforced RHEAs for challenging engineering applications but also provide guidelines for the design of light refractory materials with multiple strengthening mechanisms.

Keywords: Al₂O₃-reinforcement, HfNbTaTiZrV, refractory high-entropy alloy, interstitial strengthening

Procedia PDF Downloads 100
1051 An Adaptive Neuro-Fuzzy Inference System (ANFIS) Modelling of Bleeding

Authors: Seyed Abbas Tabatabaei, Fereydoon Moghadas Nejad, Mohammad Saed

Abstract:

The bleeding prediction of the asphalt is one of the most complex subjects in the pavement engineering. In this paper, an Adaptive Neuro Fuzzy Inference System (ANFIS) is used for modeling the effect of important parameters on bleeding is trained and tested with the experimental results. bleeding index based on the asphalt film thickness differential as target parameter,asphalt content, temperature depth of two centemeter, heavy traffic, dust to effective binder, Marshall strength, passing 3/4 sieves, passing 3/8 sieves,passing 3/16 sieves, passing NO8, passing NO50, passing NO100, passing NO200 as input parameters. Then, we randomly divided empirical data into train and test sections in order to accomplish modeling. We instructed ANFIS network by 72 percent of empirical data. 28 percent of primary data which had been considered for testing the approprativity of the modeling were entered into ANFIS model. Results were compared by two statistical criterions (R2, RMSE) with empirical ones. Considering the results, it is obvious that our proposed modeling by ANFIS is efficient and valid and it can also be promoted to more general states.

Keywords: bleeding, asphalt film thickness differential, Anfis Modeling

Procedia PDF Downloads 262
1050 Machine Learning Approach for Mutation Testing

Authors: Michael Stewart

Abstract:

Mutation testing is a type of software testing proposed in the 1970s where program statements are deliberately changed to introduce simple errors so that test cases can be validated to determine if they can detect the errors. Test cases are executed against the mutant code to determine if one fails, detects the error and ensures the program is correct. One major issue with this type of testing was it became intensive computationally to generate and test all possible mutations for complex programs. This paper used reinforcement learning and parallel processing within the context of mutation testing for the selection of mutation operators and test cases that reduced the computational cost of testing and improved test suite effectiveness. Experiments were conducted using sample programs to determine how well the reinforcement learning-based algorithm performed with one live mutation, multiple live mutations and no live mutations. The experiments, measured by mutation score, were used to update the algorithm and improved accuracy for predictions. The performance was then evaluated on multiple processor computers. With reinforcement learning, the mutation operators utilized were reduced by 50 – 100%.

Keywords: automated-testing, machine learning, mutation testing, parallel processing, reinforcement learning, software engineering, software testing

Procedia PDF Downloads 185
1049 Poly(S/DVB)HIPE Filled with Cellulose from Water Hyacinth

Authors: Metinee Kawsomboon, Thanchanok Tulaphol, Manit Nithitanakul, Jitima Preechawong

Abstract:

PolyHIPE is a porous polymeric material from polymerization of high internal phase emulsion (HIPE) which contains 74% of internal phase (disperse phase) and 26 % of external phase (continues phase). Typically, polyHIPE was prepared from styrene (S) and divinylbenzene (DVB) and they were used in various kind of applications such as catalyst support, gas adsorption, separation membranes, and tissue engineering scaffolds due to high specific surface areas, high porousity, ability to adsorb large quantities of liquid. In this research, cellulose from water hyacinth (Eichornia Crassipes), an aquatic plant that grows and spread rapidly in rivers and waterways in Thailand was added into polyHIPE to increase mechanical property of polyHIPE. Addition of unmodified and modified cellulose to poly(S/DVB)HIPE resulting in a decrease in the surface area and thermal stability of the resulting materials. Mechanical properties of the resulting polyHIPEs filled with both unmodified and modified cellulose exhibited higher compressive strength and Young’s modulus by 146.3% and 162.5% respectively, compared to unfilled polyHIPEs. The water adsorption capacity of filled polyHIPE was also improved.

Keywords: porous polymer, PolyHIPE, cellulose, surface modification, water hyacinth

Procedia PDF Downloads 131
1048 Towards Reliable Mobile Cloud Computing

Authors: Khaled Darwish, Islam El Madahh, Hoda Mohamed, Hadia El Hennawy

Abstract:

Cloud computing has been one of the fastest growing parts in IT industry mainly in the context of the future of the web where computing, communication, and storage services are main services provided for Internet users. Mobile Cloud Computing (MCC) is gaining stream which can be used to extend cloud computing functions, services and results to the world of future mobile applications and enables delivery of a large variety of cloud application to billions of smartphones and wearable devices. This paper describes reliability for MCC by determining the ability of a system or component to function correctly under stated conditions for a specified period of time to be able to deal with the estimation and management of high levels of lifetime engineering uncertainty and risks of failure. The assessment procedures consists of determine Mean Time between Failures (MTBF), Mean Time to Failure (MTTF), and availability percentages for main components in both cloud computing and MCC structures applied on single node OpenStack installation to analyze its performance with different settings governing the behavior of participants. Additionally, we presented several factors have a significant impact on rates of change overall cloud system reliability should be taken into account in order to deliver highly available cloud computing services for mobile consumers.

Keywords: cloud computing, mobile cloud computing, reliability, availability, OpenStack

Procedia PDF Downloads 386
1047 Decentralized Wastewater Treatment in Coastal Touristic Areas Using Standardized Modular Biological Filtration (SMBF)

Authors: Andreas Rüdiger

Abstract:

The selection of appropriate wastewater treatment technology for decentralized coastal tourist areas is an important engineering challenge. The local situation in coastal tourist cities and villages is characterized by important daily and seasonal fluctuations in hydraulic flow and pollution, high annual temperature variations, scarcity of building area and high housing density. At the same time, coastal zones have to meet stringent effluent limits all over the year and need simple and easy technologies to operate. This article presents the innovative technology of standardized modular aerated up-flow biofiltration SMBF as an adapted solution for decentralized wastewater treatment in sensitive touristic coastal areas. As modular technology with several biofiltration units, the system is able to treat low and high loads with low energy consumption and low demands for operators. The article focuses on the climatic and tourist situation in Croatia. Full-scale plants in Eastern Europe and Croatia have presented as well as dimensioning parameters and outlet concentrations. Energy consumption as a function of load is demonstrated.

Keywords: wastewater treatment, biofiltration, touristic areas, energy saving

Procedia PDF Downloads 79
1046 Biomimetics and Additive Manufacturing for Industrial Design Innovation

Authors: Axel Thallemer, Martin Danzer, Dominik Diensthuber, Aleksandar Kostadinov, Bernhard Rogler

Abstract:

Nature has always inspired the creative mind, to a lesser or greater extent. Introduced around the 1950s, Biomimetics served as a systematic method to treat the natural world as a ‘pattern book’ for technical solutions with the aim to create innovative products. Unfortunately, this technique is prone to failure when performed as a mere reverse engineering of a natural system or appearance. Contrary to that, a solution which looks at the principles of a natural design, promises a better outcome. One such example is the here presented case study, which shows the design process of three distinctive grippers. The devices have biomimetic properties on two levels. Firstly, they use a kinematic chain found in beaks and secondly, they have a biomimetic structural geometry, which was realized using additive manufacturing. In a next step, the manufacturing method was evaluated to estimate its efficiency for commercial production. The results show that the fabrication procedure is still in its early stage and thus it is not able to guarantee satisfactory results. To summarize the study, we claim that a novel solution can be derived using principles from nature, however, for the solution to be actualized successfully, there are parameters which are beyond reach for designers. Nonetheless, industrial designers can contribute to product innovation using biomimetics.

Keywords: biomimetics, innovation, design process, additive manufacturing

Procedia PDF Downloads 185
1045 Neural Networks for Distinguishing the Performance of Two Hip Joint Implants on the Basis of Hip Implant Side and Ground Reaction Force

Authors: L. Parisi

Abstract:

In this research work, neural networks were applied to classify two types of hip joint implants based on the relative hip joint implant side speed and three components of each ground reaction force. The condition of walking gait at normal velocity was used and carried out with each of the two hip joint implants assessed. Ground reaction forces’ kinetic temporal changes were considered in the first approach followed but discarded in the second one. Ground reaction force components were obtained from eighteen patients under such gait condition, half of which had a hip implant type I-II, whilst the other half had the hip implant, defined as type III by Orthoload®. After pre-processing raw gait kinetic data and selecting the time frames needed for the analysis, the ground reaction force components were used to train a MLP neural network, which learnt to distinguish the two hip joint implants in the abovementioned condition. Further to training, unknown hip implant side and ground reaction force components were presented to the neural networks, which assigned those features into the right class with a reasonably high accuracy for the hip implant type I-II and the type III. The results suggest that neural networks could be successfully applied in the performance assessment of hip joint implants.

Keywords: kinemic gait data, neural networks, hip joint implant, hip arthroplasty, rehabilitation engineering

Procedia PDF Downloads 343