Search results for: type-2 fuzzy sets
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 1901

Search results for: type-2 fuzzy sets

881 Heat Transfer Modeling of 'Carabao' Mango (Mangifera indica L.) during Postharvest Hot Water Treatments

Authors: Hazel James P. Agngarayngay, Arnold R. Elepaño

Abstract:

Mango is the third most important export fruit in the Philippines. Despite the expanding mango trade in world market, problems on postharvest losses caused by pests and diseases are still prevalent. Many disease control and pest disinfestation methods have been studied and adopted. Heat treatment is necessary to eliminate pests and diseases to be able to pass the quarantine requirements of importing countries. During heat treatments, temperature and time are critical because fruits can easily be damaged by over-exposure to heat. Modeling the process enables researchers and engineers to study the behaviour of temperature distribution within the fruit over time. Understanding physical processes through modeling and simulation also saves time and resources because of reduced experimentation. This research aimed to simulate the heat transfer mechanism and predict the temperature distribution in ‘Carabao' mangoes during hot water treatment (HWT) and extended hot water treatment (EHWT). The simulation was performed in ANSYS CFD Software, using ANSYS CFX Solver. The simulation process involved model creation, mesh generation, defining the physics of the model, solving the problem, and visualizing the results. Boundary conditions consisted of the convective heat transfer coefficient and a constant free stream temperature. The three-dimensional energy equation for transient conditions was numerically solved to obtain heat flux and transient temperature values. The solver utilized finite volume method of discretization. To validate the simulation, actual data were obtained through experiment. The goodness of fit was evaluated using mean temperature difference (MTD). Also, t-test was used to detect significant differences between the data sets. Results showed that the simulations were able to estimate temperatures accurately with MTD of 0.50 and 0.69 °C for the HWT and EHWT, respectively. This indicates good agreement between the simulated and actual temperature values. The data included in the analysis were taken at different locations of probe punctures within the fruit. Moreover, t-tests showed no significant differences between the two data sets. Maximum heat fluxes obtained at the beginning of the treatments were 394.15 and 262.77 J.s-1 for HWT and EHWT, respectively. These values decreased abruptly at the first 10 seconds and gradual decrease was observed thereafter. Data on heat flux is necessary in the design of heaters. If underestimated, the heating component of a certain machine will not be able to provide enough heat required by certain operations. Otherwise, over-estimation will result in wasting of energy and resources. This study demonstrated that the simulation was able to estimate temperatures accurately. Thus, it can be used to evaluate the influence of various treatment conditions on the temperature-time history in mangoes. When combined with information on insect mortality and quality degradation kinetics, it could predict the efficacy of a particular treatment and guide appropriate selection of treatment conditions. The effect of various parameters on heat transfer rates, such as the boundary and initial conditions as well as the thermal properties of the material, can be systematically studied without performing experiments. Furthermore, the use of ANSYS software in modeling and simulation can be explored in modeling various systems and processes.

Keywords: heat transfer, heat treatment, mango, modeling and simulation

Procedia PDF Downloads 248
880 Investigating the Effect of the Pedagogical Agent on Visual Attention in Attention Deficit Hyperactivity Disorder Students

Authors: Nasrin Mohammadhasani, Rosa Angela Fabio

Abstract:

The attention to relevance information is the key element for learning. Otherwise, Attention Deficit Hyperactivity Disorder (ADHD) students have a fuzzy visual pattern that prevents them to attention and remember learning subject. The present study aimed to test the hypothesis that the presence of a pedagogical agent can effectively support ADHD learner's attention and learning outcomes in a multimedia learning environment. The learning environment was integrated with a pedagogical agent, named Koosha as a social peer. This study employed a pretest and posttest experimental design with control group. The statistical population was 30 boys students, age 10-11 with ADHD that randomly assigned to learn with/without an agent in well designed environment for mathematic. The results suggested that experimental and control groups show a significant difference in time when they participated and mathematics achievement. According to this research, using the pedagogical agent can enhance learning of ADHD students by gaining and guiding their attention to relevance information part on display, so it can be considered as asocial cue that provides theme cognitive supports.

Keywords: attention, computer assisted instruction, multimedia learning environment, pedagogical agent

Procedia PDF Downloads 315
879 Mutual Information Based Image Registration of Satellite Images Using PSO-GA Hybrid Algorithm

Authors: Dipti Patra, Guguloth Uma, Smita Pradhan

Abstract:

Registration is a fundamental task in image processing. It is used to transform different sets of data into one coordinate system, where data are acquired from different times, different viewing angles, and/or different sensors. The registration geometrically aligns two images (the reference and target images). Registration techniques are used in satellite images and it is important in order to be able to compare or integrate the data obtained from these different measurements. In this work, mutual information is considered as a similarity metric for registration of satellite images. The transformation is assumed to be a rigid transformation. An attempt has been made here to optimize the transformation function. The proposed image registration technique hybrid PSO-GA incorporates the notion of Particle Swarm Optimization and Genetic Algorithm and is used for finding the best optimum values of transformation parameters. The performance comparision obtained with the experiments on satellite images found that the proposed hybrid PSO-GA algorithm outperforms the other algorithms in terms of mutual information and registration accuracy.

Keywords: image registration, genetic algorithm, particle swarm optimization, hybrid PSO-GA algorithm and mutual information

Procedia PDF Downloads 409
878 Calculation of Detection Efficiency of Horizontal Large Volume Source Using Exvol Code

Authors: M. Y. Kang, Euntaek Yoon, H. D. Choi

Abstract:

To calculate the full energy (FE) absorption peak efficiency for arbitrary volume sample, we developed and verified the EXVol (Efficiency calculator for EXtended Voluminous source) code which is based on effective solid angle method. EXVol is possible to describe the source area as a non-uniform three-dimensional (x, y, z) source. And decompose and set it into several sets of volume units. Users can equally divide (x, y, z) coordinate system to calculate the detection efficiency at a specific position of a cylindrical volume source. By determining the detection efficiency for differential volume units, the total radiative absolute distribution and the correction factor of the detection efficiency can be obtained from the nondestructive measurement of the source. In order to check the performance of the EXVol code, Si ingot of 20 cm in diameter and 50 cm in height were used as a source. The detector was moved at the collimation geometry to calculate the detection efficiency at a specific position and compared with the experimental values. In this study, the performance of the EXVol code was extended to obtain the detection efficiency distribution at a specific position in a large volume source.

Keywords: attenuation, EXVol, detection efficiency, volume source

Procedia PDF Downloads 185
877 Point-of-Interest Recommender Systems for Location-Based Social Network Services

Authors: Hoyeon Park, Yunhwan Keon, Kyoung-Jae Kim

Abstract:

Location Based Social Network services (LBSNs) is a new term that combines location based service and social network service (SNS). Unlike traditional SNS, LBSNs emphasizes empirical elements in the user's actual physical location. Point-of-Interest (POI) is the most important factor to implement LBSNs recommendation system. POI information is the most popular spot in the area. In this study, we would like to recommend POI to users in a specific area through recommendation system using collaborative filtering. The process is as follows: first, we will use different data sets based on Seoul and New York to find interesting results on human behavior. Secondly, based on the location-based activity information obtained from the personalized LBSNs, we have devised a new rating that defines the user's preference for the area. Finally, we have developed an automated rating algorithm from massive raw data using distributed systems to reduce advertising costs of LBSNs.

Keywords: location-based social network services, point-of-interest, recommender systems, business analytics

Procedia PDF Downloads 229
876 Concurrent Hazard Fragility Analysis with Consideration of Structural Uncertainties

Authors: Ling-Han Liu, Qian-Qian Yu, Xiang-Lin Gu

Abstract:

In this paper, the fragility analysis of earthquake-strong wind concurrent hazards considering structural uncertainties was conducted. Eleven sets of structural uncertainty parameters were considered, and random structural models were generated using Latin hypercube sampling. The uncertainties in seismic ground motion and wind load inputs were incorporated, and the conditional failure probability of the structures was calculated. A 12-story concrete building was used as an example, with the IDR (Inter-story Drift Ratio) as the performance indicator. The failure probabilities under individual and multiple hazards were compared, along with a comparison of fragility analysis results with and without considering structural uncertainties. The numerical simulations show that including structural uncertainties increases the structural failure probability by 20%. The peak stress and strain of core-restrained concrete, the structural damping ratio, and the peak stress of unrestrained concrete are found to be decisive factors in the structural response.

Keywords: structural uncertainty, incremental dynamic analysis, multi-hazard fragility, latin hypercube sampling

Procedia PDF Downloads 7
875 GSM Based Smart Patient Monitoring System

Authors: Ayman M. Mansour

Abstract:

In this paper, we propose an intelligent system that is used for monitoring the health conditions of Patients. Monitoring the health condition of Patients is a complex problem that involves different medical units and requires continuous monitoring especially in rural areas because of inadequate number of available specialized physicians. The proposed system will Improve patient care and drive costs down comparing to the existing system in Jordan. The proposed system will be the start point to Faster and improve the communication between different units in the health system in Jordan. Connecting patients and their physicians beyond hospital doors regarding their geographical area is an important issue in developing the health system in Jordan. The propose system will provide an intelligent system that will generate initial diagnosing to the patient case. This will assist and advice clinicians at the point of care. The decision is based on demographic data and laboratory test results of patient data. Using such system with the ability of making medical decisions, the quality of medical care in Jordan and specifically in Tafial is expected to be improved. This will provide more accurate, effective, and reliable diagnoses and treatments especially if the physicians have insufficient knowledge.

Keywords: GSM, SMS, patient, monitoring system, fuzzy logic, multi-agent system

Procedia PDF Downloads 568
874 A Literature Review on the Success Indicators for Sabah's Ecotourism Sites

Authors: Lip Vui Tshin

Abstract:

Sabah, one of the thirteen Malaysian states, is located in the northern part of Malaysian Borneo. It is a melting pot of many different cultures and traditions, being home to about 2.9 million people with more than 30 ethic groups. It is also known as one of the twelve mega-diversity sites in the world with its rich living heritage; ethnic makes it ideal for the ecotourism industry. Sabah enjoys a steady flow of eco tourists from domestic and international markets with a gradual increase in the number of visitor arrival each year. Sabah’s ecotourism is categorized by its natural attraction, wildlife and wilderness habitats. This paper sets out to interpret and develop the indicators for success ecotourism sites in Sabah and measures its development stage. The long-term viability of tourism can be assured only when the limitations and favorable opportunities of the overall environment for tourism development are understood and ways to measure changes induced by tourism are identified and applied. This is a literature review of ecotourism site success indicators, and the outcome of this review is the identification of existing clusters and categorization of indicators and charting the way forward to develop a better understanding in ecotourism site success.

Keywords: ecotourism, ecotourism indicators, ecotourism success, Sabah

Procedia PDF Downloads 275
873 Inclusive Cities Decision Matrix Based on a Multidimensional Approach for Sustainable Smart Cities

Authors: Madhurima S. Waghmare, Shaleen Singhal

Abstract:

The concept of smartness, inclusion, sustainability is multidisciplinary and fuzzy, rooted in economic and social development theories and policies which get reflected in the spatial development of the cities. It is a challenge to convert these concepts from aspirations to transforming actions. There is a dearth of assessment and planning tools to support the city planners and administrators in developing smart, inclusive, and sustainable cities. To address this gap, this study develops an inclusive cities decision matrix based on an exploratory approach and using mixed methods. The matrix is soundly based on a review of multidisciplinary urban sector literature and refined and finalized based on inputs from experts and insights from case studies. The application of the decision matric on the case study cities in India suggests that the contemporary planning tools for cities need to be multidisciplinary and flexible to respond to the unique needs of the diverse contexts. The paper suggests that a multidimensional and inclusive approach to city planning can play an important role in building sustainable smart cities.

Keywords: inclusive-cities decision matrix, smart cities in India, city planning tools, sustainable cities

Procedia PDF Downloads 156
872 Entrepreneurship Education as a 21st Century Strategy for Economic Growth and Sustainable Development

Authors: M. Fems Kurotimi, Agada Franklin, Godsave Aladei, Opigo Helen

Abstract:

Within the last 30 years, entrepreneurship education (EE) has continued to gain massive interest both in the field of research and among policy makers. This surge in interest can be attributed to the perceived importance EE plays in the equipping of potential entrepreneurs and as a 21st century strategy to foster economic growth and development. This paper sets out to ascertain the correlation between EE and economic growth and development. A desk research approach was adopted where a multiplicity of literatures in the field were studied intensely. The findings reveal that indeed EE has a positive effect on entrepreneurship engagement thereby fostering economic growth and development. However, some research studies reported the contrary. That although EE may be able to equip potential entrepreneurs with requisite entrepreneurial skills and competencies, it will only be successful in producing entrepreneurs if they are internally driven to become entrepreneurs, because we cannot make people what they are not. The findings also reveal that countries that adopted EE early have more innovations inspired by entrepreneurs and are more developed than those that only recently adopted EE as a viable tool for entrepreneurship and economic development.

Keywords: entrepreneurship, entrepreneurship education, economic development, economic growth, sustainable development

Procedia PDF Downloads 337
871 Effect of Aging on the Second Law Efficiency, Exergy Destruction and Entropy Generation in the Skeletal Muscles during Exercise

Authors: Jale Çatak, Bayram Yılmaz, Mustafa Ozilgen

Abstract:

The second law muscle work efficiency is obtained by multiplying the metabolic and mechanical work efficiencies. Thermodynamic analyses are carried out with 19 sets of arms and legs exercise data which were obtained from the healthy young people. These data are used to simulate the changes occurring during aging. The muscle work efficiency decreases with aging as a result of the reduction of the metabolic energy generation in the mitochondria. The reduction of the mitochondrial energy efficiency makes it difficult to carry out the maintenance of the muscle tissue, which in turn causes a decline of the muscle work efficiency. When the muscle attempts to produce more work, entropy generation and exergy destruction increase. Increasing exergy destruction may be regarded as the result of the deterioration of the muscles. When the exergetic efficiency is 0.42, exergy destruction becomes 1.49 folds of the work performance. This proportionality becomes 2.50 and 5.21 folds when the exergetic efficiency decreases to 0.30 and 0.17 respectively.

Keywords: aging mitochondria, entropy generation, exergy destruction, muscle work performance, second law efficiency

Procedia PDF Downloads 427
870 Effect of Resistance Exercise on Hypothalamic-Pituitary-Gonadal Axis

Authors: Alireza Barari, Saeed Shirali, Ahmad Abdi

Abstract:

Abstract: Introduction: Physical activity may be related to male reproductive function by affecting on thehypothalamic-pituitary-gonadal(HPG) axis. Our aim was to determine the effects of 6 weeks resistance exercise on reproductive hormones, HPG axis. The hypothalamic-pituitary-gonadal (HPG) axis refers tothe effects of endocrine glands in three-level including (i) the hypothalamic releasing hormone GnRH, which is synthesized in in a small heterogenous neuronal population and released in a pulsatile fashion, (ii) the anterior pituitary hormones, follicle-stimulating hormone(FSH) and luteinizing hormone (LH) and (iii) the gonadal hormones, which include both steroid such as testosterone (T), estradiol and progesterone and peptide hormones (such as inhibin). Hormonal changes that create a more anabolic environment have been suggested to contribute to the adaptation to strength exercise. Physical activity has an extensive impact on male reproductive function depending upon the intensity and duration of the exercise and the fitness level of the individual. However, strenuous exercise represents a physical stress and inflammation changed that challenges homeostasis. Materials and methods: Sixteen male volunteered were included in a 6-week control period followed by 6 weeks of resistance training (leg press, lat pull, chest press, squat, seatedrow, abdominal crunch, shoulder press, biceps curl and triceps press down) four times per week. intensity of training loading was 60%-75% of one maximum repetition. Participants performed 3 sets of 10 repetitions. Rest periods were two min between exercises and sets. Start with warm up exercises include: The muscles relax and stretch the body, which was for 10 minutes. Body composition, VO2max and the circulating level of free testosterone (fT), luteinizing hormone (LH), follicle-stimulating hormone (FSH), sex hormone binding globulin (SHBG) and inhibin B measured prior and post 6-week intervention. The hormonal levels of each serum sample were measured using commercially available ELISA kits. Analysis of anthropometrical data and hormonal level were compared using the independent samples t- test in both groups and using SPSS (version 19). P ≤ 0.05 was considered statistically significant. Results: For muscle strength, both lower- and upper-body strength were increased significantly. Aerobic fitness level improved in trained participant from 39.4 ± 5.6 to 41.9 ± 5.3 (P = 0.002). fT concentration rise progressively in the trained group and was significantly greater than those in the control group (P = 0.000). By the end of the 6-week resistance training, serum SHBG significantly increased in the trained group compared with the control group (P = 0.013). In response to resistance training, LH, FSH and inhibin B were not significantly changed. Discussion: According to our finfings, 6 weeks of resistance training induce fat loss without any changes in body weight and BMI. A decline of 25.3% in percentage of body fat with statiscally same weight was due to increase in muscle mass that happened during resistance exercise periods . Six weeks of resistance training resulted in significant improvement in BF%, VO2max and increasing strength and the level of fT and SHBG.

Keywords: resistance, hypothalamic, pituitary, gonadal axis

Procedia PDF Downloads 399
869 Performance Analysis of Permanent Magnet Synchronous Motor Using Direct Torque Control Based ANFIS Controller for Electric Vehicle

Authors: Marulasiddappa H. B., Pushparajesh Viswanathan

Abstract:

Day by day, the uses of internal combustion engines (ICE) are deteriorating because of pollution and less fuel availability. In the present scenario, the electric vehicle (EV) plays a major role in the place of an ICE vehicle. The performance of EVs can be improved by the proper selection of electric motors. Initially, EV preferred induction motors for traction purposes, but due to complexity in controlling induction motor, permanent magnet synchronous motor (PMSM) is replacing induction motor in EV due to its advantages. Direct torque control (DTC) is one of the known techniques for PMSM drive in EV to control the torque and speed. However, the presence of torque ripple is the main drawback of this technique. Many control strategies are followed to reduce the torque ripples in PMSM. In this paper, the adaptive neuro-fuzzy inference system (ANFIS) controller technique is proposed to reduce torque ripples and settling time. Here the performance parameters like torque, speed and settling time are compared between conventional proportional-integral (PI) controller with ANFIS controller.

Keywords: direct torque control, electric vehicle, torque ripple, PMSM

Procedia PDF Downloads 165
868 Foreign Direct Investment and Its Impact on the Economic Growth of Emerging Economies: Does Ease of Doing Business Matter?

Authors: Mutaju Marobhe, Pastory Dickson

Abstract:

This study explores the role of Foreign Direct Investment (FDI) in stimulating economic growth of emerging economies. FDIs have been associated with higher economic growth rates in developed countries due to the presence of conducive business conditions e.g. advanced financial markets which may accelerate the rate at which FDI boosts economic growth. So this study sets out to evaluate this macroeconomic phenomenon in emerging economies using the case study of Southern Africa Development Community (SADC) countries. The study uses Ease of Doing Business Index as a variable that moderates the relationship between FDI and economic growth. Panel data ranging from 2010 to 2019 from all SADC members are used and due to the unbalanced nature of the data, fixed effects regression analysis with moderation effect is used to assess this phenomenon. The conclusions and recommendations generated by this study will enable emerging economies to depict how they can be able to significantly improve FDI’s role in accelerating economic growth similarly to developed economies.

Keywords: ease of doing business, economic growth, emerging economies, foreign direct investment

Procedia PDF Downloads 146
867 Neural Network Based Approach of Software Maintenance Prediction for Laboratory Information System

Authors: Vuk M. Popovic, Dunja D. Popovic

Abstract:

Software maintenance phase is started once a software project has been developed and delivered. After that, any modification to it corresponds to maintenance. Software maintenance involves modifications to keep a software project usable in a changed or a changing environment, to correct discovered faults, and modifications, and to improve performance or maintainability. Software maintenance and management of software maintenance are recognized as two most important and most expensive processes in a life of a software product. This research is basing the prediction of maintenance, on risks and time evaluation, and using them as data sets for working with neural networks. The aim of this paper is to provide support to project maintenance managers. They will be able to pass the issues planned for the next software-service-patch to the experts, for risk and working time evaluation, and afterward to put all data to neural networks in order to get software maintenance prediction. This process will lead to the more accurate prediction of the working hours needed for the software-service-patch, which will eventually lead to better planning of budget for the software maintenance projects.

Keywords: laboratory information system, maintenance engineering, neural networks, software maintenance, software maintenance costs

Procedia PDF Downloads 360
866 Single Phase Fluid Flow in Series of Microchannel Connected via Converging-Diverging Section with or without Throat

Authors: Abhishek Kumar Chandra, Kaushal Kishor, Wasim Khan, Dhananjay Singh, M. S. Alam

Abstract:

Single phase fluid flow through series of uniform microchannels connected via transition section (converging-diverging section with or without throat) was analytically and numerically studied to characterize the flow within the channel and in the transition sections. Three sets of microchannels of diameters 100, 184, and 249 μm were considered for investigation. Each set contains 10 numbers of microchannels of length 20 mm, connected to each other in series via transition sections. Transition section consists of either converging-diverging section with throat or without throat. The effect of non-uniformity in microchannels on pressure drop was determined by passing water/air through the set of channels for Reynolds number 50 to 1000. Compressibility and rarefaction effects in transition sections were also tested analytically and numerically for air flow. The analytical and numerical results show that these configurations can be used in enhancement of transport processes. However, converging-diverging section without throat shows superior performance over with throat configuration.

Keywords: contraction-expansion flow, integrated microchannel, microchannel network, single phase flow

Procedia PDF Downloads 282
865 Comprehensive Machine Learning-Based Glucose Sensing from Near-Infrared Spectra

Authors: Bitewulign Mekonnen

Abstract:

Context: This scientific paper focuses on the use of near-infrared (NIR) spectroscopy to determine glucose concentration in aqueous solutions accurately and rapidly. The study compares six different machine learning methods for predicting glucose concentration and also explores the development of a deep learning model for classifying NIR spectra. The objective is to optimize the detection model and improve the accuracy of glucose prediction. This research is important because it provides a comprehensive analysis of various machine-learning techniques for estimating aqueous glucose concentrations. Research Aim: The aim of this study is to compare and evaluate different machine-learning methods for predicting glucose concentration from NIR spectra. Additionally, the study aims to develop and assess a deep-learning model for classifying NIR spectra. Methodology: The research methodology involves the use of machine learning and deep learning techniques. Six machine learning regression models, including support vector machine regression, partial least squares regression, extra tree regression, random forest regression, extreme gradient boosting, and principal component analysis-neural network, are employed to predict glucose concentration. The NIR spectra data is randomly divided into train and test sets, and the process is repeated ten times to increase generalization ability. In addition, a convolutional neural network is developed for classifying NIR spectra. Findings: The study reveals that the SVMR, ETR, and PCA-NN models exhibit excellent performance in predicting glucose concentration, with correlation coefficients (R) > 0.99 and determination coefficients (R²)> 0.985. The deep learning model achieves high macro-averaging scores for precision, recall, and F1-measure. These findings demonstrate the effectiveness of machine learning and deep learning methods in optimizing the detection model and improving glucose prediction accuracy. Theoretical Importance: This research contributes to the field by providing a comprehensive analysis of various machine-learning techniques for estimating glucose concentrations from NIR spectra. It also explores the use of deep learning for the classification of indistinguishable NIR spectra. The findings highlight the potential of machine learning and deep learning in enhancing the prediction accuracy of glucose-relevant features. Data Collection and Analysis Procedures: The NIR spectra and corresponding references for glucose concentration are measured in increments of 20 mg/dl. The data is randomly divided into train and test sets, and the models are evaluated using regression analysis and classification metrics. The performance of each model is assessed based on correlation coefficients, determination coefficients, precision, recall, and F1-measure. Question Addressed: The study addresses the question of whether machine learning and deep learning methods can optimize the detection model and improve the accuracy of glucose prediction from NIR spectra. Conclusion: The research demonstrates that machine learning and deep learning methods can effectively predict glucose concentration from NIR spectra. The SVMR, ETR, and PCA-NN models exhibit superior performance, while the deep learning model achieves high classification scores. These findings suggest that machine learning and deep learning techniques can be used to improve the prediction accuracy of glucose-relevant features. Further research is needed to explore their clinical utility in analyzing complex matrices, such as blood glucose levels.

Keywords: machine learning, signal processing, near-infrared spectroscopy, support vector machine, neural network

Procedia PDF Downloads 95
864 Combined Automatic Speech Recognition and Machine Translation in Business Correspondence Domain for English-Croatian

Authors: Sanja Seljan, Ivan Dunđer

Abstract:

The paper presents combined automatic speech recognition (ASR) for English and machine translation (MT) for English and Croatian in the domain of business correspondence. The first part presents results of training the ASR commercial system on two English data sets, enriched by error analysis. The second part presents results of machine translation performed by online tool Google Translate for English and Croatian and Croatian-English language pairs. Human evaluation in terms of usability is conducted and internal consistency calculated by Cronbach's alpha coefficient, enriched by error analysis. Automatic evaluation is performed by WER (Word Error Rate) and PER (Position-independent word Error Rate) metrics, followed by investigation of Pearson’s correlation with human evaluation.

Keywords: automatic machine translation, integrated language technologies, quality evaluation, speech recognition

Procedia PDF Downloads 484
863 Optimized Preprocessing for Accurate and Efficient Bioassay Prediction with Machine Learning Algorithms

Authors: Jeff Clarine, Chang-Shyh Peng, Daisy Sang

Abstract:

Bioassay is the measurement of the potency of a chemical substance by its effect on a living animal or plant tissue. Bioassay data and chemical structures from pharmacokinetic and drug metabolism screening are mined from and housed in multiple databases. Bioassay prediction is calculated accordingly to determine further advancement. This paper proposes a four-step preprocessing of datasets for improving the bioassay predictions. The first step is instance selection in which dataset is categorized into training, testing, and validation sets. The second step is discretization that partitions the data in consideration of accuracy vs. precision. The third step is normalization where data are normalized between 0 and 1 for subsequent machine learning processing. The fourth step is feature selection where key chemical properties and attributes are generated. The streamlined results are then analyzed for the prediction of effectiveness by various machine learning algorithms including Pipeline Pilot, R, Weka, and Excel. Experiments and evaluations reveal the effectiveness of various combination of preprocessing steps and machine learning algorithms in more consistent and accurate prediction.

Keywords: bioassay, machine learning, preprocessing, virtual screen

Procedia PDF Downloads 276
862 Investigate and Solving Analytic of Nonlinear Differential at Vibrations (Earthquake)and Beam-Column, by New Approach “AGM”

Authors: Mohammadreza Akbari, Pooya Soleimani Besheli, Reza Khalili, Sara Akbari

Abstract:

In this study, we investigate building structures nonlinear behavior also solving analytic of nonlinear differential at vibrations. As we know most of engineering systems behavior in practical are non- linear process (especial at structural) and analytical solving (no numerical) these problems are complex, difficult and sometimes impossible (of course at form of analytical solving). In this symposium, we are going to exposure one method in engineering, that can solve sets of nonlinear differential equations with high accuracy and simple solution and so this issue will emerge after comparing the achieved solutions by Numerical Method (Runge-Kutte 4th) and exact solutions. Finally, we can proof AGM method could be created huge evolution for researcher and student (engineering and basic science) in whole over the world, because of AGM coding system, so by using this software, we can analytical solve all complicated linear and nonlinear differential equations, with help of that there is no difficulty for solving nonlinear differential equations.

Keywords: new method AGM, vibrations, beam-column, angular frequency, energy dissipated, critical load

Procedia PDF Downloads 392
861 A Study of the Formation, Existence and Stability of Localised Pulses in PDE

Authors: Ayaz Ahmad

Abstract:

TOPIC: A study of the formation ,existness and stability of localised pulses in pde Ayaz Ahmad ,NITP, Abstract:In this paper we try to govern the evolution deterministic variable over space and time .We analysis the behaviour of the model which allows us to predict and understand the possible behaviour of the physical system .Bifurcation theory provides a basis to systematically investigate the models for invariant sets .Exploring the behaviour of PDE using bifurcation theory which provides many challenges both numerically and analytically. We use the derivation of a non linear partial differential equation which may be written in this form ∂u/∂t+c ∂u/∂x+∈(∂^3 u)/(∂x^3 )+¥u ∂u/∂x=0 We show that the temperature increased convection cells forms. Through our work we look for localised solution which are characterised by sudden burst of aeroidic spatio-temporal evolution. Key word: Gaussian pulses, Aeriodic ,spatio-temporal evolution ,convection cells, nonlinearoptics, Dr Ayaz ahmad Assistant Professor Department of Mathematics National institute of technology Patna ,Bihar,,India 800005 [email protected] +91994907553

Keywords: Gaussian pulses, aeriodic, spatio-temporal evolution, convection cells, nonlinear optics

Procedia PDF Downloads 342
860 Foreign Tourists’ Attitude toward Service Marketing Mix and Intention to Revisit in Boutique Hotel

Authors: Nattapong Techarattanased

Abstract:

This survey research aimed to study the influence of attitude in services, product, and marketing mix affected intention to revisit in boutique hotel of foreign travelers in Bangkok, Thailand. The total 400 sets of closed-ended questionnaires were utilized for conducting data from foreign tourists who come to boutique hotel and can communicate in English. The descriptive statistics and multiple regression analysis were used to analyze data. The research found that tourists’ attitude towards the service of check in and check out process, food and beverage, guest room and other facilities affected in opportunity of revisiting, recommending to others and possibility of revisiting in the future at 0.05 statistically significant levels. Tourists’ attitude towards service and marketing mix in term of people, physical evidence, price, process and channel of distribution could forecast intention to revisit in term of recommending to others and intention to revisit in the future at 0.05 statistically significant levels.

Keywords: boutique hotel, foreign tourists, intention to revisit, service marketing mix

Procedia PDF Downloads 248
859 The Architecture, Engineering and Construction(AEC)New Paradigm Shift: Building Information Modelling Trend in the United Arab Emirates

Authors: Salem B. Abdalla

Abstract:

This study investigated the current Building Information Modelling (BIM) trends and practices in the UAE, particularly to shed light on a recently circulated Dubai BIM mandate. Two sets of surveys were mailed to the AEC industry and the corresponding academic sector within the UAE to collect up-to-date data on BIM awareness and utilization. The surveys showed startling results concerning the academic sector in the UAE where almost 70% of respondents were not aware of the BIM mandate. Among the rest, even when aware, the majority of mechanical and electrical engineering schools felt that BIM is not pertinent to their discipline. Therefore, the response to offering BIM in their curriculum was substantially low (35%). On the other hand, the industrial survey identified a large majority (76.5%) of the AEC industry in the UAE are using BIM. The results clearly indicate that the academia should include BIM in their curriculum to produce qualified graduates to support the market. However, the academia is also faced with several obstacles to implement BIM in their curriculum, where the main pretext is that there is “no room for new courses in existing curriculum”.

Keywords: building information modeling, BIM adoption, UAE BIM industry survey, UAE BIM academia survey, Dubai BIM mandate, UK BIM mandate, BIM education, architecture education, engineering schools, BIM implementation, BIM curriculum

Procedia PDF Downloads 417
858 An Evaluative Approach for Successful Implementation of Lean and Green Manufacturing in Indian SMEs

Authors: Satya S. N. Narayana, P. Parthiban, T. Niranjan, N. Kannan

Abstract:

Enterprises adopt methodologies to increase their business performance and to stay competent in the volatile global market. Lean manufacturing is one such manufacturing paradigm which focuses on reduction of cost by elimination of wastes or non-value added activities. With increased awareness about social responsibility and the necessary to meet the terms of the environmental policy, green manufacturing is becoming increasingly important for industries. Large plants have more resources, have started implementing lean and green practices and they are getting good results. Small and medium scale enterprises (SMEs) are facing problems in implementing lean and green concept. This paper aims to identify the key issues for implementation of lean and green concept in Indian SMEs. The key factors identified based on literature review and expert opinions are grouped into different levels by Modified Interpretive Structural Modeling (MISM) to explore the importance among the factors to implement lean and green manufacturing. Finally, Fuzzy Analytic Network Process (FANP) method has been used to determine the extent to which the main principles of lean and green manufacturing have been carried out in the six Indian medium scale manufacturing industries.

Keywords: lean manufacturing, green manufacturing, MISM, FANP

Procedia PDF Downloads 544
857 Classification of Political Affiliations by Reduced Number of Features

Authors: Vesile Evrim, Aliyu Awwal

Abstract:

By the evolvement in technology, the way of expressing opinions switched the direction to the digital world. The domain of politics as one of the hottest topics of opinion mining research merged together with the behavior analysis for affiliation determination in text which constitutes the subject of this paper. This study aims to classify the text in news/blogs either as Republican or Democrat with the minimum number of features. As an initial set, 68 features which 64 are constituted by Linguistic Inquiry and Word Count (LIWC) features are tested against 14 benchmark classification algorithms. In the later experiments, the dimensions of the feature vector reduced based on the 7 feature selection algorithms. The results show that Decision Tree, Rule Induction and M5 Rule classifiers when used with SVM and IGR feature selection algorithms performed the best up to 82.5% accuracy on a given dataset. Further tests on a single feature and the linguistic based feature sets showed the similar results. The feature “function” as an aggregate feature of the linguistic category, is obtained as the most differentiating feature among the 68 features with 81% accuracy by itself in classifying articles either as Republican or Democrat.

Keywords: feature selection, LIWC, machine learning, politics

Procedia PDF Downloads 383
856 Transforming Higher Education in India

Authors: Samir Sarfraj Terdalkar

Abstract:

India needs to step into affordable higher education with more focus on skill development and employability. The general scenario of higher education in India revolves around two major branches of higher education ie., Engineering and Medical Sciences. These two branches still cannot be considered as affordable. Hence, skill development of each and every student beginning from the school education should emphasize on learning skills with special focus on physics and mathematics. In India, the Central Government initiated a survey based process of all higher Educational Institutes/ Universities and colleges in India. This survey/ process was – All India Survey On Higher Education (AISHE). The focus of this process was understand and Though the increase is significant, it is necessary to propagate skill and vocational education which would add to the employability factor. Similarly, there has been a significant increase in number of higher education institutes, there is need to rethink on the type of education/ curriculum offered by these institutions. In this regard, vocational education has helped to build skill sets to certain extent. There is need to bring in this vocational educational in main stream education which could be complementary for undergraduate / post graduate education. The paper focuses on different policies to bring in vocational/ skill education.

Keywords: higher education, skill, vocational, India

Procedia PDF Downloads 109
855 Fuzzy Data, Random Drift, and a Theoretical Model for the Sequential Emergence of Religious Capacity in Genus Homo

Authors: Margaret Boone Rappaport, Christopher J. Corbally

Abstract:

The ancient ape ancestral population from which living great ape and human species evolved had demographic features affecting their evolution. The population was large, had great genetic variability, and natural selection was effective at honing adaptations. The emerging populations of chimpanzees and humans were affected more by founder effects and genetic drift because they were smaller. Natural selection did not disappear, but it was not as strong. Consequences of the 'population crash' and the human effective population size are introduced briefly. The history of the ancient apes is written in the genomes of living humans and great apes. The expansion of the brain began before the human line emerged. Coalescence times for some genes are very old – up to several million years, long before Homo sapiens. The mismatch between gene trees and species trees highlights the anthropoid speciation processes, and gives the human genome history a fuzzy, probabilistic quality. However, it suggests traits that might form a foundation for capacities emerging later. A theoretical model is presented in which the genomes of early ape populations provide the substructure for the emergence of religious capacity later on the human line. The model does not search for religion, but its foundations. It suggests a course by which an evolutionary line that began with prosimians eventually produced a human species with biologically based religious capacity. The model of the sequential emergence of religious capacity relies on cognitive science, neuroscience, paleoneurology, primate field studies, cognitive archaeology, genomics, and population genetics. And, it emphasizes five trait types: (1) Documented, positive selection of sensory capabilities on the human line may have favored survival, but also eventually enriched human religious experience. (2) The bonobo model suggests a possible down-regulation of aggression and increase in tolerance while feeding, as well as paedomorphism – but, in a human species that remains cognitively sharp (unlike the bonobo). The two species emerged from the same ancient ape population, so it is logical to search for shared traits. (3) An up-regulation of emotional sensitivity and compassion seems to have occurred on the human line. This finds support in modern genetic studies. (4) The authors’ published model of morality's emergence in Homo erectus encompasses a cognitively based, decision-making capacity that was hypothetically overtaken, in part, by religious capacity. Together, they produced a strong, variable, biocultural capability to support human sociability. (5) The full flowering of human religious capacity came with the parietal expansion and smaller face (klinorhynchy) found only in Homo sapiens. Details from paleoneurology suggest the stage was set for human theologies. Larger parietal lobes allowed humans to imagine inner spaces, processes, and beings, and, with the frontal lobe, led to the first theologies composed of structured and integrated theories of the relationships between humans and the supernatural. The model leads to the evolution of a small population of African hominins that was ready to emerge with religious capacity when the species Homo sapiens evolved two hundred thousand years ago. By 50-60,000 years ago, when human ancestors left Africa, they were fully enabled.

Keywords: genetic drift, genomics, parietal expansion, religious capacity

Procedia PDF Downloads 343
854 Identifying the Factors affecting on the Success of Energy Usage Saving in Municipality of Tehran

Authors: Rojin Bana Derakhshan, Abbas Toloie

Abstract:

For the purpose of optimizing and developing energy efficiency in building, it is required to recognize key elements of success in optimization of energy consumption before performing any actions. Surveying Principal Components is one of the most valuable result of Linear Algebra because the simple and non-parametric methods are become confusing. So that energy management system implemented according to energy management system international standard ISO50001:2011 and all energy parameters in building to be measured through performing energy auditing. In this essay by simulating used of data mining, the key impressive elements on energy saving in buildings to be determined. This approach is based on data mining statistical techniques using feature selection method and fuzzy logic and convert data from massive to compressed type and used to increase the selected feature. On the other side, influence portion and amount of each energy consumption elements in energy dissipation in percent are recognized as separated norm while using obtained results from energy auditing and after measurement of all energy consuming parameters and identified variables. Accordingly, energy saving solution divided into 3 categories, low, medium and high expense solutions.

Keywords: energy saving, key elements of success, optimization of energy consumption, data mining

Procedia PDF Downloads 471
853 Performance Evaluation of Grid Connected Photovoltaic System

Authors: Abdulkadir Magaji

Abstract:

This study analyzes and compares the actual measured and simulated performance of a 3.2 kwP grid-connected photovoltaic system. The system is located at the Outdoor Facility of Government Day secondary School Katsina State, which lies approximately between coordinate of 12°15′N 7°30′E. The system consists of 14 Mono crystalline silicon modules connected in two strings of 7 series-connected modules, each facing north at a fixed tilt of 340. The data presented in this study were measured in the year 2015, where the system supplied a total of 4628 kWh to the local electric utility grid. The performance of the system was simulated using PVsyst software using measured and Meteonorm derived climate data sets (solar radiation, ambient temperature and wind speed). The comparison between measured and simulated energy yield are discussed. Although, both simulation results were similar, better comparison between measured and predicted monthly energy yield is observed with simulation performed using measured weather data at the site. The measured performance ratio in the present study shows 58.4% is higher than those reported elsewhere as compared in the study.

Keywords: performance, evaluation, grid connection, photovoltaic system

Procedia PDF Downloads 181
852 Chinese Sentence Level Lip Recognition

Authors: Peng Wang, Tigang Jiang

Abstract:

The computer based lip reading method of different languages cannot be universal. At present, for the research of Chinese lip reading, whether the work on data sets or recognition algorithms, is far from mature. In this paper, we study the Chinese lipreading method based on machine learning, and propose a Chinese Sentence-level lip-reading network (CNLipNet) model which consists of spatio-temporal convolutional neural network(CNN), recurrent neural network(RNN) and Connectionist Temporal Classification (CTC) loss function. This model can map variable-length sequence of video frames to Chinese Pinyin sequence and is trained end-to-end. More over, We create CNLRS, a Chinese Lipreading Dataset, which contains 5948 samples and can be shared through github. The evaluation of CNLipNet on this dataset yielded a 41% word correct rate and a 70.6% character correct rate. This evaluation result is far superior to the professional human lip readers, indicating that CNLipNet performs well in lipreading.

Keywords: lipreading, machine learning, spatio-temporal, convolutional neural network, recurrent neural network

Procedia PDF Downloads 128