Search results for: Coefficient of Performance
4165 Experimental Investigation on Residual Stresses in Welded Medium-Walled I-shaped Sections Fabricated from Q460GJ Structural Steel Plates
Authors: Qian Zhu, Shidong Nie, Bo Yang, Gang Xiong, Guoxin Dai
Abstract:
GJ steel is a new type of high-performance structural steel which has been increasingly adopted in practical engineering. Q460GJ structural steel has a nominal yield strength of 460 MPa, which does not decrease significantly with the increase of steel plate thickness like normal structural steel. Thus, Q460GJ structural steel is normally used in medium-walled welded sections. However, research works on the residual stress in GJ steel members are few though it is one of the vital factors that can affect the member and structural behavior. This article aims to investigate the residual stresses in welded I-shaped sections fabricated from Q460GJ structural steel plates by experimental tests. A total of four full scale welded medium-walled I-shaped sections were tested by sectioning method. Both circular curve correction method and straightening measurement method were adopted in this study to obtain the final magnitude and distribution of the longitudinal residual stresses. In addition, this paper also explores the interaction between flanges and webs. And based on the statistical evaluation of the experimental data, a multilayer residual stress model is proposed.Keywords: Q460GJ structural steel, residual stresses, sectioning method, welded medium-walled I-shaped sections
Procedia PDF Downloads 3224164 The Effect of Micro-Arc Oxidation Coated Piston Crown on Engine Characteristics in a Spark Ignited Engine
Authors: A.Velavan, C. G. Saravanan, M. Vikneswaran, E. James Gunasekaran
Abstract:
In present investigation, experiments were carried out to compare the effect of the ceramic coated piston crown and uncoated piston on combustion, performance and emission characteristics of a port injected Spark Ignited engine. The piston crown was coated with aluminium alloy in the form ceramic oxide layer of thickness 500 µm using micro-arc oxidation technique. This ceramic coating will act as a thermal barrier which reduces in-cylinder heat rejection and increases the durability of the piston by withstanding high temperature and pressure produced during combustion. Flame visualization inside the combustion chamber was carried out using AVL Visioscope combustion analyzer to predict the type of combustion occurs at different load condition. Based on the experimental results, it was found that the coated piston shows an improved thermal efficiency when compared to uncoated piston. This is because more heat presents in the combustion chamber which helps efficient combustion of the fuel. The CO and HC emissions were found to be reduced due to better combustion of the fuel whereas NOx emission was increased due to increase in combustion temperature for ceramic coated piston.Keywords: coated piston, micro-arc oxidation, thermal barrier, thermal efficiency, visioscope
Procedia PDF Downloads 1524163 Imp_hist-Si: Improved Hybrid Image Segmentation Technique for Satellite Imagery to Decrease the Segmentation Error Rate
Authors: Neetu Manocha
Abstract:
Image segmentation is a technique where a picture is parted into distinct parts having similar features which have a place with similar items. Various segmentation strategies have been proposed as of late by prominent analysts. But, after ultimate thorough research, the novelists have analyzed that generally, the old methods do not decrease the segmentation error rate. Then author finds the technique HIST-SI to decrease the segmentation error rates. In this technique, cluster-based and threshold-based segmentation techniques are merged together. After then, to improve the result of HIST-SI, the authors added the method of filtering and linking in this technique named Imp_HIST-SI to decrease the segmentation error rates. The goal of this research is to find a new technique to decrease the segmentation error rates and produce much better results than the HIST-SI technique. For testing the proposed technique, a dataset of Bhuvan – a National Geoportal developed and hosted by ISRO (Indian Space Research Organisation) is used. Experiments are conducted using Scikit-image & OpenCV tools of Python, and performance is evaluated and compared over various existing image segmentation techniques for several matrices, i.e., Mean Square Error (MSE) and Peak Signal Noise Ratio (PSNR).Keywords: satellite image, image segmentation, edge detection, error rate, MSE, PSNR, HIST-SI, linking, filtering, imp_HIST-SI
Procedia PDF Downloads 1434162 Behavior Factors Evaluation for Reinforced Concrete Structures
Authors: Muhammad Rizwan, Naveed Ahmad, Akhtar Naeem Khan
Abstract:
Seismic behavior factors are evaluated for the performance assessment of low rise reinforced concrete RC frame structures based on experimental study of unidirectional dynamic shake table testing of two 1/3rd reduced scaled two storey frames, with a code confirming special moment resisting frame (SMRF) model and a noncompliant model of similar characteristics but built in low strength concrete .The models were subjected to a scaled accelerogram record of 1994 Northridge earthquake to deformed the test models to final collapse stage in order to obtain the structural response parameters. The fully compliant model was observed with more stable beam-sway response, experiencing beam flexure yielding and ground-storey column base yielding upon subjecting to 100% of the record. The response modification factor - R factor obtained for the code complaint and deficient prototype structures were 7.5 and 4.5 respectively, which is about 10% and 40% less than the UBC-97 specified value for special moment resisting reinforced concrete frame structures.Keywords: Northridge 1994 earthquake, reinforced concrete frame, response modification factor, shake table testing
Procedia PDF Downloads 1774161 Motivational Factors for the Practice of Exercise in a Sample of Portuguese Fitness Center Users
Authors: N. Sena, C. Vasconcelos
Abstract:
Portugal has a lower rate of people who exercise. Fitness centers are a widely recognized context for the performance of an exercise. Thus, the objective of this study is to analyze the motivational factors for the practice of exercise in a sample of Portuguese fitness center users. The sample consists of 34 users (23 men and 11 women), aged between 16 and 60 years old (24.7 ± 11,5 years old). The instrument used for data collection was the Motivation Questionnaire for Exercise (version translated and validated into Portuguese), consisting of forty-nine items grouped into ten motivational factors. Responses to the Exercise Motivation Questionnaire are given on a 6-point Likert scale (0="not at all true for me" to 5="completely true for me"). With regard to the results, it is possible to verify that the motivational factors considered most relevant by the sample of our study were “Well-being” (4.44 ± 0.28), followed by “Health” (4.29 ± 0.57) and “Stress Management” (4.06 ± 0.54). The factors “Affiliation” (3.11 ± 0.49) “Personal Appreciation” (2.26 ± 0.59) and “Medical History” (1.71 ± 0.74) were considered by the respondents to be the least important factors for performing the exercise. The conclusion of this study is that in the sample of this study, the factors that most motivated the practice of exercise were “Well-being”, “Health” and “Stress Management”. In the opposite direction, the factors that least motivated the individuals in this sample to practice exercise were “Affiliation”, “Personal Appreciation” and “Medical History”.Keywords: exercise, fitness center users, motivational factors, Portugal
Procedia PDF Downloads 874160 Screening of Four Malaysian Isolated Endophytes with Candesartan in a Microtiter Plate
Authors: Rasha Saad, Jean Frederic Weber, Fatimah Bebe, Sadia Sultan
Abstract:
The goal of study was to screen the effects of candesartan and four endophytic fungi for their potential in microbial biotransformation. In this experiment, four types of unidentified fungi with the codes of TH2L1, TH2R10, TH1P35 and TH1S46 were used in screening process by MECFUS (Microtiter plate, Elicitors, Combination, Freeze-drying, UHPLC, Statistical analysis) protocol. The experiment was carried out by using 96-well microtiter plate (MTP) with different media and elicitors. Various media with two concentrations of Potato Dextrose Broth (PDB) and elicitors used were to induce the production of secondary metabolites from the fungi as well as the biotransformation of the drug compound. After incubation, cultures were extracted by freeze drying method and finally analyzed by ultra-High performance Liquid Chromatography (uHPLC). The extracts analyzed by uHPLC followed by LC/Ms, demonstrated the presence of biotransformation products from the drug compound and elicitation of the secondary metabolism from the fungi by the occurrence of the additional peaks. From the four fungi, TH1S46 showed highly potential produced secondary metabolites as well as the biotransformation of candesartan. For other fungi, they responded when candesartan was introduced. Moreover, the additional peaks produced in uHPLC need to be further investigation by using LC-MS or NMR.Keywords: biotransformation, candesartan, endophytes, secondary metabolites
Procedia PDF Downloads 2674159 Improved Multi–Objective Firefly Algorithms to Find Optimal Golomb Ruler Sequences for Optimal Golomb Ruler Channel Allocation
Authors: Shonak Bansal, Prince Jain, Arun Kumar Singh, Neena Gupta
Abstract:
Recently nature–inspired algorithms have widespread use throughout the tough and time consuming multi–objective scientific and engineering design optimization problems. In this paper, we present extended forms of firefly algorithm to find optimal Golomb ruler (OGR) sequences. The OGRs have their one of the major application as unequally spaced channel–allocation algorithm in optical wavelength division multiplexing (WDM) systems in order to minimize the adverse four–wave mixing (FWM) crosstalk effect. The simulation results conclude that the proposed optimization algorithm has superior performance compared to the existing conventional computing and nature–inspired optimization algorithms to find OGRs in terms of ruler length, total optical channel bandwidth and computation time.Keywords: channel allocation, conventional computing, four–wave mixing, nature–inspired algorithm, optimal Golomb ruler, lévy flight distribution, optimization, improved multi–objective firefly algorithms, Pareto optimal
Procedia PDF Downloads 3244158 The 5G Communication Technology Radiation Impact on Human Health and Airports Safety
Authors: Ashraf Aly
Abstract:
The aim of this study is to examine the impact of 5G communication technology radiation on human health and airport safety. The term 5G refers to the fifth generation of wireless mobile technology. The 5G wireless technology will increase the number of high-frequency-powered base stations and other devices and browsing and download speeds, as well as improve the network connectivity and play a big part in improving the performance of integrated applications, such as self-driving cars, medical devices, and robotics. 4G was the latest embedded version of mobile networking technology called 4G, and 5G is the new version of wireless technology. 5G networks have more features than 4G networks, such as lower latency, higher capacity, and increased bandwidth compared to 4G. 5G network improvements over 4G will have big impacts on how people live, business, and work all over the world. But neither 4G nor 5G have been tested for safety and show harmful effects from this wireless radiation. This paper presents biological factors on the effects of 5G radiation on human health. 5G services use C-band radio frequencies; these frequencies are close to those used by radio altimeters, which represent important equipment for airport and aircraft safety. The aviation industry, telecommunications companies, and their regulators have been discussing and weighing these interference concerns for years.Keywords: wireless communication, radiofrequency, Electromagnetic field, environmental issues
Procedia PDF Downloads 704157 Viscous Flow Computations for the Diffuser Section of a Large Cavitation Tunnel
Authors: Ahmet Y. Gurkan, Cagatay S. Koksal, Cagri Aydin, U. Oral Unal
Abstract:
The present paper covers the viscous flow computations for the asymmetric diffuser section of a large, high-speed cavitation tunnel which will be constructed in Istanbul Technical University. The analyses were carried out by using the incompressible Reynold-Averaged-Navier-Stokes equations. While determining the diffuser geometry, a high quality, separation-free flow field with minimum energy loses was particularly aimed. The expansion angle has a critical role on the diffuser hydrodynamic performance. In order obtain a relatively short diffuser length, due to the constructive limitations, and hydrodynamic energy effectiveness, three diffuser sections with varying expansion angles for side and bottom walls were considered. A systematic study was performed to determine the most effective diffuser configuration. The results revealed that the inlet condition of the diffuser greatly affects its flow field. The inclusion of the contraction section in the computations substantially modified the flow topology in the diffuser. The effect of the diffuser flow on the test section flow characteristics was clearly observed. The influence of the introduction of small chamfers at the corners of the diffuser geometry is also presented.Keywords: asymmetric diffuser, diffuser design, cavitation tunnel, viscous flow, computational fluid dynamics (CFD), rans
Procedia PDF Downloads 3674156 Reduction of Aerodynamic Drag Using Vortex Generators
Authors: Siddharth Ojha, Varun Dua
Abstract:
Classified as one of the most important reasons of aerodynamic drag in the sedan automobiles is the fluid flow separation near the vehicle’s rear end. To retard the separation of flow, bump-shaped vortex generators are being tested for its implementation to the roof end of a sedan vehicle. Frequently used in the aircrafts to prevent the separation of fluid flow, vortex generators themselves produce drag, but they also substantially reduce drag by preventing flow separation at the downstream. The net effects of vortex generators can be calculated by summing the positive and negative impacts and effects. Since this effect depends on dimensions and geometry of vortex generators, those present on the vehicle roof are optimized for maximum efficiency and performance. The model was tested through ANSYS CFD analysis and modeling. The model was tested in the wind tunnel for observing it’s properties such as aerodynamic drag and flow separation and a major time lag was gained by employing vortex generators in the scaled model. Major conclusions which were recorded during the analysis were a substantial 24% reduction in the aerodynamic drag and 14% increase in the efficiency of the sedan automobile as the flow separation from the surface is delayed. This paper presents the results of optimization, the effect of vortex generators in the flow field and the mechanism by which these effects occur and are regulated.Keywords: aerodynamics, aerodynamic devices, body, computational fluid dynamics (CFD), flow visualization
Procedia PDF Downloads 2254155 Multi-Modal Feature Fusion Network for Speaker Recognition Task
Authors: Xiang Shijie, Zhou Dong, Tian Dan
Abstract:
Speaker recognition is a crucial task in the field of speech processing, aimed at identifying individuals based on their vocal characteristics. However, existing speaker recognition methods face numerous challenges. Traditional methods primarily rely on audio signals, which often suffer from limitations in noisy environments, variations in speaking style, and insufficient sample sizes. Additionally, relying solely on audio features can sometimes fail to capture the unique identity of the speaker comprehensively, impacting recognition accuracy. To address these issues, we propose a multi-modal network architecture that simultaneously processes both audio and text signals. By gradually integrating audio and text features, we leverage the strengths of both modalities to enhance the robustness and accuracy of speaker recognition. Our experiments demonstrate significant improvements with this multi-modal approach, particularly in complex environments, where recognition performance has been notably enhanced. Our research not only highlights the limitations of current speaker recognition methods but also showcases the effectiveness of multi-modal fusion techniques in overcoming these limitations, providing valuable insights for future research.Keywords: feature fusion, memory network, multimodal input, speaker recognition
Procedia PDF Downloads 424154 Establishment and Improvement of Oil Palm Liquid Culture for Clonal Propagation
Authors: Mohd Naqiuddin Bin Husri, Siti Rahmah Abd Rahman, Dalilah Abu Bakar, Dayang Izawati Abang Masli, Meilina Ong Abdullah
Abstract:
A serious shortage of prime agricultural land coupled with environmental concerns inland expansion has daunted efforts to increase the national yield average. To address this issue, maximising yield per unit hectare through quality planting material is of great importance. Breeding for improved planting materials has been a continuous effort since the early days of this industry, it is time-consuming, and the likelihood of segregation within the progenies further impedes progress in this area. Incorporation of the cloning technology in oil palm breeding programmes is therefore advantageous to expedite the development of commercial elite and high-yielding planting materials. After more than 22 years of research and development through this project, reliable protocols for liquid/suspension culture systems coupled with various innovative technologies which are effective at promoting proliferation and growth of oil palm culture have been established. Subsequently, clonal palms derived from the suspension culture system were extensively studied in the field, and the results have been encouraging. Clones such as CPS1, CPS2 and a few others recorded superior performance in comparison with D x P standard crosses.Keywords: tissue culture, suspension culture, oil palm, Elaeis guineensis
Procedia PDF Downloads 1944153 Solving Process Planning, Weighted Apparent Tardiness Cost Dispatching, and Weighted Processing plus Weight Due-Date Assignment Simultaneously Using a Hybrid Search
Authors: Halil Ibrahim Demir, Caner Erden, Abdullah Hulusi Kokcam, Mumtaz Ipek
Abstract:
Process planning, scheduling, and due date assignment are three important manufacturing functions which are studied independently in literature. There are hundreds of works on IPPS and SWDDA problems but a few works on IPPSDDA problem. Integrating these three functions is very crucial due to the high relationship between them. Since the scheduling problem is in the NP-Hard problem class without any integration, an integrated problem is even harder to solve. This study focuses on the integration of these functions. Sum of weighted tardiness, earliness, and due date related costs are used as a penalty function. Random search and hybrid metaheuristics are used to solve the integrated problem. Marginal improvement in random search is very high in the early iterations and reduces enormously in later iterations. At that point directed search contribute to marginal improvement more than random search. In this study, random and genetic search methods are combined to find better solutions. Results show that overall performance becomes better as the integration level increases.Keywords: process planning, genetic algorithm, hybrid search, random search, weighted due-date assignment, weighted scheduling
Procedia PDF Downloads 3694152 Electrochemical Treatment and Chemical Analyses of Tannery Wastewater Using Sacrificial Aluminum Electrode, Ethiopia
Authors: Dessie Tibebe, Muluken Asmare, Marye Mulugeta, Yezbie Kassa, Zerubabel Moges, Dereje Yenealem, Tarekegn Fentie, Agmas Amare
Abstract:
The performance of electrocoagulation (EC) using Aluminium electrodes for the treatment of effluent-containing chromium metal using a fixed bed electrochemical batch reactor was studied. In the present work, the efficiency evaluation of EC in removing physicochemical and heavy metals from real industrial tannery wastewater in the Amhara region, collected from Bahirdar, Debre Brihan, and Haik, was investigated. The treated and untreated samples were determined by AAS and ICP OES spectrophotometers. The results indicated that selected heavy metals were removed in all experiments with high removal percentages. The optimal results were obtained regarding both cost and electrocoagulation efficiency with initial pH = 3, initial concentration = 40 mg/L, electrolysis time = 30 min, current density = 40 mA/cm2, and temperature = 25oC favored metal removal. The maximum removal percentages of selected metals obtained were 84.42% for Haik, 92.64% for Bahir Dar and 94.90% for Debre Brihan. The sacrificial electrode and sludge were characterized by FT-IR, SEM and XRD. After treatment, some metals like chromium will be used again as a tanning agent in leather processing to promote a circular economy.Keywords: electrochemical, treatment, aluminum, tannery effluent
Procedia PDF Downloads 1194151 Image Inpainting Model with Small-Sample Size Based on Generative Adversary Network and Genetic Algorithm
Authors: Jiawen Wang, Qijun Chen
Abstract:
The performance of most machine-learning methods for image inpainting depends on the quantity and quality of the training samples. However, it is very expensive or even impossible to obtain a great number of training samples in many scenarios. In this paper, an image inpainting model based on a generative adversary network (GAN) is constructed for the cases when the number of training samples is small. Firstly, a feature extraction network (F-net) is incorporated into the GAN network to utilize the available information of the inpainting image. The weighted sum of the extracted feature and the random noise acts as the input to the generative network (G-net). The proposed network can be trained well even when the sample size is very small. Secondly, in the phase of the completion for each damaged image, a genetic algorithm is designed to search an optimized noise input for G-net; based on this optimized input, the parameters of the G-net and F-net are further learned (Once the completion for a certain damaged image ends, the parameters restore to its original values obtained in the training phase) to generate an image patch that not only can fill the missing part of the damaged image smoothly but also has visual semantics.Keywords: image inpainting, generative adversary nets, genetic algorithm, small-sample size
Procedia PDF Downloads 1354150 Analysing Techniques for Fusing Multimodal Data in Predictive Scenarios Using Convolutional Neural Networks
Authors: Philipp Ruf, Massiwa Chabbi, Christoph Reich, Djaffar Ould-Abdeslam
Abstract:
In recent years, convolutional neural networks (CNN) have demonstrated high performance in image analysis, but oftentimes, there is only structured data available regarding a specific problem. By interpreting structured data as images, CNNs can effectively learn and extract valuable insights from tabular data, leading to improved predictive accuracy and uncovering hidden patterns that may not be apparent in traditional structured data analysis. In applying a single neural network for analyzing multimodal data, e.g., both structured and unstructured information, significant advantages in terms of time complexity and energy efficiency can be achieved. Converting structured data into images and merging them with existing visual material offers a promising solution for applying CNN in multimodal datasets, as they often occur in a medical context. By employing suitable preprocessing techniques, structured data is transformed into image representations, where the respective features are expressed as different formations of colors and shapes. In an additional step, these representations are fused with existing images to incorporate both types of information. This final image is finally analyzed using a CNN.Keywords: CNN, image processing, tabular data, mixed dataset, data transformation, multimodal fusion
Procedia PDF Downloads 1284149 Addressing Differentiation Using Mobile-Assisted Language Learning
Authors: Ajda Osifo, Fatma Elshafie
Abstract:
Mobile-assisted language learning favors social-constructivist and connectivist theories to learning and adaptive approaches to teaching. It offers many opportunities to differentiated instruction in meaningful ways as it enables learners to become more collaborative, engaged and independent through additional dimensions such as web-based media, virtual learning environments, online publishing to an imagined audience and digitally mediated communication. MALL applications can be a tool for the teacher to personalize and adjust instruction according to the learners’ needs and give continuous feedback to improve learning and performance in the process, which support differentiated instruction practices. This paper explores the utilization of Mobile Assisted Language Learning applications as a supporting tool for effective differentiation in the language classroom. It reports overall experience in terms of implementing MALL to shape and apply differentiated instruction and expand learning options. This session is structured in three main parts: first, a review of literature and effective practice of academically responsive instruction will be discussed. Second, samples of differentiated tasks, activities, projects and learner work will be demonstrated with relevant learning outcomes and learners’ survey results. Finally, project findings and conclusions will be given.Keywords: academically responsive instruction, differentiation, mobile learning, mobile-assisted language learning
Procedia PDF Downloads 4224148 Intelligent Control of Doubly Fed Induction Generator Wind Turbine for Smart Grid
Authors: Amal A. Hassan, Faten H. Fahmy, Abd El-Shafy A. Nafeh, Hosam K. M. Youssef
Abstract:
Due to the growing penetration of wind energy into the power grid, it is very important to study its interactions with the power system and to provide good control technique in order to deliver high quality power. In this paper, an intelligent control methodology is proposed for optimizing the controllers’ parameters of doubly fed induction generator (DFIG) based wind turbine generation system (WTGS). The genetic algorithm (GA) and particle swarm optimization (PSO) are employed and compared for the parameters adaptive tuning of the proposed proportional integral (PI) multiple controllers of the back to back converters of the DFIG based WTGS. For this purpose, the dynamic model of WTGS with DFIG and its associated controllers is presented. Furthermore, the simulation of the system is performed using MATLAB/SIMULINK and SIMPOWERSYSTEM toolbox to illustrate the performance of the optimized controllers. Finally, this work is validated to 33-bus test radial system to show the interaction between wind distributed generation (DG) systems and the distribution network.Keywords: DFIG wind turine, intelligent control, distributed generation, particle swarm optimization, genetic algorithm
Procedia PDF Downloads 2724147 Preparation and Characterization of the TiO₂ Photocatalytic Membrane for the Degradation of Reactive Orange 16 Dye
Authors: Shruti Sakarkar, Jega Jegatheesan, Srinivasan Madapusi
Abstract:
Photocatalytic membranes have shown great potential for the removal of an organic and inorganic pollutant from wastewater as it combines the degradation and antibacterial properties from photocatalysis and physical separation by the membrane in a single unit. Incorporation of the semiconductor in membrane structure results in enhancing the performance and the properties of the membrane. In this study porous ultrafiltration polyvinylidene fluoride (PVDF) membranes with entrapped TiO₂ nanoparticle were prepared by phase inversion method and further used for the degradation of reactive orange 16 (RO16). Prepared photocatalytic membranes were characterized by the scanning electron microscope (SEM), energy dispersive spectroscopy (EDS), contact angle, and atomic force microscope (AFM). The addition of TiO₂ nanopartparticles improves the strength and thermal stability of the membrane. In particular hydrophilicity and permeability increases with the increase of TiO₂ nanoparticles into the membrane. The photocatalytic membrane achieves 80-85% degrdation of RO16. The impact of different parameters such as pH, concentration of photocatalyst, dye concentration and effect of H₂O₂ were analysed. The best conditions for dye degradation were an initial dye concentration of 50 mg/L, with a membrane containing TiO₂ loading of 2wt%. It was observed that in the presence of H₂O₂, degradation increases with increasing H₂O₂ concentration and reached up to 95-98%. The high quality permeates obtained from the photocatalytic membrane can be reused.Keywords: photocatalytic membrane, TiO₂, PVDF, nanoparticles
Procedia PDF Downloads 1704146 Multi-Template Molecularly Imprinted Polymer: Synthesis, Characterization and Removal of Selected Acidic Pharmaceuticals from Wastewater
Authors: Lawrence Mzukisi Madikizela, Luke Chimuka
Abstract:
Removal of organics from wastewater offers a better water quality, therefore, the purpose of this work was to investigate the use of molecularly imprinted polymer (MIP) for the elimination of selected organics from water. A multi-template MIP for the adsorption of naproxen, ibuprofen and diclofenac was synthesized using a bulk polymerization method. A MIP was synthesized at 70°C by employing 2-vinylpyridine, ethylene glycol dimethacrylate, toluene and 1,1’-azobis-(cyclohexanecarbonitrile) as functional monomer, cross-linker, porogen and initiator, respectively. Thermogravimetric characterization indicated that the polymer backbone collapses at 250°C and scanning electron microscopy revealed the porous and roughness nature of the MIP after elution of templates. The performance of the MIP in aqueous solutions was evaluated by optimizing several adsorption parameters. The optimized adsorption conditions were 50 mg of MIP, extraction time of 10 min, a sample pH of 4.6 and the initial concentration of 30 mg/L. The imprinting factors obtained for naproxen, ibuprofen and diclofenac were 1.25, 1.42, and 2.01, respectively. The order of selectivity for the MIP was; diclofenac > ibuprofen > naproxen. MIP showed great swelling in water with an initial swelling rate of 2.62 g/(g min). The synthesized MIP proved to be able to adsorb naproxen, ibuprofen and diclofenac from contaminated deionized water, wastewater influent and effluent.Keywords: adsorption, molecularly imprinted polymer, multi template, pharmaceuticals
Procedia PDF Downloads 3094145 A Hybrid Feature Selection Algorithm with Neural Network for Software Fault Prediction
Authors: Khalaf Khatatneh, Nabeel Al-Milli, Amjad Hudaib, Monther Ali Tarawneh
Abstract:
Software fault prediction identify potential faults in software modules during the development process. In this paper, we present a novel approach for software fault prediction by combining a feedforward neural network with particle swarm optimization (PSO). The PSO algorithm is employed as a feature selection technique to identify the most relevant metrics as inputs to the neural network. Which enhances the quality of feature selection and subsequently improves the performance of the neural network model. Through comprehensive experiments on software fault prediction datasets, the proposed hybrid approach achieves better results, outperforming traditional classification methods. The integration of PSO-based feature selection with the neural network enables the identification of critical metrics that provide more accurate fault prediction. Results shows the effectiveness of the proposed approach and its potential for reducing development costs and effort by detecting faults early in the software development lifecycle. Further research and validation on diverse datasets will help solidify the practical applicability of the new approach in real-world software engineering scenarios.Keywords: feature selection, neural network, particle swarm optimization, software fault prediction
Procedia PDF Downloads 1014144 Macro-Somatic Clonal Propagation of Tree-Borne Oil Seed Species (Calophyllum inophyllum Linn. and Pongamia pinnata Mer.)
Authors: Amelyn M. Ambal, Jose Hermis Patricio
Abstract:
A macro-somatic clonal propagation study was undertaken to determine the effects of method of propagation, rooting hormone, and level of rooting hormone concentration of TBOS (Calophyllum inophyllum Mer. and Pongamia pinnata L.). A factorial experiment in SSSPD with three replications was used in the study and analyzed using ANOVA and LSD. Open mist propagation is effective for rooting Calophyllum inophyllum and Pongamia pinnata cuttings as it gave statistically higher number of adventitious roots, longer length of roots, and higher rooting percentage. C. inophyllum cuttings exhibit statistically higher rooting percentage compared to P. pinnata cuttings when subjected to open mist method and treated with 600 ppm of NAA. NAA is more effective than IBA in terms of number and length of roots, and rooting percentage produced. However, levels of hormone concentration were not generally effective on the rooting performance and shoot production of both species.Keywords: adventitious roots, Calophyllum, close-mist, macro-somatic clonal propagation, Pongamia, open-mist
Procedia PDF Downloads 4764143 A Study on the Implementation of Differentiating Instruction Based on Universal Design for Learning
Authors: Yong Wook Kim
Abstract:
The diversity of students in regular classrooms is increasing due to expand inclusive education and increase multicultural students in South Korea. In this diverse classroom environment, the universal design for learning (UDL) has been proposed as a way to meet both the educational need and social expectation of student achievement. UDL offers a variety of practical teaching methods, one of which is a differentiating instruction. The differentiating instruction has been pointed out resource limitation, organizational resistance, and lacks easy-to-implement framework. However, through the framework provided by the UDL, differentiating instruction is able to be flexible in their implementation. In practice, the UDL and differentiating instruction are complementary, but there is still a lack of research that suggests specific implementation methods that apply both concepts at the same time. This study was conducted to investigate the effects of differentiating instruction strategies according to learner characteristics (readiness, interest, learning profile), components of differentiating instruction (content, process, performance, learning environment), especially UDL principles (representation, behavior and expression, participation) existed in differentiating instruction, and implementation of UDL-based differentiating instruction through the Planning for All Learner (PAL) and UDL Lesson Plan Cycle. It is meaningful that such a series of studies can enhance the possibility of more concrete and realistic UDL-based teaching and learning strategies in the classroom, especially in inclusive settings.Keywords: universal design for learning, differentiating instruction, UDL lesson plan, PAL
Procedia PDF Downloads 2004142 An Empirical Study on Switching Activation Functions in Shallow and Deep Neural Networks
Authors: Apoorva Vinod, Archana Mathur, Snehanshu Saha
Abstract:
Though there exists a plethora of Activation Functions (AFs) used in single and multiple hidden layer Neural Networks (NN), their behavior always raised curiosity, whether used in combination or singly. The popular AFs –Sigmoid, ReLU, and Tanh–have performed prominently well for shallow and deep architectures. Most of the time, AFs are used singly in multi-layered NN, and, to the best of our knowledge, their performance is never studied and analyzed deeply when used in combination. In this manuscript, we experiment with multi-layered NN architecture (both on shallow and deep architectures; Convolutional NN and VGG16) and investigate how well the network responds to using two different AFs (Sigmoid-Tanh, Tanh-ReLU, ReLU-Sigmoid) used alternately against a traditional, single (Sigmoid-Sigmoid, Tanh-Tanh, ReLUReLU) combination. Our results show that using two different AFs, the network achieves better accuracy, substantially lower loss, and faster convergence on 4 computer vision (CV) and 15 Non-CV (NCV) datasets. When using different AFs, not only was the accuracy greater by 6-7%, but we also accomplished convergence twice as fast. We present a case study to investigate the probability of networks suffering vanishing and exploding gradients when using two different AFs. Additionally, we theoretically showed that a composition of two or more AFs satisfies Universal Approximation Theorem (UAT).Keywords: activation function, universal approximation function, neural networks, convergence
Procedia PDF Downloads 1624141 Forecasting 24-Hour Ahead Electricity Load Using Time Series Models
Authors: Ramin Vafadary, Maryam Khanbaghi
Abstract:
Forecasting electricity load is important for various purposes like planning, operation, and control. Forecasts can save operating and maintenance costs, increase the reliability of power supply and delivery systems, and correct decisions for future development. This paper compares various time series methods to forecast 24 hours ahead of electricity load. The methods considered are the Holt-Winters smoothing, SARIMA Modeling, LSTM Network, Fbprophet, and Tensorflow probability. The performance of each method is evaluated by using the forecasting accuracy criteria, namely, the mean absolute error and root mean square error. The National Renewable Energy Laboratory (NREL) residential energy consumption data is used to train the models. The results of this study show that the SARIMA model is superior to the others for 24 hours ahead forecasts. Furthermore, a Bagging technique is used to make the predictions more robust. The obtained results show that by Bagging multiple time-series forecasts, we can improve the robustness of the models for 24 hours ahead of electricity load forecasting.Keywords: bagging, Fbprophet, Holt-Winters, LSTM, load forecast, SARIMA, TensorFlow probability, time series
Procedia PDF Downloads 1014140 Overcoming the Obstacles to Green Campus Implementation in Indonesia
Authors: Mia Wimala, Emma Akmalah, Ira Irawati, M. Rangga Sururi
Abstract:
One way that has been aggressively implemented in creating a sustainable environment nowadays is through the implementation of green building concept. In order to ensure the success of its implementation, the support and initiation from educational institutions, especially higher education institutions are indispensable. This research was conducted to figure out the obstacles restraining the success of green campus implementation in Indonesia, as well as to propose strategies to overcome those obstacles. The data presented in this paper are mainly derived from interview and questionnaire distributed randomly to the staffs and students in 10 (ten) major institutions around Jakarta and West Java area. The data were further analyzed using ANOVA and SWOT analysis. According to 182 respondents, it is found that resistance to change, inadequate knowledge, information and understanding, no penalty for any environmental violation, lack of reward for green campus practices, lack of stringent regulations/laws, lack of management commitment, insufficient funds are the obstacles to the green campus movement in Indonesia. In addition, out of 6 criteria considered in UI GreenMetric World Ranking, education was the only criteria that had no significant difference between public and private universities in generating the green campus performance. The work concludes with recommendation of strategies to improve the implementation of green campus in the future.Keywords: green campus, obstacles, sustainable, higher education institutions
Procedia PDF Downloads 2304139 Energy Efficiency Analysis of Discharge Modes of an Adiabatic Compressed Air Energy Storage System
Authors: Shane D. Inder, Mehrdad Khamooshi
Abstract:
Efficient energy storage is a crucial factor in facilitating the uptake of renewable energy resources. Among the many options available for energy storage systems required to balance imbalanced supply and demand cycles, compressed air energy storage (CAES) is a proven technology in grid-scale applications. This paper reviews the current state of micro scale CAES technology and describes a micro-scale advanced adiabatic CAES (A-CAES) system, where heat generated during compression is stored for use in the discharge phase. It will also describe a thermodynamic model, developed in EES (Engineering Equation Solver) to evaluate the performance and critical parameters of the discharge phase of the proposed system. Three configurations are explained including: single turbine without preheater, two turbines with preheaters, and three turbines with preheaters. It is shown that the micro-scale A-CAES is highly dependent upon key parameters including; regulator pressure, air pressure and volume, thermal energy storage temperature and flow rate and the number of turbines. It was found that a micro-scale AA-CAES, when optimized with an appropriate configuration, could deliver energy input to output efficiency of up to 70%.Keywords: CAES, adiabatic compressed air energy storage, expansion phase, micro generation, thermodynamic
Procedia PDF Downloads 3164138 Exergetic and Sustainability Evaluation of a Building Heating System in Izmir, Turkey
Authors: Nurdan Yildirim, Arif Hepbasli
Abstract:
Heating, cooling and lighting appliances in buildings account for more than one third of the world’s primary energy demand. Therefore, main components of the building heating systems play an essential role in terms of energy consumption. In this context, efficient energy and exergy utilization in HVAC-R systems has been very essential, especially in developing energy policies towards increasing efficiencies. The main objective of the present study is to assess the performance of a family house with a volume of 326.7 m3 and a net floor area of 121 m2, located in the city of Izmir, Turkey in terms of energetic, exergetic and sustainability aspects. The indoor and exterior air temperatures are taken as 20°C and 1°C, respectively. In the analysis and assessment, various metrics (indices or indicators) such as exergetic efficiency, exergy flexibility ratio and sustainability index are utilized. Two heating options (Case 1: condensing boiler and Case 2: air heat pump) are considered for comparison purposes. The total heat loss rate of the family house is determined to be 3770.72 W. The overall energy efficiencies of the studied cases are calculated to be 49.4% for Case 1 and 54.7% for Case 2. The overall exergy efficiencies, the flexibility factor and the sustainability index of Cases 1 and 2 are computed to be around 3.3%, 0.17 and 1.034, respectively.Keywords: buildings, exergy, low exergy, sustainability, efficiency, heating, renewable energy
Procedia PDF Downloads 3474137 Development of Fuzzy Logic Control Ontology for E-Learning
Authors: Muhammad Sollehhuddin A. Jalil, Mohd Ibrahim Shapiai, Rubiyah Yusof
Abstract:
Nowadays, ontology is common in many areas like artificial intelligence, bioinformatics, e-commerce, education and many more. Ontology is one of the focus areas in the field of Information Retrieval. The purpose of an ontology is to describe a conceptual representation of concepts and their relationships within a particular domain. In other words, ontology provides a common vocabulary for anyone who needs to share information in the domain. There are several ontology domains in various fields including engineering and non-engineering knowledge. However, there are only a few available ontology for engineering knowledge. Fuzzy logic as engineering knowledge is still not available as ontology domain. In general, fuzzy logic requires step-by-step guidelines and instructions of lab experiments. In this study, we presented domain ontology for Fuzzy Logic Control (FLC) knowledge. We give Table of Content (ToC) with middle strategy based on the Uschold and King method to develop FLC ontology. The proposed framework is developed using Protégé as the ontology tool. The Protégé’s ontology reasoner, known as the Pellet reasoner is then used to validate the presented framework. The presented framework offers better performance based on consistency and classification parameter index. In general, this ontology can provide a platform to anyone who needs to understand FLC knowledge.Keywords: engineering knowledge, fuzzy logic control ontology, ontology development, table of content
Procedia PDF Downloads 3044136 Automated Testing of Workshop Robot Behavior
Authors: Arne Hitzmann, Philipp Wentscher, Alexander Gabel, Reinhard Gerndt
Abstract:
Autonomous mobile robots can be found in a wide field of applications. Their types range from household robots over workshop robots to autonomous cars and many more. All of them undergo a number of testing steps during development, production and maintenance. This paper describes an approach to improve testing of robot behavior. It was inspired by the RoboCup @work competition that itself reflects a robotics benchmark for industrial robotics. There, scaled down versions of mobile industrial robots have to navigate through a workshop-like environment or operation area and have to perform tasks of manipulating and transporting work pieces. This paper will introduce an approach of automated vision-based testing of the behavior of the so called youBot robot, which is the most widely used robot platform in the RoboCup @work competition. The proposed system allows automated testing of multiple tries of the robot to perform a specific missions and it allows for the flexibility of the robot, e.g. selecting different paths between two tasks within a mission. The approach is based on a multi-camera setup using, off the shelf cameras and optical markers. It has been applied for test-driven development (TDD) and maintenance-like verification of the robot behavior and performance.Keywords: supervisory control, testing, markers, mono vision, automation
Procedia PDF Downloads 379