Search results for: individual tax compliance behavior
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 10720

Search results for: individual tax compliance behavior

250 Removal of Heavy Metals by Ultrafiltration Assisted with Chitosan or Carboxy-Methyl Cellulose

Authors: Boukary Lam, Sebastien Deon, Patrick Fievet, Nadia Crini, Gregorio Crini

Abstract:

Treatment of heavy metal-contaminated industrial wastewater has become a major challenge over the last decades. Conventional processes for the treatment of metal-containing effluents do not always simultaneously satisfy both legislative and economic criteria. In this context, coupling of processes can then be a promising alternative to the conventional approaches used by industry. The polymer-assisted ultrafiltration (PAUF) process is one of these coupling processes. Its principle is based on a sequence of steps with reaction (e.g., complexation) between metal ions and a polymer and a step involving the rejection of the formed species by means of a UF membrane. Unlike free ions, which can cross the UF membrane due to their small size, the polymer/ion species, the size of which is larger than pore size, are rejected. The PAUF process was deeply investigated herein in the case of removal of nickel ions by adding chitosan and carboxymethyl cellulose (CMC). Experiments were conducted with synthetic solutions containing 1 to 100 ppm of nickel ions with or without the presence of NaCl (0.05 to 0.2 M), and an industrial discharge water (containing several metal ions) with and without polymer. Chitosan with a molecular weight of 1.8×105 g mol⁻¹ and a degree of acetylation close to 15% was used. CMC with a degree of substitution of 0.7 and a molecular weight of 9×105 g mol⁻¹ was employed. Filtration experiments were performed under cross-flow conditions with a filtration cell equipped with a polyamide thin film composite flat-sheet membrane (3.5 kDa). Without the step of polymer addition, it was found that nickel rejection decreases from 80 to 0% with increasing metal ion concentration and salt concentration. This behavior agrees qualitatively with the Donnan exclusion principle: the increase in the electrolyte concentration screens the electrostatic interaction between ions and the membrane fixed the charge, which decreases their rejection. It was shown that addition of a sufficient amount of polymer (greater than 10⁻² M of monomer unit) can offset this decrease and allow good metal removal. However, the permeation flux was found to be somewhat reduced due to the increase in osmotic pressure and viscosity. It was also highlighted that the increase in pH (from 3 to 9) has a strong influence on removal performances: the higher pH value, the better removal performance. The two polymers have shown similar performance enhancement at natural pH. However, chitosan has proved more efficient in slightly basic conditions (above its pKa) whereas CMC has demonstrated very weak rejection performances when pH is below its pKa. In terms of metal rejection, chitosan is thus probably the better option for basic or strongly acid (pH < 4) conditions. Nevertheless, CMC should probably be preferred to chitosan in natural conditions (5 < pH < 8) since its impact on the permeation flux is less significant. Finally, ultrafiltration of an industrial discharge water has shown that the increase in metal ion rejection induced by the polymer addition is very low due to the competing phenomenon between the various ions present in the complex mixture.

Keywords: carboxymethyl cellulose, chitosan, heavy metals, nickel ion, polymer-assisted ultrafiltration

Procedia PDF Downloads 149
249 Polymer Matrices Based on Natural Compounds: Synthesis and Characterization

Authors: Sonia Kudlacik-Kramarczyk, Anna Drabczyk, Dagmara Malina, Bozena Tyliszczak, Agnieszka Sobczak-Kupiec

Abstract:

Introduction: In the preparation of polymer materials, compounds of natural origin are currently gaining more and more interest. This is particularly noticeable in the case of synthesis of materials considered for biomedical use. Then, selected material has to meet many requirements. It should be characterized by non-toxicity, biodegradability and biocompatibility. Therefore special attention is directed to substances such as polysaccharides, proteins or substances that are the basic building components of proteins, i.e. amino acids. These compounds may be crosslinked with other reagents that leads to the preparation of polymer matrices. Such amino acids as e.g. cysteine or histidine. On the other hand, previously mentioned requirements may be met by polymers obtained as a result of biosynthesis, e.g. polyhydroxybutyrate. This polymer belongs to the group of aliphatic polyesters that is synthesized by microorganisms (selected strain of bacteria) under specific conditions. It is possible to modify matrices based on given polymer with substances of various origin. Such a modification may result in the change of their properties or/and in providing the material with new features desirable in viewpoint of specific application. Described materials are synthesized using UV radiation. Process of photopolymerization is fast, waste-free and enables to obtain final products with favorable properties. Methodology: Polymer matrices have been prepared by means of photopolymerization. First step involved the preparation of solutions of particular reagents and mixing them in the appropriate ratio. Next, crosslinking agent and photoinitiator have been added to the reaction mixture and the whole was poured into the Petri dish and treated with UV radiation. After the synthesis, polymer samples were dried at room temperature and subjected to the numerous analyses aimed at the determining their physicochemical properties. Firstly, sorption properties of obtained polymer matrices have been determined. Next, mechanical properties have been characterized, i.e. tensile strength. The ability to deformation under applied stress of all prepared polymer matrices has been checked. Such a property is important in viewpoint of the application of analyzed materials e.g. as wound dressings. Wound dressings have to be elastic because depending on the location of the wound and its mobility, such a dressing has to adhere properly to the wound. Furthermore, considering the use of the materials for biomedical purposes it is essential to determine its behavior in environments simulating these ones occurring in human body. Therefore incubation studies using selected liquids have also been conducted. Conclusions: As a result of photopolymerization process, polymer matrices based on natural compounds have been prepared. These exhibited favorable mechanical properties and swelling ability. Moreover, biocompatibility in relation to simulated body fluids has been stated. Therefore it can be concluded that analyzed polymer matrices constitute an interesting materials that may be considered for biomedical use and may be subjected to the further more advanced analyses using specific cell lines.

Keywords: photopolymerization, polymer matrices, simulated body fluids, swelling properties

Procedia PDF Downloads 112
248 Stability of a Natural Weak Rock Slope under Rapid Water Drawdowns: Interaction between Guadalfeo Viaduct and Rules Reservoir, Granada, Spain

Authors: Sonia Bautista Carrascosa, Carlos Renedo Sanchez

Abstract:

The effect of a rapid drawdown is a classical scenario to be considered in slope stability under submerged conditions. This situation arises when totally or partially submerged slopes experience a descent of the external water level and is a typical verification to be done in a dam engineering discipline, as reservoir water levels commonly fluctuate noticeably during seasons and due to operational reasons. Although the scenario is well known and predictable in general, site conditions can increase the complexity of its assessment and external factors are not always expected, can cause a reduction in the stability or even a failure in a slope under a rapid drawdown situation. The present paper describes and discusses the interaction between two different infrastructures, a dam and a highway, and the impact on the stability of a natural rock slope overlaid by the north abutment of a viaduct of the A-44 Highway due to the rapid drawdown of the Rules Dam, in the province of Granada (south of Spain). In the year 2011, with both infrastructures, the A-44 Highway and the Rules Dam already constructed, delivered and under operation, some movements start to be recorded in the approximation embankment and north abutment of the Guadalfeo Viaduct, included in the highway and developed to solve the crossing above the tail of the reservoir. The embankment and abutment were founded in a low-angle natural rock slope formed by grey graphic phyllites, distinctly weathered and intensely fractured, with pre-existing fault and weak planes. After the first filling of the reservoir, to a relative level of 243m, three consecutive drawdowns were recorded in the autumns 2010, 2011 and 2012, to relative levels of 234m, 232m and 225m. To understand the effect of these drawdowns in the weak rock mass strength and in its stability, a new geological model was developed, after reviewing all the available ground investigations, updating the geological mapping of the area and supplemented with an additional geotechnical and geophysical investigations survey. Together with all this information, rainfall and reservoir level evolution data have been reviewed in detail to incorporate into the monitoring interpretation. The analysis of the monitoring data and the new geological and geotechnical interpretation, supported by the use of limit equilibrium software Slide2, concludes that the movement follows the same direction as the schistosity of the phyllitic rock mass, coincident as well with the direction of the natural slope, indicating a deep-seated movement of the whole slope towards the reservoir. As part of these conclusions, the solutions considered to reinstate the highway infrastructure to the required FoS will be described, and the geomechanical characterization of these weak rocks discussed, together with the influence of water level variations, not only in the water pressure regime but in its geotechnical behavior, by the modification of the strength parameters and deformability.

Keywords: monitoring, rock slope stability, water drawdown, weak rock

Procedia PDF Downloads 152
247 Leadership Education for Law Enforcement Mid-Level Managers: The Mediating Role of Effectiveness of Training on Transformational and Authentic Leadership Traits

Authors: Kevin Baxter, Ron Grove, James Pitney, John Harrison, Ozlem Gumus

Abstract:

The purpose of this research is to determine the mediating effect of effectiveness of the training provided by Northwestern University’s School of Police Staff and Command (SPSC), on the ability of law enforcement mid-level managers to learn transformational and authentic leadership traits. This study will also evaluate the leadership styles, of course, graduates compared to non-attendees using a static group comparison design. The Louisiana State Police pay approximately $40,000 in salary, tuition, housing, and meals for each state police lieutenant attending the 10-week program of the SPSC. This school lists the development of transformational leaders as an increasing element. Additionally, the SPSC curriculum addresses all four components of authentic leadership - self-awareness, transparency, ethical/moral, and balanced processing. Upon return to law enforcement in roles of mid-level management, there are questions as to whether or not students revert to an “autocratic” leadership style. Insufficient evidence exists to support claims for the effectiveness of management training or leadership development. Though it is widely recognized that transformational styles are beneficial to law enforcement, there is little evidence that suggests police leadership styles are changing. Police organizations continue to hold to a more transactional style (i.e., most senior police leaders remain autocrats). Additionally, research in the application of transformational, transactional, and laissez-faire leadership related to police organizations is minimal. The population of the study is law enforcement mid-level managers from various states within the United States who completed leadership training presented by the SPSC. The sample will be composed of 66 active law enforcement mid-level managers (lieutenants and captains) who have graduated from SPSC and 65 active law enforcement mid-level managers (lieutenants and captains) who have not attended SPSC. Participants will answer demographics questions, Multifactor Leadership Questionnaire, Authentic Leadership Questionnaire, and the Kirkpatrick Hybrid Evaluation Survey. Analysis from descriptive statistics, group comparison, one-way MANCOVA, and the Kirkpatrick Evaluation Model survey will be used to determine training effectiveness in the four levels of reaction, learning, behavior, and results. Independent variables are SPSC graduates (two groups: upper and lower) and no-SPSC attendees, and dependent variables are transformational and authentic leadership scores. SPSC graduates are expected to have higher MLQ scores for transformational leadership traits and higher ALQ scores for authentic leadership traits than SPSC non-attendees. We also expect the graduates to rate the efficacy of SPSC leadership training as high. This study will validate (or invalidate) the benefits, costs, and resources required for leadership development from a nationally recognized police leadership program, and it will also help fill the gap in the literature that exists between law enforcement professional development and transformational and authentic leadership styles.

Keywords: training effectiveness, transformational leadership, authentic leadership, law enforcement mid-level manager

Procedia PDF Downloads 94
246 Integrated Manufacture of Polymer and Conductive Tracks for Functional Objects Fabrication

Authors: Barbara Urasinska-Wojcik, Neil Chilton, Peter Todd, Christopher Elsworthy, Gregory J. Gibbons

Abstract:

The recent increase in the application of Additive Manufacturing (AM) of products has resulted in new demands on capability. The ability to integrate both form and function within printed objects is the next frontier in the 3D printing area. To move beyond prototyping into low volume production, we demonstrate a UK-designed and built AM hybrid system that combines polymer based structural deposition with digital deposition of electrically conductive elements. This hybrid manufacturing system is based on a multi-planar build approach to improve on many of the limitations associated with AM, such as poor surface finish, low geometric tolerance, and poor robustness. Specifically, the approach involves a multi-planar Material Extrusion (ME) process in which separated build stations with up to 5 axes of motion replace traditional horizontally-sliced layer modeling. The construction of multi-material architectures also involved using multiple print systems in order to combine both ME and digital deposition of conductive material. To demonstrate multi-material 3D printing, three thermoplastics, acrylonitrile butadiene styrene (ABS), polyamide 6,6/6 copolymers (CoPA) and polyamide 12 (PA) were used to print specimens, on top of which our high viscosity Ag-particulate ink was printed in a non-contact process, during which drop characteristics such as shape, velocity, and volume were assessed using a drop watching system. Spectroscopic analysis of these 3D printed materials in the IR region helped to determine the optimum in-situ curing system for implementation into the AM system to achieve improved adhesion and surface refinement. Thermal Analyses were performed to determine the printed materials glass transition temperature (Tg), stability and degradation behavior to find the optimum annealing conditions post printing. Electrical analysis of printed conductive tracks on polymer surfaces during mechanical testing (static tensile and 3-point bending and dynamic fatigue) was performed to assess the robustness of the electrical circuits. The tracks on CoPA, ABS, and PA exhibited low electrical resistance, and in case of PA resistance values of tracks remained unchanged across hundreds of repeated tensile cycles up to 0.5% strain amplitude. Our developed AM printer has the ability to fabricate fully functional objects in one build, including complex electronics. It enables product designers and manufacturers to produce functional saleable electronic products from a small format modular platform. It will make 3D printing better, faster and stronger.

Keywords: additive manufacturing, conductive tracks, hybrid 3D printer, integrated manufacture

Procedia PDF Downloads 155
245 Comparative Review of Models for Forecasting Permanent Deformation in Unbound Granular Materials

Authors: Shamsulhaq Amin

Abstract:

Unbound granular materials (UGMs) are pivotal in ensuring long-term quality, especially in the layers under the surface of flexible pavements and other constructions. This study seeks to better understand the behavior of the UGMs by looking at popular models for predicting lasting deformation under various levels of stresses and load cycles. These models focus on variables such as the number of load cycles, stress levels, and features specific to materials and were evaluated on the basis of their ability to accurately predict outcomes. The study showed that these factors play a crucial role in how well the models work. Therefore, the research highlights the need to look at a wide range of stress situations to more accurately predict how much the UGMs bend or shift. The research looked at important factors, like how permanent deformation relates to the number of times a load is applied, how quickly this phenomenon happens, and the shakedown effect, in two different types of UGMs: granite and limestone. A detailed study was done over 100,000 load cycles, which provided deep insights into how these materials behave. In this study, a number of factors, such as the level of stress applied, the number of load cycles, the density of the material, and the moisture present were seen as the main factors affecting permanent deformation. It is vital to fully understand these elements for better designing pavements that last long and handle wear and tear. A series of laboratory tests were performed to evaluate the mechanical properties of materials and acquire model parameters. The testing included gradation tests, CBR tests, and Repeated load triaxial tests. The repeated load triaxial tests were crucial for studying the significant components that affect deformation. This test involved applying various stress levels to estimate model parameters. In addition, certain model parameters were established by regression analysis, and optimization was conducted to improve outcomes. Afterward, the material parameters that were acquired were used to construct graphs for each model. The graphs were subsequently compared to the outcomes obtained from the repeated load triaxial testing. Additionally, the models were evaluated to determine if they demonstrated the two inherent deformation behaviors of materials when subjected to repetitive load: the initial phase, post-compaction, and the second phase volumetric changes. In this study, using log-log graphs was key to making the complex data easier to understand. This method made the analysis clearer and helped make the findings easier to interpret, adding both precision and depth to the research. This research provides important insight into picking the right models for predicting how these materials will act under expected stress and load conditions. Moreover, it offers crucial information regarding the effect of load cycle and permanent deformation as well as the shakedown effect on granite and limestone UGMs.

Keywords: permanent deformation, unbound granular materials, load cycles, stress level

Procedia PDF Downloads 23
244 Remote Radiation Mapping Based on UAV Formation

Authors: Martin Arguelles Perez, Woosoon Yim, Alexander Barzilov

Abstract:

High-fidelity radiation monitoring is an essential component in the enhancement of the situational awareness capabilities of the Department of Energy’s Office of Environmental Management (DOE-EM) personnel. In this paper, multiple units of unmanned aerial vehicles (UAVs) each equipped with a cadmium zinc telluride (CZT) gamma-ray sensor are used for radiation source localization, which can provide vital real-time data for the EM tasks. To achieve this goal, a fully autonomous system of multicopter-based UAV swarm in 3D tetrahedron formation is used for surveying the area of interest and performing radiation source localization. The CZT sensor used in this study is suitable for small-size multicopter UAVs due to its small size and ease of interfacing with the UAV’s onboard electronics for high-resolution gamma spectroscopy enabling the characterization of radiation hazards. The multicopter platform with a fully autonomous flight feature is suitable for low-altitude applications such as radiation contamination sites. The conventional approach uses a single UAV mapping in a predefined waypoint path to predict the relative location and strength of the source, which can be time-consuming for radiation localization tasks. The proposed UAV swarm-based approach can significantly improve its ability to search for and track radiation sources. In this paper, two approaches are developed using (a) 2D planar circular (3 UAVs) and (b) 3D tetrahedron formation (4 UAVs). In both approaches, accurate estimation of the gradient vector is crucial for heading angle calculation. Each UAV carries the CZT sensor; the real-time radiation data are used for the calculation of a bulk heading vector for the swarm to achieve a UAV swarm’s source-seeking behavior. Also, a spinning formation is studied for both cases to improve gradient estimation near a radiation source. In the 3D tetrahedron formation, a UAV located closest to the source is designated as a lead unit to maintain the tetrahedron formation in space. Such a formation demonstrated a collective and coordinated movement for estimating a gradient vector for the radiation source and determining an optimal heading direction of the swarm. The proposed radiation localization technique is studied by computer simulation and validated experimentally in the indoor flight testbed using gamma sources. The technology presented in this paper provides the capability to readily add/replace radiation sensors to the UAV platforms in the field conditions enabling extensive condition measurement and greatly improving situational awareness and event management. Furthermore, the proposed radiation localization approach allows long-term measurements to be efficiently performed at wide areas of interest to prevent disasters and reduce dose risks to people and infrastructure.

Keywords: radiation, unmanned aerial system(UAV), source localization, UAV swarm, tetrahedron formation

Procedia PDF Downloads 78
243 Development of Portable Hybrid Renewable Energy System for Sustainable Electricity Supply to Rural Communities in Nigeria

Authors: Abdulkarim Nasir, Alhassan T. Yahaya, Hauwa T. Abdulkarim, Abdussalam El-Suleiman, Yakubu K. Abubakar

Abstract:

The need for sustainable and reliable electricity supply in rural communities of Nigeria remains a pressing issue, given the country's vast energy deficit and the significant number of inhabitants lacking access to electricity. This research focuses on the development of a portable hybrid renewable energy system designed to provide a sustainable and efficient electricity supply to these underserved regions. The proposed system integrates multiple renewable energy sources, specifically solar and wind, to harness the abundant natural resources available in Nigeria. The design and development process involves the selection and optimization of components such as photovoltaic panels, wind turbines, energy storage units (batteries), and power management systems. These components are chosen based on their suitability for rural environments, cost-effectiveness, and ease of maintenance. The hybrid system is designed to be portable, allowing for easy transportation and deployment in remote locations with limited infrastructure. Key to the system's effectiveness is its hybrid nature, which ensures continuous power supply by compensating for the intermittent nature of individual renewable sources. Solar energy is harnessed during the day, while wind energy is captured whenever wind conditions are favourable, thus ensuring a more stable and reliable energy output. Energy storage units are critical in this setup, storing excess energy generated during peak production times and supplying power during periods of low renewable generation. These studies include assessing the solar irradiance, wind speed patterns, and energy consumption needs of rural communities. The simulation results inform the optimization of the system's design to maximize energy efficiency and reliability. This paper presents the development and evaluation of a 4 kW standalone hybrid system combining wind and solar power. The portable device measures approximately 8 feet 5 inches in width, 8 inches 4 inches in depth, and around 38 feet in height. It includes four solar panels with a capacity of 120 watts each, a 1.5 kW wind turbine, a solar charge controller, remote power storage, batteries, and battery control mechanisms. Designed to operate independently of the grid, this hybrid device offers versatility for use in highways and various other applications. It also presents a summary and characterization of the device, along with photovoltaic data collected in Nigeria during the month of April. The construction plan for the hybrid energy tower is outlined, which involves combining a vertical-axis wind turbine with solar panels to harness both wind and solar energy. Positioned between the roadway divider and automobiles, the tower takes advantage of the air velocity generated by passing vehicles. The solar panels are strategically mounted to deflect air toward the turbine while generating energy. Generators and gear systems attached to the turbine shaft enable power generation, offering a portable solution to energy challenges in Nigerian communities. The study also addresses the economic feasibility of the system, considering the initial investment costs, maintenance, and potential savings from reduced fossil fuel use. A comparative analysis with traditional energy supply methods highlights the long-term benefits and sustainability of the hybrid system.

Keywords: renewable energy, solar panel, wind turbine, hybrid system, generator

Procedia PDF Downloads 12
242 Impact of Sufism on Indian Cinema: A New Cultural Construct for Mediating Conflict

Authors: Ravi Chaturvedi, Ghanshyam Beniwal

Abstract:

Without going much into the detail of long history of Sufism in the world and the etymological definition of the word ‘Sufi’, it will be sufficient to underline that the concept of Sufism was to focus the mystic power on the spiritual dimension of Islam with a view-shielding the believers from the outwardly and unrealistic dogma of the faith. Sufis adopted rather a liberal view in propagating the religious order of Islam suitable to the cultural and social environment of the land. It is, in fact, a mission of higher religious order of any faith, which disdains strife and conflict in any form. The joy of self-realization being the essence of religion is experienced after a long spiritual practice. India had Sufi and Bhakti (devotion) traditions in Islam and Hinduism, respectively. Both Sufism and Bhakti traditions were based on respect for different religions. The poorer and lower caste Hindus and Muslims were greatly influenced by these traditions. Unlike Ulemas and Brahmans, the Sufi and Bhakti saints were highly tolerant and open to the truth in other faiths. They never adopted sectarian attitudes and were never involved in power struggles. They kept away from power structures. Sufism is integrated with the Indian cinema since its initial days. In the earliest Bollywood movies, Sufism was represented in the form of qawwali which made its way from dargahs (shrines). Mixing it with pop influences, Hindi movies began using Sufi music in a big way only in the current decade. However, of late, songs with Sufi influences have become de rigueur in almost every film being released these days, irrespective of the genre, whether it is a romantic Gangster or a cerebral Corporate. 'Sufi is in the DNA of the Indian sub-continent', according to several contemporary filmmakers, critics, and spectators.The inherent theatricality motivates the performer of the 'Sufi' rituals for a dramatic behavior. The theatrical force of these stages of Sufi practice is so powerful that even the spectator cannot resist himself from being moved. In a multi-cultural country like India, the mediating streams have acquired a multi-layered importance in recent history. The second half of Indian post-colonial era has witnessed a regular chain of some conflicting religio-political waves arising from various sectarian camps in the country, which have compelled the counter forces to activate for keeping the spirit of composite cultural ethos alive. The study has revealed that the Sufi practice methodology is also being adapted for inclusion of spirituality in life at par to Yoga practice. This paper, a part of research study, is an attempt to establish that the Sufism in Indian cinema is one such mediating voice which is very active and alive throughout the length and width of the country continuously bridging the gap between various religious and social factions, and have a significant role to play in future as well.

Keywords: Indian cinema, mediating voice, Sufi, yoga practice

Procedia PDF Downloads 479
241 Characteristics of the Mortars Obtained by Radioactive Recycled Sand

Authors: Claudiu Mazilu, Ion Robu, Radu Deju

Abstract:

At the end of 2011 worldwide there were 124 power reactors shut down, from which: 16 fully decommissioned, 50 power reactors in a decommissioning process, 49 reactors in “safe enclosure mode”, 3 reactors “entombed”, for other 6 reactors it was not yet have specified the decommissioning strategy. The concrete radioactive waste that will be generated from dismantled structures of VVR-S nuclear research reactor from Magurele (e.g.: biological shield of the reactor core and hot cells) represents an estimated amount of about 70 tons. Until now the solid low activity radioactive waste (LLW) was pre-placed in containers and cementation with mortar made from cement and natural fine aggregates, providing a fill ratio of the container of approximately 50 vol. % for concrete. In this paper is presented an innovative technology in which radioactive concrete is crushed and the mortar made from recycled radioactive sand, cement, water and superplasticizer agent is poured in container with radioactive rubble (that is pre-placed in container) for cimentation. Is achieved a radioactive waste package in which the degree of filling of radioactive waste increases substantially. The tests were carried out on non-radioactive material because the radioactive concrete was not available in a good time. Waste concrete with maximum size of 350 mm were crushed in the first stage with a Liebhher type jaw crusher, adjusted to nominal size of 50 mm. Crushed concrete less than 50 mm was sieved in order to obtain useful sort for preplacement, 10 to 50 mm. The rest of the screening > 50 mm obtained from primary crushing of concrete was crushed in the second stage, with different working principles crushers at size < 2.5 mm, in order to produce recycled fine aggregate (sand) for the filler mortar and which fulfills the technical specifications proposed: –jaw crusher, Retsch type, model BB 100; –hammer crusher, Buffalo Shuttle model WA-12-H; presented a series of characteristics of recycled concrete aggregates by predefined class (the granulosity, the granule shape, the absorption of water, behavior to the Los Angeles test, the content of attached mortar etc.), most in comparison with characteristics of natural aggregates. Various mortar recipes were used in order to identify those that meet the proposed specification (flow-rate: 16-50s, no bleeding, min. 30N/mm2 compressive strength of the mortar after 28 days, the proportion of recycled sand used in mortar: min. 900kg/m3) and allow obtaining of the highest fill ratio for mortar. In order to optimize the mortars following compositional factors were varied: aggregate nature, water/cement (W/C) ratio, sand/cement (S/C) ratio, nature and proportion of additive. To confirm the results obtained on a small scale, it made an attempt to fill the mortar in a container that simulates the final storage drums. Was measured the mortar fill ratio (98.9%) compared with the results of laboratory tests and targets set out in the proposed specification. Although fill ratio obtained on the mock-up is lower by 0.8 vol. % compared to that obtained in the laboratory tests (99.7%), the result meets the specification criteria.

Keywords: characteristics, radioactive recycled concrete aggregate, mortars, fill ratio

Procedia PDF Downloads 184
240 Persuading ICT Consumers to Disconnect from Work: An Experimental Study on the Influence of Message Frame, Regulatory Focus, Ad Believability and Attitude toward the Ad on Message Effectiveness

Authors: Katharina Ninaus, Ralf Terlutter, Sandra Diehl

Abstract:

Information and communication technologies (ICT) have become pervasive in all areas of modern life, both in work and leisure. Technological developments and particularly the ubiquity of smartphones have made it possible for ICT consumers to be constantly connected to work, fostering an always-on mentality and increasing the pressure to be accessible at all times. However, performing work tasks outside of working hours using ICT results in a lack of mental detachment and recovery from work. It is, therefore, necessary to develop effective behavioral interventions to increase risk awareness of a constant connection to the workplace in the employed population. Drawing on regulatory focus theory, this study aims to investigate the persuasiveness of tailoring messages to individuals’ chronic regulatory focus in order to encourage ICT consumers to set boundaries by defining fixed times for professional accessibility outside of working hours in order to contribute to the well-being of ICT consumers with high ICT involvement in their work life. The experimental study examines the interaction effect between consumers’ chronic regulatory focus (i.e. promotion focus versus prevention focus) and positive or negative message framing (i.e. gain frame versus loss frame) on consumers’ intention to perform the advocated behavior. Based on the assumption that congruent messages create regulatory fit and increase message effectiveness, it is hypothesized that behavioral intention will be higher in the condition of regulatory fit compared to regulatory non-fit. It is further hypothesized that ad believability and attitude toward the ad will mediate the effect of regulatory fit on behavioral intention given that ad believability and ad attitude both determine consumer behavioral responses. Results confirm that the interaction between regulatory focus and message frame emerged as a predictor of behavioral intention such as that consumers’ intentions to set boundaries by defining fixed times for professional accessibility outside of working hours increased as congruency with their regulatory focus increased. The loss-framed ad was more effective for consumers with a predominant prevention focus, while the gain-framed ad was more effective for consumers with a predominant promotion focus. Ad believability and attitude toward the ad both emerged as predictors of behavioral intention. Mediation analysis revealed that the direct effect of the interaction between regulatory focus and message frame on behavioral intention was no longer significant when including ad believability and ad attitude as mediators in the model, indicating full mediation. However, while the indirect effect through ad believability was significant, the indirect effect through attitude toward the ad was not significant. Hence, regulatory fit increased ad believability, which then increased behavioral intention. Ad believability appears to have a superior effect indicating that behavioral intention does not depend on attitude toward the ad, but it depends on whether or not the ad is perceived as believable. The study shows that the principle of regulatory fit holds true in the context of ICT consumption and responds to calls for more research on mediators of health message framing effects.

Keywords: always-on mentality, Information and communication technologies (ICT) consumption, message framing, regulatory focus

Procedia PDF Downloads 196
239 Influencing Factors on Stability of Shale with Silt Layers at Slopes

Authors: A. K. M. Badrul Alam, Yoshiaki Fujii, Nahid Hasan Dipu, Shakil Ahmed Razo

Abstract:

Shale rockmasses often include silt layers, impacting slope stability in construction and mining. Analyzing their interaction is crucial for long-term stability. A study used an elastoplastic model, incorporating the stress transfer method and Coulomb's criterion, to assess a shale rock mass with silt layers. It computed stress distribution, assessed failure potential, and identified vulnerable regions where nodal forces were calculated for a comprehensive analysis. A shale rock mass ranging from 14.75 to 16.75 meters thick, with silt layers varying from 0.36 to 0.5 meters, was considered in the model. It examined four silt layer conditions: horizontal (SiHL), vertical (SiVL), inclined against slope (SiIincAGS), and along slope (SilincALO). Mechanical parameters like uniaxial compressive strength (UCS), tensile strength (TS), Young’s modulus (E), Poisson’s ratio, and density were adjusted for varied scenarios: UCS (0.5 to 5 MPa), TS (0.1 to 1 MPa), and E (6 to 60 MPa). In elastic analysis of shale rock masses, stress distributions vary based on layer properties. When shale and silt layers have the same elasticity modulus (E), stress concentrates at corners. If the silt layer has a lower E than shale, marginal changes in maximum stress (σmax) occur for SilHL. A decrease in σmax is evident at SilVL. Slight variations in σmax are observed for SilincAGS and SilincALO. In the elastoplastic analysis, the overall decrease of 20%, 40%, 60%, 80%, and 90% was considered. For SilHL:(i) Same E, UCS, and TS for silt layer and shale, UCS/TS ratio 5: strength decrease led to shear (S), tension then shear (T then S) failure; noticeable failure at 60% decrease, significant at 80%, collapse at 90%. (ii) Lower E for silt layer, same strength as shale: No significant differences. (iii) Lower E and UCS, silt layer strength 1/10: No significant differences. For SilVL: (i) Same E, UCS, and TS for silt layer and shale, UCS/TS ratio 5: Similar effects as SilHL. (ii) Lower E for silt layer, same strength as shale: Slip occurred. (iii) Lower E and UCS, silt layer strength 1/10: Bitension failure also observed with larger slip. For SilincAGS: (i) Same E, UCS, and TS for silt layer and shale, UCS/TS ratio 5: Effects similar to SilHL. (ii) Lower E for silt layer, same strength as shale: Slip occurred. (iii) Lower E and UCS, silt layer strength 1/10: Tension failure also observed with larger slip. For SilincALO: (i) Same E, UCS, and TS for silt layer and shale, UCS/TS ratio 5: Similar to SilHL with tension failure. (ii) Lower E for silt layer, same strength as shale: No significant differences; failure diverged. (iii) Lower E and UCS, silt layer strength 1/10: Bitension failure also observed with larger slip; failure diverged. Toppling failure was observed for lower E cases of SilVL and SilincAGS. The presence of silt interlayers in shale greatly impacts slope stability. Designing slopes requires careful consideration of both the silt and shale's mechanical properties. The temporal degradation of strength in these layers is a major concern. Thus, slope design must comprehensively analyze the immediate and long-term mechanical behavior of interlayer silt and shale to effectively mitigate instability.

Keywords: shale rock masses, silt layers, slope stability, elasto-plastic model, temporal degradation

Procedia PDF Downloads 43
238 Interpretable Deep Learning Models for Medical Condition Identification

Authors: Dongping Fang, Lian Duan, Xiaojing Yuan, Mike Xu, Allyn Klunder, Kevin Tan, Suiting Cao, Yeqing Ji

Abstract:

Accurate prediction of a medical condition with straight clinical evidence is a long-sought topic in the medical management and health insurance field. Although great progress has been made with machine learning algorithms, the medical community is still, to a certain degree, suspicious about the model's accuracy and interpretability. This paper presents an innovative hierarchical attention deep learning model to achieve good prediction and clear interpretability that can be easily understood by medical professionals. This deep learning model uses a hierarchical attention structure that matches naturally with the medical history data structure and reflects the member’s encounter (date of service) sequence. The model attention structure consists of 3 levels: (1) attention on the medical code types (diagnosis codes, procedure codes, lab test results, and prescription drugs), (2) attention on the sequential medical encounters within a type, (3) attention on the medical codes within an encounter and type. This model is applied to predict the occurrence of stage 3 chronic kidney disease (CKD3), using three years’ medical history of Medicare Advantage (MA) members from a top health insurance company. The model takes members’ medical events, both claims and electronic medical record (EMR) data, as input, makes a prediction of CKD3 and calculates the contribution from individual events to the predicted outcome. The model outcome can be easily explained with the clinical evidence identified by the model algorithm. Here are examples: Member A had 36 medical encounters in the past three years: multiple office visits, lab tests and medications. The model predicts member A has a high risk of CKD3 with the following well-contributed clinical events - multiple high ‘Creatinine in Serum or Plasma’ tests and multiple low kidneys functioning ‘Glomerular filtration rate’ tests. Among the abnormal lab tests, more recent results contributed more to the prediction. The model also indicates regular office visits, no abnormal findings of medical examinations, and taking proper medications decreased the CKD3 risk. Member B had 104 medical encounters in the past 3 years and was predicted to have a low risk of CKD3, because the model didn’t identify diagnoses, procedures, or medications related to kidney disease, and many lab test results, including ‘Glomerular filtration rate’ were within the normal range. The model accurately predicts members A and B and provides interpretable clinical evidence that is validated by clinicians. Without extra effort, the interpretation is generated directly from the model and presented together with the occurrence date. Our model uses the medical data in its most raw format without any further data aggregation, transformation, or mapping. This greatly simplifies the data preparation process, mitigates the chance for error and eliminates post-modeling work needed for traditional model explanation. To our knowledge, this is the first paper on an interpretable deep-learning model using a 3-level attention structure, sourcing both EMR and claim data, including all 4 types of medical data, on the entire Medicare population of a big insurance company, and more importantly, directly generating model interpretation to support user decision. In the future, we plan to enrich the model input by adding patients’ demographics and information from free-texted physician notes.

Keywords: deep learning, interpretability, attention, big data, medical conditions

Procedia PDF Downloads 82
237 Uncertainty Quantification of Crack Widths and Crack Spacing in Reinforced Concrete

Authors: Marcel Meinhardt, Manfred Keuser, Thomas Braml

Abstract:

Cracking of reinforced concrete is a complex phenomenon induced by direct loads or restraints affecting reinforced concrete structures as soon as the tensile strength of the concrete is exceeded. Hence it is important to predict where cracks will be located and how they will propagate. The bond theory and the crack formulas in the actual design codes, for example, DIN EN 1992-1-1, are all based on the assumption that the reinforcement bars are embedded in homogeneous concrete without taking into account the influence of transverse reinforcement and the real stress situation. However, it can often be observed that real structures such as walls, slabs or beams show a crack spacing that is orientated to the transverse reinforcement bars or to the stirrups. In most Finite Element Analysis studies, the smeared crack approach is used for crack prediction. The disadvantage of this model is that the typical strain localization of a crack on element level can’t be seen. The crack propagation in concrete is a discontinuous process characterized by different factors such as the initial random distribution of defects or the scatter of material properties. Such behavior presupposes the elaboration of adequate models and methods of simulation because traditional mechanical approaches deal mainly with average material parameters. This paper concerned with the modelling of the initiation and the propagation of cracks in reinforced concrete structures considering the influence of transverse reinforcement and the real stress distribution in reinforced concrete (R/C) beams/plates in bending action. Therefore, a parameter study was carried out to investigate: (I) the influence of the transversal reinforcement to the stress distribution in concrete in bending mode and (II) the crack initiation in dependence of the diameter and distance of the transversal reinforcement to each other. The numerical investigations on the crack initiation and propagation were carried out with a 2D reinforced concrete structure subjected to quasi static loading and given boundary conditions. To model the uncertainty in the tensile strength of concrete in the Finite Element Analysis correlated normally and lognormally distributed random filed with different correlation lengths were generated. The paper also presents and discuss different methods to generate random fields, e.g. the Covariance Matrix Decomposition Method. For all computations, a plastic constitutive law with softening was used to model the crack initiation and the damage of the concrete in tension. It was found that the distributions of crack spacing and crack widths are highly dependent of the used random field. These distributions are validated to experimental studies on R/C panels which were carried out at the Laboratory for Structural Engineering at the University of the German Armed Forces in Munich. Also, a recommendation for parameters of the random field for realistic modelling the uncertainty of the tensile strength is given. The aim of this research was to show a method in which the localization of strains and cracks as well as the influence of transverse reinforcement on the crack initiation and propagation in Finite Element Analysis can be seen.

Keywords: crack initiation, crack modelling, crack propagation, cracks, numerical simulation, random fields, reinforced concrete, stochastic

Procedia PDF Downloads 135
236 Comparative Appraisal of Polymeric Matrices Synthesis and Characterization Based on Maleic versus Itaconic Anhydride and 3,9-Divinyl-2,4,8,10-Tetraoxaspiro[5.5]-Undecane

Authors: Iordana Neamtu, Aurica P. Chiriac, Loredana E. Nita, Mihai Asandulesa, Elena Butnaru, Nita Tudorachi, Alina Diaconu

Abstract:

In the last decade, the attention of many researchers is focused on the synthesis of innovative “intelligent” copolymer structures with great potential for different uses. This considerable scientific interest is stimulated by possibility of the significant improvements in physical, mechanical, thermal and other important specific properties of these materials. Functionalization of polymer in synthesis by designing a suitable composition with the desired properties and applications is recognized as a valuable tool. In this work is presented a comparative study of the properties of the new copolymers poly(maleic anhydride maleic-co-3,9-divinyl-2,4,8,10-tetraoxaspiro[5.5]undecane) and poly(itaconic-anhydride-co-3,9-divinyl-2,4,8,10-tetraoxaspiro[5.5]undecane) obtained by radical polymerization in dioxane, using 2,2′-azobis(2-methylpropionitrile) as free-radical initiator. The comonomers are able for generating special effects as for example network formation, biodegradability and biocompatibility, gel formation capacity, binding properties, amphiphilicity, good oxidative and thermal stability, good film formers, and temperature and pH sensitivity. Maleic anhydride (MA) and also the isostructural analog itaconic anhydride (ITA) as polyfunctional monomers are widely used in the synthesis of reactive macromolecules with linear, hyperbranched and self & assembled structures to prepare high performance engineering, bioengineering and nano engineering materials. The incorporation of spiroacetal groups in polymer structures improves the solubility and the adhesive properties, induce good oxidative and thermal stability, are formers of good fiber or films with good flexibility and tensile strength. Also, the spiroacetal rings induce interactions on ether oxygen such as hydrogen bonds or coordinate bonds with other functional groups determining bulkiness and stiffness. The synthesized copolymers are analyzed by DSC, oscillatory and rotational rheological measurements and dielectric spectroscopy with the aim of underlying the heating behavior, solution viscosity as a function of shear rate and temperature and to investigate the relaxation processes and the motion of functional groups present in side chain around the main chain or bonds of the side chain. Acknowledgments This work was financially supported by the grant of the Romanian National Authority for Scientific Research, CNCS-UEFISCDI, project number PN-II-132/2014 “Magnetic biomimetic supports as alternative strategy for bone tissue engineering and repair’’ (MAGBIOTISS).

Keywords: Poly(maleic anhydride-co-3, 9-divinyl-2, 4, 8, 10-tetraoxaspiro (5.5)undecane); Poly(itaconic anhydride-co-3, 9-divinyl-2, 4, 8, 10-tetraoxaspiro (5.5)undecane); DSC; oscillatory and rotational rheological analysis; dielectric spectroscopy

Procedia PDF Downloads 218
235 Food Design as a University-Industry Collaboration Project: An Experience Design on Controlling Chocolate Consumption and Long-Term Eating Behavior

Authors: Büşra Durmaz, Füsun Curaoğlu

Abstract:

While technology-oriented developments in the modern world change our perceptions of time and speed, they also force our food consumption patterns, such as getting pleasure from what we eat and eating slowly. The habit of eating quickly and hastily causes not only the feeling of not understanding the taste of the food eaten but also the inability to postpone the feeling of satiety and, therefore, many health problems. In this context, especially in the last ten years, in the field of industrial design, food manufacturers for healthy living and consumption have been collaborating with industrial designers on food design. The consumers of the new century, who are in an uncontrolled time intensity, receive support from small snacks as a source of happiness and pleasure in the little time intervals they can spare. At this point, especially chocolate has been a source of happiness for its consumers as a source of both happiness and pleasure for hundreds of years. However, when the portions have eaten cannot be controlled, a pleasure food such as chocolate can cause both health problems and many emotional problems, especially the feeling of guilt. Fast food, which is called food that is prepared and consumed quickly, has been increasing rapidly around the world in recent years. This study covers the process and results of a chocolate design based on the user experience of a university-industry cooperation project carried out within the scope of Eskişehir Technical University graduation projects. The aim of the project is a creative product design that will enable the user to experience chocolate consumption with a healthy eating approach. For this, while concepts such as pleasure, satiety, and taste are discussed; A survey with 151 people and semi-structured face-to-face interviews with 7 people during the experience design process within the scope of the user-oriented design approach, mainly literature review, within the scope of main topics such as mouth anatomy, tongue structure, taste, the functions of the eating action in the brain, hormones and chocolate, video A case study based on the research paradigm of Qualitative Research was structured within the scope of different research processes such as analysis and project diaries. As a result of the research, it has been reached that the melting in the mouth is the preferred experience of the users in order to spread the experience of eating chocolate for a long time based on pleasure while eating chocolate with healthy portions. In this context, researches about the production of sketches, mock-ups and prototypes of the product are included in the study. As a result, a product packaging design has been made that supports the active role of the senses such as sight, smell and hearing, where consumption begins, in order to consume chocolate by melting and to actively secrete the most important stimulus salivary glands in order to provide a healthy and long-term pleasure-based consumption.

Keywords: chocolate, eating habit, pleasure, saturation, sense of taste

Procedia PDF Downloads 64
234 The Procedural Sedation Checklist Manifesto, Emergency Department, Jersey General Hospital

Authors: Jerome Dalphinis, Vishal Patel

Abstract:

The Bailiwick of Jersey is an island British crown dependency situated off the coast of France. Jersey General Hospital’s emergency department sees approximately 40,000 patients a year. It’s outside the NHS, with secondary care being free at the point of care. Sedation is a continuum which extends from a normal conscious level to being fully unresponsive. Procedural sedation produces a minimally depressed level of consciousness in which the patient retains the ability to maintain an airway, and they respond appropriately to physical stimulation. The goals of it are to improve patient comfort and tolerance of the procedure and alleviate associated anxiety. Indications can be stratified by acuity, emergency (cardioversion for life-threatening dysrhythmia), and urgency (joint reduction). In the emergency department, this is most often achieved using a combination of opioids and benzodiazepines. Some departments also use ketamine to produce dissociative sedation, a cataleptic state of profound analgesia and amnesia. The response to pharmacological agents is highly individual, and the drugs used occasionally have unpredictable pharmacokinetics and pharmacodynamics, which can always result in progression between levels of sedation irrespective of the intention. Therefore, practitioners must be able to ‘rescue’ patients from deeper sedation. These practitioners need to be senior clinicians with advanced airway skills (AAS) training. It can lead to adverse effects such as dangerous hypoxia and unintended loss of consciousness if incorrectly undertaken; studies by the National Confidential Enquiry into Patient Outcome and Death (NCEPOD) have reported avoidable deaths. The Royal College of Emergency Medicine, UK (RCEM) released an updated ‘Safe Sedation of Adults in the Emergency Department’ guidance in 2017 detailing a series of standards for staff competencies, and the required environment and equipment, which are required for each target sedation depth. The emergency department in Jersey undertook audit research in 2018 to assess their current practice. It showed gaps in clinical competency, the need for uniform care, and improved documentation. This spurred the development of a checklist incorporating the above RCEM standards, including contraindication for procedural sedation and difficult airway assessment. This was approved following discussion with the relevant heads of departments and the patient safety directorates. Following this, a second audit research was carried out in 2019 with 17 completed checklists (11 relocation of joints, 6 cardioversions). Data was obtained from looking at the controlled resuscitation drugs book containing documented use of ketamine, alfentanil, and fentanyl. TrakCare, which is the patient electronic record system, was then referenced to obtain further information. The results showed dramatic improvement compared to 2018, and they have been subdivided into six categories; pre-procedure assessment recording of significant medical history and ASA grade (2 fold increase), informed consent (100% documentation), pre-oxygenation (88%), staff (90% were AAS practitioners) and monitoring (92% use of non-invasive blood pressure, pulse oximetry, capnography, and cardiac rhythm monitoring) during procedure, and discharge instructions including the documented return of normal vitals and consciousness (82%). This procedural sedation checklist is a safe intervention that identifies pertinent information about the patient and provides a standardised checklist for the delivery of gold standard of care.

Keywords: advanced airway skills, checklist, procedural sedation, resuscitation

Procedia PDF Downloads 102
233 Description of Decision Inconsistency in Intertemporal Choices and Representation of Impatience as a Reflection of Irrationality: Consequences in the Field of Personalized Behavioral Finance

Authors: Roberta Martino, Viviana Ventre

Abstract:

Empirical evidence has, over time, confirmed that the behavior of individuals is inconsistent with the descriptions provided by the Discounted Utility Model, an essential reference for calculating the utility of intertemporal prospects. The model assumes that individuals calculate the utility of intertemporal prospectuses by adding up the values of all outcomes obtained by multiplying the cardinal utility of the outcome by the discount function estimated at the time the outcome is received. The trend of the discount function is crucial for the preferences of the decision maker because it represents the perception of the future, and its trend causes temporally consistent or temporally inconsistent preferences. In particular, because different formulations of the discount function lead to various conclusions in predicting choice, the descriptive ability of models with a hyperbolic trend is greater than linear or exponential models. Suboptimal choices from any time point of view are the consequence of this mechanism, the psychological factors of which are encapsulated in the discount rate trend. In addition, analyzing the decision-making process from a psychological perspective, there is an equivalence between the selection of dominated prospects and a degree of impatience that decreases over time. The first part of the paper describes and investigates the anomalies of the discounted utility model by relating the cognitive distortions of the decision-maker to the emotional factors that are generated during the evaluation and selection of alternatives. Specifically, by studying the degree to which impatience decreases, it’s possible to quantify how the psychological and emotional mechanisms of the decision-maker result in a lack of decision persistence. In addition, this description presents inconsistency as the consequence of an inconsistent attitude towards time-delayed choices. The second part of the paper presents an experimental phase in which we show the relationship between inconsistency and impatience in different contexts. Analysis of the degree to which impatience decreases confirms the influence of the decision maker's emotional impulses for each anomaly in the utility model discussed in the first part of the paper. This work provides an application in the field of personalized behavioral finance. Indeed, the numerous behavioral diversities, evident even in the degrees of decrease in impatience in the experimental phase, support the idea that optimal strategies may not satisfy individuals in the same way. With the aim of homogenizing the categories of investors and to provide a personalized approach to advice, the results proven in the experimental phase are used in a complementary way with the information in the field of behavioral finance to implement the Analytical Hierarchy Process model in intertemporal choices, useful for strategic personalization. In the construction of the Analytic Hierarchy Process, the degree of decrease in impatience is understood as reflecting irrationality in decision-making and is therefore used for the construction of weights between anomalies and behavioral traits.

Keywords: analytic hierarchy process, behavioral finance, financial anomalies, impatience, time inconsistency

Procedia PDF Downloads 58
232 Nutrition Budgets in Uganda: Research to Inform Implementation

Authors: Alexis D'Agostino, Amanda Pomeroy

Abstract:

Background: Resource availability is essential to effective implementation of national nutrition policies. To this end, the SPRING Project has collected and analyzed budget data from government ministries in Uganda, international donors, and other nutrition implementers to provide data for the first time on what funding is actually allocated to implement nutrition activities named in the national nutrition plan. Methodology: USAID’s SPRING Project used the Uganda Nutrition Action Plan (UNAP) as the starting point for budget analysis. Thorough desk reviews of public budgets from government, donors, and NGOs were mapped to activities named in the UNAP and validated by key informants (KIs) across the stakeholder groups. By relying on nationally-recognized and locally-created documents, SPRING provided a familiar basis for discussions to increase credibility and local ownership of findings. Among other things, the KIs validated the amount, source, and type (specific or sensitive) of funding. When only high-level budget data were available, KIs provided rough estimates of the percentage of allocations that were actually nutrition-relevant, allowing creation of confidence intervals around some funding estimates. Results: After validating data and narrowing in on estimates of funding to nutrition-relevant programming, researchers applied a formula to estimate overall nutrition allocations. In line with guidance by the SUN Movement and its three-step process, nutrition-specific funding was counted at 100% of its allocation amount, while nutrition sensitive funding was counted at 25%. The vast majority of nutrition funding in Uganda is off-budget, with over 90 percent of all nutrition funding is provided outside of the government system. Overall allocations are split nearly evenly between nutrition-specific and –sensitive activities. In FY 2013/14, the two-year study’s baseline year, on- and off-budget funding for nutrition was estimated to be around 60 million USD. While the 60 million USD allocations compare favorably to the 66 million USD estimate of the cost of the UNAP, not all activities are sufficiently funded. Those activities with a focus on behavior change were the most underfunded. In addition, accompanying qualitative research suggested that donor funding for nutrition activities may shift government funding into other areas of work, making it difficult to estimate the sustainability of current nutrition investments.Conclusions: Beyond providing figures, these estimates can be used together with the qualitative results of the study to explain how and why these amounts were allocated for particular activities and not others, examine the negotiation process that occurred, and suggest options for improving the flow of finances to UNAP activities for the remainder of the policy tenure. By the end of the PBN study, several years of nutrition budget estimates will be available to compare changes in funding over time. Halfway through SPRING’s work, there is evidence that country stakeholders have begun to feel ownership over the ultimate findings and some ministries are requesting increased technical assistance in nutrition budgeting. Ultimately, these data can be used within organization to advocate for more and improved nutrition funding and to improve targeting of nutrition allocations.

Keywords: budget, nutrition, financing, scale-up

Procedia PDF Downloads 424
231 Sexual Behaviour and Psychological Well-Being of a Group of African Adolescent Males in Alice, Eastern Cape

Authors: Jabulani Gilford Kheswa, Thembelihle Lobi

Abstract:

From a cultural perspective, expression of hegemonic masculinity in South Africa continues to escalate among adolescent males who grow up in communities lacking in role models and recreational facilities. However, when the schools are constructive, and peer influence is positive, adolescent male can potentially express character strengths and lead a meaningful life. Drawing from Bronfenbrenner’s Ecological Model and Keyes and Ryff’s six dimensions of psychological well-being and mental health, such youth may exemplify positive self-esteem, problem- focused coping strategies, condom self-efficacy, good leadership skills, enhanced motivation and a positive emotional state, which buffer against risky sexual behaviors. This paper was aimed at investigating the relationships between adolescent males’ sexual behavior and psychological well-being. This study employed a quantitative research to collect data from 54 Xhosa-speaking adolescent males from one school high school in Fort Beaufort, Eastern Cape, South Africa. These learners were from grade nine, ten and eleven with their ages ranging from 14 to 20. Prior the research commenced, the school principal and caregivers of the learners who participated in the study, gave their informed consent. Self- administered closed-ended questionnaire with Section A (that is, biographical information) and Section B with each question rated on the 5–point Likert scale was used. The advantages of questionnaires include a high response rate as they require less time and offer anonymity because participants’ names are not identified. The SPSS version 18 was used for statistical data analysis. The mean age was 16.83 with a standard deviation of 1.611. 44.4% of the participants were from grade 9, 33.3% from grade 10 and 22.2% from grade 11. The Chronbach alpha of 0.79 was yielded, with respect to self- esteem of adolescent males. In this study, 76.9% reported to attend church services whilst 23% indicated not to attend church services. A further 96.2% of adolescent males indicated to have good relations with guardians while only 3.8% had poorer relations. A large proportion of adolescent males (72.9%) indicated to high-quality friendship as opposed to 27.1% who reported being receiving negative guidance from peers. Other findings revealed that 81.1% of the participants’ parents do not drink alcohol, and they cope at school as 79.6% reported protective factors as attributable towards non-engagement to risky sexual practices. As a result, 81.4% of participants reported not to participate in criminal activities although 85% of the participants indicated that in their school there are drugs. It could be speculated from this study that adolescent males whose caregivers are authoritative, find purpose in life and are most likely to be socially and academically competent. This paper leads to further research interest into mental health, coping strategies and sexual decision-making skills of the youth in South Africa.

Keywords: church, mental health, school, sexual behaviour

Procedia PDF Downloads 242
230 Analysis of the Potential of Biomass Residues for Energy Production and Applications in New Materials

Authors: Sibele A. F. Leite, Bernno S. Leite, José Vicente H. D´Angelo, Ana Teresa P. Dell’Isola, Julio CéSar Souza

Abstract:

The generation of bioenergy is one of the oldest and simplest biomass applications and is one of the safest options for minimizing emissions of greenhouse gasses and replace the use of fossil fuels. In addition, the increasing development of technologies for energy biomass conversion parallel to the advancement of research in biotechnology and engineering has enabled new opportunities for exploitation of biomass. Agricultural residues offer great potential for energy use, and Brazil is in a prominent position in the production and export of agricultural products such as banana and rice. Despite the economic importance of the growth prospects of these activities and the increasing of the agricultural waste, they are rarely explored for energy and production of new materials. Brazil products almost 10.5 million tons/year of rice husk and 26.8 million tons/year of banana stem. Thereby, the aim of this study was to analysis the potential of biomass residues for energy production and applications in new materials. Rice husk (specify the type) and banana stem (specify the type) were characterized by physicochemical analyses using the following parameters: organic carbon, nitrogen (NTK), proximate analyses, FT-IR spectroscopy, thermogravimetric analyses (TG), calorific values and silica content. Rice husk and banana stem presented attractive superior calorific (from 11.5 to 13.7MJ/kg), and they may be compared to vegetal coal (21.25 MJ/kg). These results are due to the high organic matter content. According to the proximate analysis, biomass has high carbon content (fixed and volatile) and low moisture and ash content. In addition, data obtained by Walkley–Black method point out that most of the carbon present in the rice husk (50.5 wt%) and in banana stalk (35.5 wt%) should be understood as organic carbon (readily oxidizable). Organic matter was also detected by Kjeldahl method which gives the values of nitrogen (especially on the organic form) for both residues: 3.8 and 4.7 g/kg of rice husk and banana stem respectively. TG and DSC analyses support the previous results, as they can provide information about the thermal stability of the samples allowing a correlation between thermal behavior and chemical composition. According to the thermogravimetric curves, there were two main stages of mass-losses. The first and smaller one occurred below 100 °C, which was suitable for water losses and the second event occurred between 200 and 500 °C which indicates decomposition of the organic matter. At this broad peak, the main loss was between 250-350 °C, and it is because of sugar decomposition (components readily oxidizable). Above 350 °C, mass loss of the biomass may be associated with lignin decomposition. Spectroscopic characterization just provided qualitative information about the organic matter, but spectra have shown absorption bands around 1030 cm-1 which may be identified as species containing silicon. This result is expected for the rice husk and deserves further investigation to the stalk of banana, as it can bring a different perspective for this biomass residue.

Keywords: rice husk, banana stem, bioenergy, renewable feedstock

Procedia PDF Downloads 265
229 Soybean Oil Based Phase Change Material for Thermal Energy Storage

Authors: Emre Basturk, Memet Vezir Kahraman

Abstract:

In many developing countries, with the rapid economic improvements, energy shortage and environmental issues have become a serious problem. Therefore, it has become a very critical issue to improve energy usage efficiency and also protect the environment. Thermal energy storage system is an essential approach to match the thermal energy claim and supply. Thermal energy can be stored by heating, cooling or melting a material with the energy and then enhancing accessible when the procedure is reversed. The overall thermal energy storage techniques are sorted as; latent heat or sensible heat thermal energy storage technology segments. Among these methods, latent heat storage is the most effective method of collecting thermal energy. Latent heat thermal energy storage depend on the storage material, emitting or discharging heat as it undergoes a solid to liquid, solid to solid or liquid to gas phase change or vice versa. Phase change materials (PCMs) are promising materials for latent heat storage applications due to their capacities to accumulate high latent heat storage per unit volume by phase change at an almost constant temperature. Phase change materials (PCMs) are being utilized to absorb, collect and discharge thermal energy during the cycle of melting and freezing, converting from one phase to another. Phase Change Materials (PCMs) can generally be arranged into three classes: organic materials, salt hydrates and eutectics. Many kinds of organic and inorganic PCMs and their blends have been examined as latent heat storage materials. Organic PCMs are rather expensive and they have average latent heat storage per unit volume and also have low density. Most organic PCMs are combustible in nature and also have a wide range of melting point. Organic PCMs can be categorized into two major categories: non-paraffinic and paraffin materials. Paraffin materials have been extensively used, due to their high latent heat and right thermal characteristics, such as minimal super cooling, varying phase change temperature, low vapor pressure while melting, good chemical and thermal stability, and self-nucleating behavior. Ultraviolet (UV)-curing technology has been generally used because it has many advantages, such as low energy consumption , high speed, high chemical stability, room-temperature operation, low processing costs and environmental friendly. For many years, PCMs have been used for heating and cooling industrial applications including textiles, refrigerators, construction, transportation packaging for temperature-sensitive products, a few solar energy based systems, biomedical and electronic materials. In this study, UV-curable, fatty alcohol containing soybean oil based phase change materials (PCMs) were obtained and characterized. The phase transition behaviors and thermal stability of the prepared UV-cured biobased PCMs were analyzed by differential scanning calorimetry (DSC) and thermogravimetric analysis (TGA). The heating process phase change enthalpy is measured between 30 and 68 J/g, and the freezing process phase change enthalpy is found between 18 and 70 J/g. The decomposition of UVcured PCMs started at 260 ºC and reached a maximum of 430 ºC.

Keywords: fatty alcohol, phase change material, thermal energy storage, UV curing

Procedia PDF Downloads 363
228 Investigating Sub-daily Responses of Water Flow of Trees in Tropical Successional Forests in Thailand

Authors: Pantana Tor-Ngern

Abstract:

In the global water cycle, tree water use (Tr) largely contributes to evapotranspiration which is the total amount of water evaporated from terrestrial ecosystems to the atmosphere, regulating climates. Tree water use responds to environmental factors, including atmospheric humidity and sunlight (represented by vapor pressure deficit or VPD and photosynthetically active radiation or PAR, respectively) and soil moisture. In forests, Tr responses to such factors depend on species and their spatial and temporal variations. Tropical forests in Southeast Asia (SEA) have experienced land-use conversion from abandoned agricultural practices, resulting in patches of forests at different stages including old-growth and secondary forests. Because the inherent structures, such as canopy height and tree density, significantly vary among forests at different stages and can strongly affect their respective microclimate, Tr and its responses to changing environmental conditions in successional forests may differ. Daily and seasonal variations in the environmental factors may exert significant impacts on the respective Tr patterns. Extrapolating Tr data from short periods of days to longer periods of seasons or years can be complex and is important for estimating long-term ecosystem water use which often includes normal and abnormal climatic conditions. Thus, this study aims to investigate the diurnal variation of Tr, using measured sap flux density (JS) data, with changes in VPD in eight evergreen tree species in an old-growth forest (hereafter OF; >200 years old) and a young forest (hereafter YF, <10 years old) in Khao Yai National Park, Thailand. The studied species included Sysygium syzygoides, Aquilaria crassna, Cinnamomum subavenium, Nephelium melliferum, Altingia excelsa in OF, and Syzygium nervosum and Adinandra integerrima in YF. Only Sysygium antisepticum was found in both forest stages. Specifically, hysteresis, which indicates the asymmetrical changes of JS in response to changing VPD across daily timescale, was examined in these species. Results showed no hysteresis in all species in OF, except Altingia excelsa which exhibited a 3-hour delayed JS response to VPD. In contrast, JS of all species in YF displayed one-hour delayed responses to VPD. The OF species that showed no hysteresis indicated their well-coupling of their canopies with the atmosphere, facilitating the gas exchange which is essential for tree growth. The delayed responses in Altingia excelsa in OF and all species in YF were associated with higher JS in the morning than that in the afternoon. This implies that these species were sensitive to drying air, closing stomata relatively rapidly compared to the decreasing atmospheric humidity (VPD). Such behavior is often observed in trees growing in dry environments. This study suggests that detailed investigation of JS at sub-daily timescales is imperative for better understanding of mechanistic responses of trees to the changing climate, which will benefit the improvement of earth system models.

Keywords: sap flow, tropical forest, forest succession, thermal dissipcation probe

Procedia PDF Downloads 47
227 The Digital Desert in Global Business: Digital Analytics as an Oasis of Hope for Sub-Saharan Africa

Authors: David Amoah Oduro

Abstract:

In the ever-evolving terrain of international business, a profound revolution is underway, guided by the swift integration and advancement of disruptive technologies like digital analytics. In today's international business landscape, where competition is fierce, and decisions are data-driven, the essence of this paper lies in offering a tangible roadmap for practitioners. It is a guide that bridges the chasm between theory and actionable insights, helping businesses, investors, and entrepreneurs navigate the complexities of international expansion into sub-Saharan Africa. This practitioner paper distils essential insights, methodologies, and actionable recommendations for businesses seeking to leverage digital analytics in their pursuit of market entry and expansion across the African continent. What sets this paper apart is its unwavering focus on a region ripe with potential: sub-Saharan Africa. The adoption and adaptation of digital analytics are not mere luxuries but essential strategic tools for evaluating countries and entering markets within this dynamic region. With the spotlight firmly fixed on sub-Saharan Africa, the aim is to provide a compelling resource to guide practitioners in their quest to unearth the vast opportunities hidden within sub-Saharan Africa's digital desert. The paper illuminates the pivotal role of digital analytics in providing a data-driven foundation for market entry decisions. It highlights the ability to uncover market trends, consumer behavior, and competitive landscapes. By understanding Africa's incredible diversity, the paper underscores the importance of tailoring market entry strategies to account for unique cultural, economic, and regulatory factors. For practitioners, this paper offers a set of actionable recommendations, including the creation of cross-functional teams, the integration of local expertise, and the cultivation of long-term partnerships to ensure sustainable market entry success. It advocates for a commitment to continuous learning and flexibility in adapting strategies as the African market evolves. This paper represents an invaluable resource for businesses, investors, and entrepreneurs who are keen on unlocking the potential of digital analytics for informed market entry in Africa. It serves as a guiding light, equipping practitioners with the essential tools and insights needed to thrive in this dynamic and diverse continent. With these key insights, methodologies, and recommendations, this paper is a roadmap to prosperous and sustainable market entry in Africa. It is vital for anyone looking to harness the transformational potential of digital analytics to create prosperous and sustainable ventures in a region brimming with promise. In the ever-advancing digital age, this practitioner paper becomes a lodestar, guiding businesses and visionaries toward success amidst the unique challenges and rewards of sub-Saharan Africa's international business landscape.

Keywords: global analytics, digital analytics, sub-Saharan Africa, data analytics

Procedia PDF Downloads 59
226 Disrupting Traditional Industries: A Scenario-Based Experiment on How Blockchain-Enabled Trust and Transparency Transform Nonprofit Organizations

Authors: Michael Mertel, Lars Friedrich, Kai-Ingo Voigt

Abstract:

Based on principle-agent theory, an information asymmetry exists in the traditional donation process. Consumers cannot comprehend whether nonprofit organizations (NPOs) use raised funds according to the designated cause after the transaction took place (hidden action). Therefore, charity organizations have tried to appear transparent and gain trust by using the same marketing instruments for decades (e.g., releasing project success reports). However, none of these measures can guarantee consumers that charities will use their donations for the purpose. With awareness of misuse of donations rising due to the Ukraine conflict (e.g., funding crime), consumers are increasingly concerned about the destination of their charitable purposes. Therefore, innovative charities like the Human Rights Foundation have started to offer donations via blockchain. Blockchain technology has the potential to establish profound trust and transparency in the donation process: Consumers can publicly track the progress of their donation at any time after deciding to donate. This ensures that the charity is not using donations against its original intent. Hence, the aim is to investigate the effect of blockchain-enabled transactions on the willingness to donate. Sample and Design: To investigate consumers' behavior, we use a scenario-based experiment. After removing participants (e.g., due to failed attention checks), 3192 potential donors participated (47.9% female, 62.4% bachelor or above). Procedure: We randomly assigned the participants to one of two scenarios. In all conditions, the participants read a scenario about a fictive charity organization called "Helper NPO." Afterward, the participants answered questions regarding their perception of the charity. Manipulation: The first scenario (n = 1405) represents a typical donation process, where consumers donate money without any option to track and trace. The second scenario (n = 1787) represents a donation process via blockchain, where consumers can track and trace their donations respectively. Using t-statistics, the findings demonstrate a positive effect of donating via blockchain on participants’ willingness to donate (mean difference = 0.667, p < .001, Cohen’s d effect size = 0.482). A mediation analysis shows significant effects for the mediation of transparency (Estimate = 0.199, p < .001), trust (Estimate = 0.144, p < .001), and transparency and trust (Estimate = 0.158, p < .001). The total effect of blockchain usage on participants’ willingness to donate (Estimate = 0.690, p < .001) consists of the direct effect (Estimate = 0.189, p < .001) and the indirect effects of transparency and trust (Estimate = 0.501, p < .001). Furthermore, consumers' affinity for technology moderates the direct effect of blockchain usage on participants' willingness to donate (Estimate = 0.150, p < .001). Donating via blockchain is a promising way for charities to engage consumers for several reasons: (1) Charities can emphasize trust and transparency in their advertising campaigns. (2) Established charities can target new customer segments by specifically engaging technology-affine consumers in the future. (3) Charities can raise international funds without previous barriers (e.g., setting up bank accounts). Nevertheless, increased transparency can also backfire (e.g., disclosure of costs). Such cases require further research.

Keywords: blockchain, social sector, transparency, trust

Procedia PDF Downloads 83
225 Ensuring Safety in Fire Evacuation by Facilitating Way-Finding in Complex Buildings

Authors: Atefeh Omidkhah, Mohammadreza Bemanian

Abstract:

The issue of way-finding earmarks a wide range of literature in architecture and despite the 50 year background of way-finding studies, it still lacks a comprehensive theory for indoor settings. Way-finding has a notable role in emergency evacuation as well. People in the panic situation of a fire emergency need to find the safe egress route correctly and in as minimum time as possible. In this regard the parameters of an appropriate way-finding are mentioned in the evacuation related researches albeit scattered. This study reviews the fire safety related literature to extract a way-finding related framework for architectural purposes of the design of a safe evacuation route. In this regard a research trend review in addition with applied methodological approaches review is conducted. Then by analyzing eight original researches related to way-finding parameters in fire evacuation, main parameters that affect way-finding in emergency situation of a fire incident are extracted and a framework was developed based on them. Results show that the issues related to exit route and emergency evacuation can be chased in task oriented studies of way-finding. This research trend aims to access a high-level framework and in the best condition a theory that has an explanatory capability to define differences in way-finding in indoor/outdoor settings, complex/simple buildings and different building types or transitional spaces. The methodological advances demonstrate the evacuation way-finding researches in line with three approaches that the latter one is the most up-to-date and precise method to research this subject: real actors and hypothetical stimuli as in evacuation experiments, hypothetical actors and stimuli as in agent-based simulations and real actors and semi-real stimuli as in virtual reality environment by adding multi-sensory simulation. Findings on data-mining of 8 sample of original researches in way-finding in evacuation indicate that emergency way-finding design of a building should consider two level of space cognition problems in the time of emergency and performance consequences of them in the built environment. So four major classes of problems in way-finding which are visual information deficiency, confusing layout configuration, improper navigating signage and demographic issues had been defined and discussed as the main parameters that should be provided with solutions in design and interior of a building. In the design phase of complex buildings, which face more reported problem in way-finding, it is important to consider the interior components regarding to the building type of occupancy and behavior of its occupants and determine components that tend to become landmarks and set the architectural features of egress route in line with the directions that they navigate people. Research on topological cognition of environmental and its effect on way-finding task in emergency evacuation is proposed for future.

Keywords: architectural design, egress route, way-finding, fire safety, evacuation

Procedia PDF Downloads 163
224 Relationships of Plasma Lipids, Lipoproteins and Cardiovascular Outcomes with Climatic Variations: A Large 8-Year Period Brazilian Study

Authors: Vanessa H. S. Zago, Ana Maria H. de Avila, Paula P. Costa, Welington Corozolla, Liriam S. Teixeira, Eliana C. de Faria

Abstract:

Objectives: The outcome of cardiovascular disease is affected by environment and climate. This study evaluated the possible relationships between climatic and environmental changes and the occurrence of biological rhythms in serum lipids and lipoproteins in a large population sample in the city of Campinas, State of Sao Paulo, Brazil. In addition, it determined the temporal variations of death due to atherosclerotic events in Campinas during the time window examined. Methods: A large 8-year retrospective study was carried out to evaluate the lipid profiles of individuals attended at the University of Campinas (Unicamp). The study population comprised 27.543 individuals of both sexes and of all ages. Normolipidemic and dyslipidemic individuals classified according to Brazilian guidelines on dyslipidemias, participated in the study. For the same period, the temperature, relative humidity and daily brightness records were obtained from the Centro de Pesquisas Meteorologicas e Climaticas Aplicadas a Agricultura/Unicamp and frequencies of death due to atherosclerotic events in Campinas were acquired from the Brazilian official database DATASUS, according to the International Classification of Diseases. Statistical analyses were performed using both Cosinor and ARIMA temporal analysis methods. For cross-correlation analysis between climatic and lipid parameters, cross-correlation functions were used. Results: Preliminary results indicated that rhythmicity was significant for LDL-C and HDL-C in the cases of both normolipidemic and dyslipidemic subjects (n =respectively 11.892 and 15.651 both measures increasing in the winter and decreasing in the summer). On the other hand, for dyslipidemic subjects triglycerides increased in summer and decreased in winter, in contrast to normolipidemic ones, in which triglycerides did not show rhythmicity. The number of deaths due to atherosclerotic events showed significant rhythmicity, with maximum and minimum frequencies in winter and summer, respectively. Cross-correlation analyzes showed that low humidity and temperature, higher thermal amplitude and dark cycles are associated with increased levels of LDL-C and HDL-C during winter. In contrast, TG showed moderate cross-correlations with temperature and minimum humidity in an inverse way: maximum temperature and humidity increased TG during the summer. Conclusions: This study showed a coincident rhythmicity between low temperatures and high concentrations of LDL-C and HDL-C and the number of deaths due to atherosclerotic cardiovascular events in individuals from the city of Campinas. The opposite behavior of cholesterol and TG suggest different physiological mechanisms in their metabolic modulation by climate parameters change. Thus, new analyses are underway to better elucidate these mechanisms, as well as variations in lipid concentrations in relation to climatic variations and their associations with atherosclerotic disease and death outcomes in Campinas.

Keywords: atherosclerosis, climatic variations, lipids and lipoproteins, associations

Procedia PDF Downloads 107
223 Rehabilitation of Orthotropic Steel Deck Bridges Using a Modified Ortho-Composite Deck System

Authors: Mozhdeh Shirinzadeh, Richard Stroetmann

Abstract:

Orthotropic steel deck bridge consists of a deck plate, longitudinal stiffeners under the deck plate, cross beams and the main longitudinal girders. Due to the several advantages, Orthotropic Steel Deck (OSD) systems have been utilized in many bridges worldwide. The significant feature of this structural system is its high load-bearing capacity while having relatively low dead weight. In addition, cost efficiency and the ability of rapid field erection have made the orthotropic steel deck a popular type of bridge worldwide. However, OSD bridges are highly susceptible to fatigue damage. A large number of welded joints can be regarded as the main weakness of this system. This problem is, in particular, evident in the bridges which were built before 1994 when the fatigue design criteria had not been introduced in the bridge design codes. Recently, an Orthotropic-composite slab (OCS) for road bridges has been experimentally and numerically evaluated and developed at Technische Universität Dresden as a part of AIF-FOSTA research project P1265. The results of the project have provided a solid foundation for the design and analysis of Orthotropic-composite decks with dowel strips as a durable alternative to conventional steel or reinforced concrete decks. In continuation, while using the achievements of that project, the application of a modified Ortho-composite deck for an existing typical OSD bridge is investigated. Composite action is obtained by using rows of dowel strips in a clothoid (CL) shape. Regarding Eurocode criteria for different fatigue detail categories of an OSD bridge, the effect of the proposed modification approach is assessed. Moreover, a numerical parametric study is carried out utilizing finite element software to determine the impact of different variables, such as the size and arrangement of dowel strips, the application of transverse or longitudinal rows of dowel strips, and local wheel loads. For the verification of the simulation technique, experimental results of a segment of an OCS deck are used conducted in project P1265. Fatigue assessment is performed based on the last draft of Eurocode 1993-2 (2024) for the most probable detail categories (Hot-Spots) that have been reported in the previous statistical studies. Then, an analytical comparison is provided between the typical orthotropic steel deck and the modified Ortho-composite deck bridge in terms of fatigue issues and durability. The load-bearing capacity of the bridge, the critical deflections, and the composite behavior are also evaluated and compared. Results give a comprehensive overview of the efficiency of the rehabilitation method considering the required design service life of the bridge. Moreover, the proposed approach is assessed with regard to the construction method, details and practical aspects, as well as the economic point of view.

Keywords: composite action, fatigue, finite element method, steel deck, bridge

Procedia PDF Downloads 61
222 Viscoelastic Behavior of Human Bone Tissue under Nanoindentation Tests

Authors: Anna Makuch, Grzegorz Kokot, Konstanty Skalski, Jakub Banczorowski

Abstract:

Cancellous bone is a porous composite of a hierarchical structure and anisotropic properties. The biological tissue is considered to be a viscoelastic material, but many studies based on a nanoindentation method have focused on their elasticity and microhardness. However, the response of many organic materials depends not only on the load magnitude, but also on its duration and time course. Depth Sensing Indentation (DSI) technique has been used for examination of creep in polymers, metals and composites. In the indentation tests on biological samples, the mechanical properties are most frequently determined for animal tissues (of an ox, a monkey, a pig, a rat, a mouse, a bovine). However, there are rare reports of studies of the bone viscoelastic properties on microstructural level. Various rheological models were used to describe the viscoelastic behaviours of bone, identified in the indentation process (e. g Burgers model, linear model, two-dashpot Kelvin model, Maxwell-Voigt model). The goal of the study was to determine the influence of creep effect on the mechanical properties of human cancellous bone in indentation tests. The aim of this research was also the assessment of the material properties of bone structures, having in mind the energy aspects of the curve (penetrator loading-depth) obtained in the loading/unloading cycle. There was considered how the different holding times affected the results within trabecular bone.As a result, indentation creep (CIT), hardness (HM, HIT, HV) and elasticity are obtained. Human trabecular bone samples (n=21; mean age 63±15yrs) from the femoral heads replaced during hip alloplasty were removed and drained from alcohol of 1h before the experiment. The indentation process was conducted using CSM Microhardness Tester equipped with Vickers indenter. Each sample was indented 35 times (7 times for 5 different hold times: t1=0.1s, t2=1s, t3=10s, t4=100s and t5=1000s). The indenter was advanced at a rate of 10mN/s to 500mN. There was used Oliver-Pharr method in calculation process. The increase of hold time is associated with the decrease of hardness parameters (HIT(t1)=418±34 MPa, HIT(t2)=390±50 MPa, HIT(t3)= 313±54 MPa, HIT(t4)=305±54 MPa, HIT(t5)=276±90 MPa) and elasticity (EIT(t1)=7.7±1.2 GPa, EIT(t2)=8.0±1.5 GPa, EIT(t3)=7.0±0.9 GPa, EIT(t4)=7.2±0.9 GPa, EIT(t5)=6.2±1.8 GPa) as well as with the increase of the elastic (Welastic(t1)=4.11∙10-7±4.2∙10-8Nm, Welastic(t2)= 4.12∙10-7±6.4∙10-8 Nm, Welastic(t3)=4.71∙10-7±6.0∙10-9 Nm, Welastic(t4)= 4.33∙10-7±5.5∙10-9Nm, Welastic(t5)=5.11∙10-7±7.4∙10-8Nm) and inelastic (Winelastic(t1)=1.05∙10-6±1.2∙10-7 Nm, Winelastic(t2) =1.07∙10-6±7.6∙10-8 Nm, Winelastic(t3)=1.26∙10-6±1.9∙10-7Nm, Winelastic(t4)=1.56∙10-6± 1.9∙10-7 Nm, Winelastic(t5)=1.67∙10-6±2.6∙10-7)) reaction of materials. The indentation creep increased logarithmically (R2=0.901) with increasing hold time: CIT(t1) = 0.08±0.01%, CIT(t2) = 0.7±0.1%, CIT(t3) = 3.7±0.3%, CIT(t4) = 12.2±1.5%, CIT(t5) = 13.5±3.8%. The pronounced impact of creep effect on the mechanical properties of human cancellous bone was observed in experimental studies. While the description elastic-inelastic, and thus the Oliver-Pharr method for data analysis, may apply in few limited cases, most biological tissues do not exhibit elastic-inelastic indentation responses. Viscoelastic properties of tissues may play a significant role in remodelling. The aspect is still under an analysis and numerical simulations. Acknowledgements: The presented results are part of the research project founded by National Science Centre (NCN), Poland, no.2014/15/B/ST7/03244.

Keywords: bone, creep, indentation, mechanical properties

Procedia PDF Downloads 161
221 Characterization of Alloyed Grey Cast Iron Quenched and Tempered for a Smooth Roll Application

Authors: Mohamed Habireche, Nacer E. Bacha, Mohamed Djeghdjough

Abstract:

In the brick industry, smooth double roll crusher is used for medium and fine crushing of soft to medium hard material. Due to opposite inward rotation of the rolls, the feed material is nipped between the rolls and crushed by compression. They are subject to intense wear, known as three-body abrasion, due to the action of abrasive products. The production downtime affecting productivity stems from two sources: the bi-monthly rectification of the roll crushers and their replacement when they are completely worn out. Choosing the right material for the roll crushers should result in longer machine cycles, and reduced repair and maintenance costs. All roll crushers are imported from outside Algeria. This results in sometimes very long delivery times which handicap the brickyards, in particular in respecting delivery times and honored the orders made by customers. The aim of this work is to investigate the effect of alloying additions on microstructure and wear behavior of grey lamellar cast iron for smooth roll crushers in brick industry. The base gray iron was melted in an induction furnace with low frequency at a temperature of 1500 °C, in which return cast iron scrap, new cast iron ingot, and steel scrap were added to the melt to generate the desired composition. The chemical analysis of the bar samples was carried out using Emission Spectrometer Systems PV 8050 Series (Philips) except for the carbon, for which a carbon/sulphur analyser Elementrac CS-i was used. Unetched microstructure was used to evaluate the graphite flake morphology using the image comparison measurement method. At least five different fields were selected for quantitative estimation of phase constituents. The samples were observed under X100 magnification with a Zeiss Axiover T40 MAT optical microscope equipped with a digital camera. SEM microscope equipped with EDS was used to characterize the phases present in the microstructure. The hardness (750 kg load, 5mm diameter ball) was measured with a Brinell testing machine for both treated and as-solidified condition test pieces. The test bars were used for tensile strength and metallographic evaluations. Mechanical properties were evaluated using tensile specimens made as per ASTM E8 standards. Two specimens were tested for each alloy. From each rod, a test piece was made for the tensile test. The results showed that the quenched and tempered alloys had best wear resistance at 400 °C for alloyed grey cast iron (containing 0.62%Mn, 0.68%Cr, and 1.09% Cu) due to fine carbides in the tempered matrix. In quenched and tempered condition, increasing Cu content in cast irons improved its wear resistance moderately. Combined addition of Cu and Cr increases hardness and wear resistance for a quenched and tempered hypoeutectic grey cast iron.

Keywords: casting, cast iron, microstructure, heat treating

Procedia PDF Downloads 93