Search results for: single cell proteins
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 8376

Search results for: single cell proteins

7356 Amniotic Fluid Mesenchymal Stem Cells Selected for Neural Specificity Ameliorates Chemotherapy Induced Hearing Loss and Pain Perception

Authors: Jan F. Talts, Amit Saxena, Kåre Engkilde

Abstract:

Chemotherapy-induced peripheral neuropathy (CIPN) is one of the most frequent side effects caused by anti-neoplastic agents, with a prevalence from 19 % to 85 %. Clinically, CIPN is a mostly sensory neuropathy leading to pain and to motor and autonomic changes. Due to its high prevalence among cancer patients, CIPN constitutes a major problem for both cancer patients and survivors, especially because currently, there is no single effective method of preventing CIPN. Hearing loss is the most common form of sensory impairment in humans and can be caused by ototoxic chemical compounds such as chemotherapy (platinum-based antineoplastic agents).In rodents, single or repeated cisplatin injections induce peripheral neuropathy and hearing impairment mimicking human disorder, allowing studying the efficacy of new pharmacological candidates in chemotherapy-induced hearing loss and peripheral neuropathy. RNA sequencing data from full term amniotic fluid (TAF) mesenchymal stemcell (MSC) clones was used to identify neural-specific markers present on TAF-MSC. Several prospective neural markers were tested by flow cytometry on cultured TAF-MSC. One of these markers was used for cell-sorting using Tyto MACSQuant cell sorter, and the neural marker positive cell population was expanded for several passages to the final therapeutic product stage. Peripheral neuropathy and hearing loss was induced in mice by administration of cisplatin in three week-long cycles. The efficacy of neural-specific TAF-MSC in treating hearing loss and pain perception was evaluated by administration of three injections of 3 million cells/kg by intravenous route or three injections of 3 million cells/kg by intra-arterial route after each cisplatin cycle treatment. Auditory brainstem responses (ABR) are electric potentials recorded from scalp electrodes, and the first ABR wave represents the summed activity of the auditory nerve fibers contacting the inner hair cells. For ABR studies, mice were anesthetized, then earphones were placed in the left ear of each mouse, an active electrode was placed in the vertex of the skull, a reference electrode under the skin of the mastoid bone, and a ground electrode in the neck skin. The stimuli consisted of tone pips of five frequencies (2, 4, 6, 12, 16, and 24 kHz) at various sound levels (from 0 to 90 dB) ranging to cover the mouse auditory frequency range. The von Frey test was used to assess the onset and maintenance of mechanical allodynia over time. Mice were placed in clear plexiglass cages on an elevated mesh floor and tested after 30 min of habituation. Mechanical paw withdrawal threshold was examined using an electronic von Frey anesthesiometer. Cisplatin groups treated with three injections of 3 million cells/kg by intravenous route and three injections of 3 million cells/kg by intra-arterial route after each cisplatin cycle treatment presented, a significant increase of hearing acuity characterized by a decrease of ABR threshold and a decrease of neuropathic pain characterized by an increase of von Frey paw withdrawal threshold compared to controls only receiving cisplatin. This study shows that treatment with MSCselected for neural specificity presents significant positive efficacy on the chemotherapy-induced neuropathic pain and the chemotherapy-induced hearing loss.

Keywords: mesenchymal stem cell, peripheral neuropathy, amniotic fluid, regenerative medicine

Procedia PDF Downloads 149
7355 Power Allocation in User-Centric Cell-Free Massive Multiple-Input Multiple-Output Systems with Limited Fronthaul Capacity

Authors: Siminfar Samakoush Galougah

Abstract:

In this paper, we study two power allocation problems for an uplink user-centric (UC) cell-free massive multiple-input multiple-output (CF-mMIMO) system. Besides, we assume each access point (AP) is connected to a central processing unit (CPU) via a fronthaul link with limited capacity. To efficiently use the fronthaul capacity, two strategies for transmitting signals from APs to the CPU are employed, namely, compress-forward estimate (CFE), estimate-compress-forward (ECF). The capacity of the aforementioned strategies in user-centric CF-mMIMO is drived. Then, we solved the two power allocation problems with minimum Spectral Efficiency (SE) and sum-SE maximization objectives for ECF and CFE strategies.

Keywords: cell-free massive MIMO, limited capacity fronthaul, spectral efficiency

Procedia PDF Downloads 45
7354 LaeA/1-Velvet Interplay in Aspergillus and Trichoderma: Regulation of Secondary Metabolites and Cellulases

Authors: Razieh Karimi Aghcheh, Christian Kubicek, Joseph Strauss, Gerhard Braus

Abstract:

Filamentous fungi are of considerable economic and social significance for human health, nutrition and in white biotechnology. These organisms are dominant producers of a range of primary metabolites such as citric acid, microbial lipids (biodiesel) and higher unsaturated fatty acids (HUFAs). In particular, they produce also important but structurally complex secondary metabolites with enormous therapeutic applications in pharmaceutical industry, for example: cephalosporin, penicillin, taxol, zeranol and ergot alkaloids. Several fungal secondary metabolites, which are significantly relevant to human health do not only include antibiotics, but also e.g. lovastatin, a well-known antihypercholesterolemic agent produced by Aspergillus. terreus, or aflatoxin, a carcinogen produced by A. flavus. In addition to their roles for human health and agriculture, some fungi are industrially and commercially important: Species of the ascomycete genus Hypocrea spp. (teleomorph of Trichoderma) have been demonstrated as efficient producer of highly active cellulolytic enzymes. This trait makes them effective in disrupting and depolymerization of lignocellulosic materials and thus applicable tools in number of biotechnological areas as diverse as clothes-washing detergent, animal feed, and pulp and fuel productions. Fungal LaeA/LAE1 (Loss of aflR Expression A) homologs their gene products act at the interphase between secondary metabolisms, cellulase production and development. Lack of the corresponding genes results in significant physiological changes including loss of secondary metabolite and lignocellulose degrading enzymes production. At the molecular level, the encoded proteins are presumably methyltransferases or demethylases which act directly or indirectly at heterochromatin and interact with velvet domain proteins. Velvet proteins bind to DNA and affect expression of secondary metabolites (SMs) genes and cellulases. The dynamic interplay between LaeA/LAE1, velvet proteins and additional interaction partners is the key for an understanding of the coordination of metabolic and morphological functions of fungi and is required for a biotechnological control of the formation of desired bioactive products. Aspergilli and Trichoderma represent different biotechnologically significant species with significant differences in the LaeA/LAE1-Velvet protein machinery and their target proteins. We, therefore, performed a comparative study of the interaction partners of this machinery and the dynamics of the various protein-protein interactions using our robust proteomic and mass spectrometry techniques. This enhances our knowledge about the fungal coordination of secondary metabolism, cellulase production and development and thereby will certainly improve recombinant fungal strain construction for the production of industrial secondary metabolite or lignocellulose hydrolytic enzymes.

Keywords: cellulases, LaeA/1, proteomics, secondary metabolites

Procedia PDF Downloads 257
7353 Effective Cooling of Photovoltaic Solar Cells by Inserting Triangular Ribs: A Numerical Study

Authors: S. Saadi, S. Benissaad, S. Poncet, Y. Kabar

Abstract:

In photovoltaic (PV) cells, most of the absorbed solar radiation cannot be converted into electricity. A large amount of solar radiation is converted to heat, which should be dissipated by any cooling techniques. In the present study, the cooling is achieved by inserting triangular ribs in the duct. A comprehensive two-dimensional thermo-fluid model for the effective cooling of PV cells has been developed. It has been first carefully validated against experimental and numerical results available in the literature. A parametric analysis was then carried out about the influence of the number and size of the ribs, wind speed, solar irradiance and inlet fluid velocity on the average solar cell and outlet air temperatures as well as the thermal and electrical efficiencies of the module. Results indicated that the use of triangular ribbed channels is a very effective cooling technique, which significantly reduces the average temperature of the PV cell, especially when increasing the number of ribs.

Keywords: effective cooling, numerical modeling, photovoltaic cell, triangular ribs

Procedia PDF Downloads 164
7352 Delicate Balance between Cardiac Stress and Protection: Role of Mitochondrial Proteins

Authors: Zuzana Tatarkova, Ivana Pilchova, Michal Cibulka, Martin Kolisek, Peter Racay, Peter Kaplan

Abstract:

Introduction: Normal functioning of mitochondria is crucial for cardiac performance. Mitochondria undergo mitophagy and biogenesis, and mitochondrial proteins are subject to extensive post-translational modifications. The state of mitochondrial homeostasis reflects overall cellular fitness and longevity. Perturbed mitochondria produce less ATP, release greater amounts of reactive molecules, and are more prone to apoptosis. Therefore mitochondrial turnover is an integral aspect of quality control in which dysfunctional mitochondria are selectively eliminated through mitophagy. Currently, the progressive deterioration of physiological functions is seen as accumulation of modified/damaged proteins with limiting regenerative ability and disturbance of such affected protein-protein communication throughout aging in myocardial cells. Methodologies: For our study was used immunohistochemistry, biochemical methods: spectrophotometry, western blotting, immunodetection as well as more sophisticated 2D electrophoresis and mass spectrometry for evaluation protein-protein interactions and specific post-translational modification. Results and Discussion: Mitochondrial stress response to reactive species was evaluated as electron transport chain (ETC) complexes, redox-active molecules, and their possible communication. Protein-protein interactions revealed a strong linkage between age and ETC protein subunits. Redox state was strongly affected in senescent mitochondria with shift in favor of more pro-oxidizing condition within cardiomyocytes. Acute myocardial ischemia and ischemia-reperfusion (IR) injury affected ETC complexes I, II and IV with no change in complex III. Ischemia induced decrease in total antioxidant capacity, MnSOD, GSH and catalase activity with recovery in some extent during reperfusion. While MnSOD protein content was higher in IR group, activity returned to 95% of control. Nitric oxide is one of the biological molecules that can out compete MnSOD for superoxide and produce peroxynitrite. This process is faster than dismutation and led to the 10-fold higher production of nitrotyrosine after IR injury in adult with higher protection in senescent ones. 2D protein profiling revealed 140 mitochondrial proteins, 12 of them with significant changes after IR injury and 36 individual nitrotyrosine-modified proteins further identified by mass spectrometry. Linking these two groups, 5 proteins were altered after IR as well as nitrated, but only one showed massive nitration per lowering content of protein after IR injury in adult. Conclusions: Senescent cells have greater proportion of protein content, which might be modulated by several post-translational modifications. If these protein modifications are connected to functional consequences and protein-protein interactions are revealed, link may lead to the solution. Assume all together, dysfunctional proteostasis can play a causative role and restoration of protein homeostasis machinery is protective against aging and possibly age-related disorders. This work was supported by the project VEGA 1/0018/18 and by project 'Competence Center for Research and Development in the field of Diagnostics and Therapy of Oncological diseases', ITMS: 26220220153, co-financed from EU sources.

Keywords: aging heart, mitochondria, proteomics, redox state

Procedia PDF Downloads 157
7351 AC Voltage Regulators Using Single Phase Matrix Converter

Authors: Nagaraju Jarugu, B. R. Narendra

Abstract:

This paper focused on boost rectification by Single Phase Matrix Converter with fewer numbers of switches. The conventional matrix converter consists of 4 bidirectional switches, i.e. 8 set of IGBT/MOSFET with anti-parallel diodes. In this proposed matrix converter, only six switches are used. The switch commutation arrangements are also carried out in this work. The SPMC topology has many advantages as a minimal passive device use. It is very flexible and it can be used as a lot of converters. The gate pulses to the switches are provided by the PWM techniques. The duty ratio of the switches based on Pulse Width Modulation (PWM) technique was used to produce the output waveform of the circuit, simply by turning ON and OFF the switches. The simulation results using MATLAB/Simulink were provided to validate the feasibility of this proposed method.

Keywords: single phase matrix converter, reduced switches, AC voltage regulators, boost rectifier operation

Procedia PDF Downloads 1173
7350 Isolation and Elimination of Latent and Productive Herpes Simplex Virus from the Sacral and Trigeminal Ganglions

Authors: Bernard L. Middleton, Susan P. Cosgrove

Abstract:

There is an immediate need for alternative anti-herpetic treatment options effective for both primary infections and reoccurring reactivations of herpes simplex virus types 1 (HSV-1) and 2 (HSV-2). Alternatives currently approved for the purposes of clinical administration includes antivirals and a reduced set of nucleoside analogues. The present article tests a treatment based on a systemic understanding of how the herpes virus affects cell inhibition and breakdown and targets different phases of the viral cycle, including the entry stage, reproductive cross mutation, and cell-to-cell infection. The treatment consisted of five immunotherapeutic core compounds (5CC), which were hypothesized to be capable of neutralizing human monoclonal antibodies. The tested 5CC were noted as being functional in the application of eliminating the DNA synthesis of herpes viral interferon (IFN) - induced cellular antiviral response. They were here found to neutralize antiviral reproduction by blocking cell-to-cell infection. The activity of the 5CC was tested on RC-37 in vitro using an assay plaque reduction and in vivo against HSV-1 and HSV-2. The 50% inhibitory concentration (IC50) of 5CC was 0.0009% for HSV-1 plaque formation and 0.0008% for HSV-2 plaque formation. Further tests were performed to evaluate the susceptibility of HSV-1 and HSV-2 to anti-herpetic drugs in Vero cells after virus entry. There were high-level markers of the 5CC virucidal activity in the viral suspension of HSV-1 and HSV-2. These concentrations of the 5CC are nontoxic and reduced plaque formation by 98.2% for HSV-1 and 93.0% for HSV-2. Virus HSV-1 and HSV-2 titers were reduced significantly by 5CC to the point of being negative, ranging 0.01–0.09 in 72%. The results concluded the 5CC as being an effective treatment option for the herpes simplex virus.

Keywords: synergy pharmaceuticals, herpes treatment, herpes cure, synergy pharmaceuticals treatment

Procedia PDF Downloads 228
7349 Effects of Different Drying Methods on the Properties of Viscose Single Jersey Fabrics

Authors: Merve Kucukali Ozturk, Yesim Beceren, Banu Nergis

Abstract:

The study discussed in this paper was conducted in an attempt to investigate effects of different drying methods (line dry and tumble dry) on viscose single jersey fabrics knitted with ring yarn.

Keywords: color change, dimensional properties, drying method, fabric tightness, physical properties

Procedia PDF Downloads 273
7348 Cord Blood Hematopoietic Stem Cell Expansion Ability of Mesenchymal Stem Cells Isolated From Different Sources

Authors: Ana M. Lara, Manuela Llano, Felipe Gaitán, Rosa H. Bustos, Ana Maria Perdomo-Arciniegas, Ximena Bonilla

Abstract:

Umbilical cord blood is used as a source of progenitor and stem cells for the regeneration of the hematopoietic and immune system to treat patients with different hematological or non-hematological diseases. This stem cell source represents an advantage over the use of bone marrow or mobilized peripheral blood because it has a lower incidence rate of graft-versus-host disease, probably due to fewer immunological compatibility restrictions. However, its low cellular dose limits its use in pediatric patients. This work proposes the standardization of a cell expansion technique to compensate for the dose of infused cells through the ex-vivo manipulation of hematopoietic progenitor cells from umbilical cord blood before transplantation. The expansion model is carried out through co-cultures with mesenchymal stem cells (MSC) from bone marrow (BM) and less explored fetal tissues such as Wharton's jelly (WJ) and umbilical cord blood (UCB). Initially, a master cell bank of primary mesenchymal stem cells isolated from different sources was established and characterized following International Society of Cell Therapies (ISCT) indications. Additionally, we assessed the effect of a short 25 Gy cycle of gamma irradiation on cell cycle arrest of mesenchymal cells over the support capacity for the expansion of hematopoietic stem cells from umbilical cord blood was evaluated. The results show that co-cultures with MSC from WJ and UCB allow the cellular dose of HSPC to be maximized between 5 and 16 times having a similar support capacity as BM. In addition, was evaluated the hematopoietic stem progenitor cell's HSPC functionality through the evaluation of migration capacity, their differentiation capacity during culture time by flow cytometry to evaluate the expression of membrane markers associated with lineage-committed progenitors, their clonogenic potential, and the evaluation of secretome profile in the expansion process was evaluated. So far, the treatment with gamma irradiation maintains the hematopoietic support capacity of mesenchymal stem cells from the three sources studied compared to treatments without irradiation, favoring the use of fetal tissues that are generally waste to obtain mesenchymal cell lines for ex-vivo expansion systems. With the results obtained, a standardized protocol that will contribute to the development of ex-vivo expansion with MSC on a larger scale will be achieved, enabling its clinical use and expanding its application in adults.

Keywords: ex-vivo expansion, hematopoietic stem cells, hematopoietic stem cell transplantation, mesenchymal stem cells, umbilical cord blood

Procedia PDF Downloads 102
7347 Cytotoxic Activity Of Major Iridoids From Barleria Trispinosa (Forssk.) Vahl. Growing In Saudi Arabia

Authors: Hamza Assiry, Gamal A. Mohamed, Sabrin R. M. Ibrahim, Hossam M. Abdallah

Abstract:

Chemical investigation of the aerial parts of Barleria trispinosa(Forssk.) Vahl. resulted in isolation of four major iridoids that were identified as 6,8-O,O-diacetylshanhiside methyl ester (acetyl barlerin) (1), 8-O-acetylshanzhiside methyl ester (barlerin) (2), shanzhiside methyl ester (3), and 6- ⍺ -L-rhamnopyranosyl-8-O-acetylshanzihiside methyl ester (4). The isolated compounds were confirmed by detailed one and two-dimensional NMR. Isolated compounds were tested for their cytotoxic activity on breast cancer (MCF-7, MDA-MB-231) and colon cancer (LS174T) cell linesusing sulphorhodamine B (SRB) assay. It is noteworthy that compound 1 demonstrated a significant cytotoxic potential towards MDA-MB-231 cell line with IC5016.7 ± 2.7µg / mL compared to doxorubicin whereas compounds 2, showed moderate cytotoxic potential with IC5021.2 ± 1.9µg / mL on MCF-7. The other compounds showed moderate activity on the tested cell lines.

Keywords: acanthaceae, cytotoxicity, metabolites, barleria trispinosa

Procedia PDF Downloads 134
7346 Treatment of NMSC with Traditional Medicine Method

Authors: Aferdita Stroka Koka, Laver Stroka, Juna Musa, Samanda Celaj

Abstract:

Non-melanoma skin cancers (NMSCs) are the most common human malignancies. About 5.4 million basal and squamous cell skin cancers are diagnosed each year in the US and new cases continue to grow. About eight out of ten of these are basal cell cancers. Squamous cell cancers occur less often. NMSC usually are treatable, but treatment is expensive and can leave scars. In 2019, 167 patients of both sexes suffering from NMSC were treated by traditional medicine. Patients who have been diagnosed with Basal Cell Carcinoma were 122 cases, Squamous Cell Carcinoma 32 cases and both of them 13 cases. Of these,122 cases were ulcerated lesions and 45 unulcerated lesions. All patients were treated with the herbal solution called NILS, which contains extracts of some Albanian plants such as Allium sativum, Jugulans regia and Laurus nobilis. The treatment is done locally, on the surface of the tumor, applying the solution until the tumor mass is destroyed and, after that, giving the necessary time to the wound to make the regeneration that coincides with the complete healing of the wound. We have prepared a collection of photos for each case. Since the first sessions, a shrinkage and reduction of the tumor mass were evident, up to the total disappearance of the lesion at the end of treatment. The normal period of treatment lasted 1 to 2 weeks, depending on the size of the tumor, then take care of it until the closure of the wound, taking the whole process from 1 to 3 months. In 7 patients, the lesion failed to be dominated by treatment and they underwent standard treatment with radiotherapy or surgery, while in 10 patients, the lesion recurred and was treated again. The aim of this survey was to put in evidence the good results obtained by treatment of NMSC with Albanian traditional medicine methods.

Keywords: local treatment, nils, NMSC, traditional medicine

Procedia PDF Downloads 196
7345 Microbial Contamination of Cell Phones of Health Care Workers: Case Study in Mampong Municipal Government Hospital, Ghana

Authors: Francis Gyapong, Denis Yar

Abstract:

The use of cell phones has become an indispensable tool in the hospital's settings. Cell phones are used in hospitals without restrictions regardless of their unknown microbial load. However, the indiscriminate use of mobile devices, especially at health facilities, can act as a vehicle for transmitting pathogenic bacteria and other microorganisms. These potential pathogens become exogenous sources of infection for the patients and are also a potential health hazard for self and as well as family members. These are a growing problem in many health care institutions. Innovations in mobile communication have led to better patient care in diabetes, asthma, and increased in vaccine uptake via SMS. Notwithstanding, the use of cell phones can be a great potential source for nosocomial infections. Many studies reported heavy microbial contamination of cell phones among healthcare workers and communities. However, limited studies have been reported in our region on bacterial contamination on cell phones among healthcare workers. This study assessed microbial contamination of cell phones of health care workers (HCWs) at the Mampong Municipal Government Hospital (MMGH), Ghana. A cross-sectional design was used to characterize bacterial microflora on cell phones of HCWs at the MMGH. A total of thirty-five (35) swab samples of cell phones of HCWs at the Laboratory, Dental Unit, Children’s Ward, Theater and Male ward were randomly collected for laboratory examinations. A suspension of the swab samples was each streak on blood and MacConkey agar and incubated at 37℃ for 48 hours. Bacterial isolates were identified using appropriate laboratory and biochemical tests. Kirby-Bauer disc diffusion method was used to determine the antimicrobial sensitivity tests of the isolates. Data analysis was performed using SPSS version 16. All mobile phones sampled were contaminated with one or more bacterial isolates. Cell phones from the Male ward, Dental Unit, Laboratory, Theatre and Children’s ward had at least three different bacterial isolates; 85.7%, 71.4%, 57.1% and 28.6% for both Theater and Children’s ward respectively. Bacterial contaminants identified were Staphylococcus epidermidis (37%), Staphylococcus aureus (26%), E. coli (20%), Bacillus spp. (11%) and Klebsiella spp. (6 %). Except for the Children ward, E. coli was isolated at all study sites and predominant (42.9%) at the Dental Unit while Klebsiella spp. (28.6%) was only isolated at the Children’s ward. Antibiotic sensitivity testing of Staphylococcus aureus indicated that they were highly sensitive to cephalexin (89%) tetracycline (80%), gentamycin (75%), lincomycin (70%), ciprofloxacin (67%) and highly resistant to ampicillin (75%). Some of these bacteria isolated are potential pathogens and their presence on cell phones of HCWs could be transmitted to patients and their families. Hence strict hand washing before and after every contact with patient and phone be enforced to reduce the risk of nosocomial infections.

Keywords: mobile phones, bacterial contamination, patients, MMGH

Procedia PDF Downloads 85
7344 3-D Strain Imaging of Nanostructures Synthesized via CVD

Authors: Sohini Manna, Jong Woo Kim, Oleg Shpyrko, Eric E. Fullerton

Abstract:

CVD techniques have emerged as a promising approach in the formation of a broad range of nanostructured materials. The realization of many practical applications will require efficient and economical synthesis techniques that preferably avoid the need for templates or costly single-crystal substrates and also afford process adaptability. Towards this end, we have developed a single-step route for the reduction-type synthesis of nanostructured Ni materials using a thermal CVD method. By tuning the CVD growth parameters, we can synthesize morphologically dissimilar nanostructures including single-crystal cubes and Au nanostructures which form atop untreated amorphous SiO2||Si substrates. An understanding of the new properties that emerge in these nanostructures materials and their relationship to function will lead to for a broad range of magnetostrictive devices as well as other catalysis, fuel cell, sensor, and battery applications based on high-surface-area transition-metal nanostructures. We use coherent X-ray diffraction imaging technique to obtain 3-D image and strain maps of individual nanocrystals. Coherent x-ray diffractive imaging (CXDI) is a technique that provides the overall shape of a nanostructure and the lattice distortion based on the combination of highly brilliant coherent x-ray sources and phase retrieval algorithm. We observe a fine interplay of reduction of surface energy vs internal stress, which plays an important role in the morphology of nano-crystals. The strain distribution is influenced by the metal-substrate interface and metal-air interface, which arise due to differences in their thermal expansion. We find the lattice strain at the surface of the octahedral gold nanocrystal agrees well with the predictions of the Young-Laplace equation quantitatively, but exhibits a discrepancy near the nanocrystal-substrate interface resulting from the interface. The strain in the bottom side of the Ni nanocube, which is contacted on the substrate surface is compressive. This is caused by dissimilar thermal expansion coefficients between Ni nanocube and Si substrate. Research at UCSD support by NSF DMR Award # 1411335.

Keywords: CVD, nanostructures, strain, CXRD

Procedia PDF Downloads 379
7343 Microfluidic Impedimetric Biochip and Related Methods for Measurement Chip Manufacture and Counting Cells

Authors: Amina Farooq, Nauman Zafar Butt

Abstract:

This paper is about methods and tools for counting particles of interest, such as cells. A microfluidic system with interconnected electronics on a flexible substrate, inlet-outlet ports and interface schemes, sensitive and selective detection of cells specificity, and processing of cell counting at polymer interfaces in a microscale biosensor for use in the detection of target biological and non-biological cells. The development of fluidic channels, planar fluidic contact ports, integrated metal electrodes on a flexible substrate for impedance measurements, and a surface modification plasma treatment as an intermediate bonding layer are all part of the fabrication process. Magnetron DC sputtering is used to deposit a double metal layer (Ti/Pt) over the polypropylene film. Using a photoresist layer, specified and etched zones are established. Small fluid volumes, a reduced detection region, and electrical impedance measurements over a range of frequencies for cell counts improve detection sensitivity and specificity. The procedure involves continuous flow of fluid samples that contain particles of interest through the microfluidic channels, counting all types of particles in a portion of the sample using the electrical differential counter to generate a bipolar pulse for each passing cell—calculating the total number of particles of interest originally in the fluid sample by using MATLAB program and signal processing. It's indeed potential to develop a robust and economical kit for cell counting in whole-blood samples using these methods and similar devices.

Keywords: impedance, biochip, cell counting, microfluidics

Procedia PDF Downloads 151
7342 Optimizing Coal Yard Management Using Discrete Event Simulation

Authors: Iqbal Felani

Abstract:

A Coal-Fired Power Plant has some integrated facilities to handle coal from three separated coal yards to eight units power plant’s bunker. But nowadays the facilities are not reliable enough for supporting the system. Management planned to invest some facilities to increase the reliability. They also had a plan to make single spesification of coal used all of the units, called Single Quality Coal (SQC). This simulation would compare before and after improvement with two scenarios i.e First In First Out (FIFO) and Last In First Out (LIFO). Some parameters like stay time, reorder point and safety stock is determined by the simulation. Discrete event simulation based software, Flexsim 5.0, is used to help the simulation. Based on the simulation, Single Quality Coal with FIFO scenario has the shortest staytime with 8.38 days.

Keywords: Coal Yard Management, Discrete event simulation First In First Out, Last In First Out.

Procedia PDF Downloads 654
7341 Stent Surface Functionalisation via Plasma Treatment to Promote Fast Endothelialisation

Authors: Irene Carmagnola, Valeria Chiono, Sandra Pacharra, Jochen Salber, Sean McMahon, Chris Lovell, Pooja Basnett, Barbara Lukasiewicz, Ipsita Roy, Xiang Zhang, Gianluca Ciardelli

Abstract:

Thrombosis and restenosis after stenting procedure can be prevented by promoting fast stent wall endothelialisation. It is well known that surface functionalisation with antifouling molecules combining with extracellular matrix proteins is a promising strategy to design biomimetic surfaces able to promote fast endothelialization. In particular, REDV has gained much attention for the ability to enhance rapid endothelialization due to its specific affinity with endothelial cells (ECs). In this work, a two-step plasma treatment was performed to polymerize a thin layer of acrylic acid, used to subsequently graft PEGylated-REDV and polyethylene glycol (PEG) at different molar ratio with the aim to selectively promote endothelial cell adhesion avoiding platelet activation. PEGylate-REDV was provided by Biomatik and it is formed by 6 PEG monomer repetitions (Chempep Inc.), with an NH2 terminal group. PEG polymers were purchased from Chempep Inc. with two different chain lengths: m-PEG6-NH2 (295.4 Da) with 6 monomer repetitions and m-PEG12-NH2 (559.7 Da) with 12 monomer repetitions. Plasma activation was obtained by operating at 50W power, 5 min of treatment and at an Ar flow rate of 20 sccm. Pure acrylic acid (99%, AAc) vapors were diluted in Ar (flow = 20 sccm) and polymerized by a pulsed plasma discharge applying a discharge RF power of 200 W, a duty cycle of 10% (on time = 10 ms, off time = 90 ms) for 10 min. After plasma treatment, samples were dipped into an 1-(3-dimethylaminopropyl)-3- ethylcarbodiimide (EDC)/N-hydroxysuccinimide (NHS) solution (ratio 4:1, pH 5.5) for 1 h at 4°C and subsequently dipped in PEGylate-REDV and PEGylate-REDV:PEG solutions at different molar ratio (100 μg/mL in PBS) for 20 h at room temperature. Surface modification was characterized through physico-chemical analyses and in vitro cell tests. PEGylated-REDV peptide and PEG were successfully bound to the carboxylic groups that are formed on the polymer surface after plasma reaction. FTIR-ATR spectroscopy, X -ray Photoelectron Spectroscopy (XPS) and contact angle measurement gave a clear indication of the presence of the grafted molecules. The use of PEG as a spacer allowed for an increase in wettability of the surface, and the effect was more evident by increasing the amount of PEG. Endothelial cells adhered and spread well on the surfaces functionalized with the REDV sequence. In conclusion, a selective coating able to promote a new endothelial cell layer on polymeric stent surface was developed. In particular, a thin AAc film was polymerised on the polymeric surface in order to expose –COOH groups, and PEGylate-REDV and PEG were successful grafted on the polymeric substrates. The REDV peptide demonstrated to encourage cell adhesion with a consequent, expected improvement of the hemocompatibility of these polymeric surfaces in vivo. Acknowledgements— This work was funded by the European Commission 7th Framework Programme under grant agreement number 604251- ReBioStent (Reinforced Bioresorbable Biomaterials for Therapeutic Drug Eluting Stents). The authors thank all the ReBioStent partners for their support in this work.

Keywords: endothelialisation, plasma treatment, stent, surface functionalisation

Procedia PDF Downloads 295
7340 Synthetic, Characterization and Biological Studies of Bis(Tetrathiomolybdate) Compounds of Pt (II), Pd (II) and Ni (II)

Authors: V. K. Srivastava

Abstract:

The chemistry of compounds containing transition metals bound to sulfur containing ligands has been actively studied. Interest in these compounds arises from the identification of the biological importance of iron-sulfur containing proteins as well as the unusual behaviour of several types of synthetic metal-sulfur complexes. Metal complexes (C₆H₅)₄P)₂ Pt(Mos₄)₂, (C₆H₅)₄P)₂ Pd(MoS₄)₂, (C₆H₅)₄P)₂ Ni(MoS₄)₂ of bioinorganic relevance were investigated. The complexes [M(M'S₄)₂]²⁻ were prepared with high yield and purity as salts of the variety of organic cations. The diamagnetism and spectroscopic properties of these complexes confirmed that their structures are essentially equivalent with two bidentate M'S₄²⁻ ligands coordinated to the central d⁸ metal in a square planer geometry. The interaction of the complexes with CT-DNA was studied. Results showed that metal complexes increased DNA's relative viscosity and quench the fluorescence intensity of EB bound to DNA. In antimicrobial activities, all complexes showed good antimicrobial activity higher than ligand against gram positive, gram negative bacteria and fungi. The antitumor properties have been tested in vitro against two tumor human cell lines, Hela (derived from cervical cancer) and MCF-7 (derived from breast cancer) using metabolic activity tests. Result showed that the complexes are promising chemotherapeutic alternatives in the search of anticancer agents.

Keywords: anti cancer, biocidal, DNA binding, spectra

Procedia PDF Downloads 144
7339 Targeted Delivery of Novel Copper-Based Nanoparticles for Advance Cancer Therapeutics

Authors: Arindam Pramanik, Parimal Karmakar

Abstract:

We have explored the synergistic anti-cancer activity of copper ion and acetylacetone complex containing 1,3 diketone group (like curcumin) in metallorganic compound “Copper acetylacetonate” (CuAA). The cytotoxicity mechanism of CuAA complex was evaluated on various cancer cell lines in vitro. Among these, reactive oxygen species (ROS), glutathione level (GSH) in the cell was found to increase. Further mitochondrial membrane damage was observed. The fate of cell death was found to be induced by apoptosis. For application purpose, we have developed a novel biodegradable, non-toxic polymer-based nanoparticle which has hydrophobically modified core for loading of the CuAA. Folic acid is conjugated on the surface of the polymer (chitosan) nanoparticle for targeting to cancer cells for minimizing toxicity to normal cells in-vivo. Thus, this novel drug CuAA has an efficient anticancer activity which has been targeted specifically to cancer cells through polymer nanoparticle.

Keywords: anticancer, apoptosis, copper nanoparticle, targeted drug delivery

Procedia PDF Downloads 469
7338 Alternating Current Photovoltaic Module Model

Authors: Irtaza M. Syed, Kaamran Raahemifar

Abstract:

This paper presents modeling of a Alternating Current (AC) Photovoltaic (PV) module using Matlab/Simulink. The proposed AC-PV module model is simple, realistic, and application oriented. The model is derived on module level as compared to cell level directly from the information provided by the manufacturer data sheet. DC-PV module, MPPT control, BC, VSI and LC filter, all were treated as a single unit. The model accounts for changes in variations of both irradiance and temperature. The AC-PV module proposed model is simulated and the results are compared with the datasheet projected numbers to validate model’s accuracy and effectiveness. Implementation and results demonstrate simplicity and accuracy, as well as reliability of the model.

Keywords: PV modeling, AC PV Module, datasheet, VI curves irradiance, temperature, MPPT, Matlab/Simulink

Procedia PDF Downloads 556
7337 Effect of Single Overload Ratio and Stress Ratio on Fatigue Crack Growth

Authors: M. Benachour, N. Benachour, M. Benguediab

Abstract:

In this investigation, variation of cyclic loading effect on fatigue crack growth is studied. This study is performed on 2024 T351 and 7050-T74 aluminum alloys, used in aeronautical structures. The propagation model used in this study is NASGRO model. In constant amplitude loading (CA), the effect of stress ratio has been investigated. Fatigue life and fatigue crack growth rate were affected by this factor. Results showed an increasing in fatigue crack growth rates (FCGRs) with increasing stress ratio. Variable amplitude loading (VAL) can take many forms i.e with a single overload, overload band etc. The shape of these loads affects strongly the fracture life and FCGRs. The application of a single overload (ORL) decrease the FCGR and increase the delay crack length caused by the formation of a larger plastic zone compared to the plastic zone due without VAL. The fatigue behavior of the both material under single overload has been compared.

Keywords: fatigue crack growth, overload ratio, stress ratio, generalized willenborg model, retardation, al-alloys

Procedia PDF Downloads 350
7336 High Efficiency Achievement by a New Heterojunction N-Zno:Al/P-Si Solar Cell

Authors: A. Bouloufa, F. Khaled, K. Djessas

Abstract:

This paper presents a new structure of solar cell based on p-type microcrystalline silicon as an absorber and n-type aluminum doped zinc oxide (ZnO:Al) transparent conductive oxide as an optical window. The ZnO:Al layer deposited by rf-magnetron sputtering at room temperature yields a low resistivity about 7,64.10-2Ω.cm and more than 85% mean optical transmittance in the VIS–NIR range, with an optical band gap of 3.3 eV. These excellent optical properties of this layer in combination with an optimal contact at the front surface result in a superior light trapping yielding to efficiencies about 20%. In order to improve efficiency, we have used a p+-µc-Si thin layer highly doped as a back surface field which minimizes significantly the impact of rear surface recombination velocity on voltage and current leading to a high efficiency of 24%. Optoelectronic parameters were determined using the current density-voltage (J-V) curve by means of a numerical simulation with Analysis of Microelectronic and Photonic Structures (AMPS-1D) device simulator.

Keywords: optical window, thin film, solar cell, efficiency

Procedia PDF Downloads 276
7335 Exploring Nanoformulations for Therapeutic Induction of Necroptosis

Authors: Tianjiao Chu, Carla Rios Luci, Christy Maksoudian, Ara Sargsian, Bella B. Manshian, Stefaan J. Soenen

Abstract:

Nanomaterials have gained high interest in their use as potent anticancer agents. Apart from delivering chemotherapeutic agents in order to reduce off-target effects, molecular agents have also been widely explored. The advances in our understanding of cell biology and cell death mechanisms1 has generated a broad library of potential therapeutic targets by siRNA, mRNA, or pDNA complexes. In the present study, we explore the ability of pDNA-polyplexes to induce tumor-specific necroptosis. This results in a cascade of effects, where immunogenic cell death potentiates anti-tumor immune responses and results in an influx of dendritic cells and cytotoxic T cells, rendering the tumor more amenable to immune checkpoint inhibition. This study aims to explore whether the induction of necroptosis in a subpopulation of tumor cells can be used to potentiate immune checkpoint inhibition studies.

Keywords: nanoparticle, MLKL, necroptosis, immunotherapy

Procedia PDF Downloads 123
7334 Effect of Surfactant Level of Microemulsions and Nanoemulsions on Cell Viability

Authors: Sonal Gupta, Rakhi Bansal, Javed Ali, Reema Gabrani, Shweta Dang

Abstract:

Nanoemulsions (NEs) and microemulsions (MEs) have been an attractive tool for encapsulation of both hydrophilic and lipophillic actives. Both these systems are composed of oil phase, surfactant, co-surfactant and aqueous phase. Depending upon the application and intended use, both oil-in-water and water-in-oil emulsions can be designed. NEs are fabricated using high energy methods employing less percentage of surfactant as compared to MEs which are self assembled drug delivery systems. Owing to the nanometric size of the droplets these systems have been widely used to enhance solubility and bioavailability of natural as well as synthetic molecules. The aim of the present study is to assess the effect of % age of surfactants on cell viability of Vero cells (African Green Monkeys’ Kidney epithelial cells) via MTT assay. Green tea catechin (Polyphenon 60) loaded ME employing low energy vortexing and NE employing high energy ultrasonication were prepared using same excipients (labrasol as oil, cremophor EL as surfactant and glycerol as co-surfactant) however, the % age of oil and surfactant needed to prepare the ME was higher as compared to NE. These formulations along with their excipients (oilME=13.3%, SmixME=26.67%; oilNE=10%, SmixNE=13.52%) were added to Vero cells for 24 hrs. The tetrazolium dye, 3-(4,5-dimethylthia/ol-2-yl)-2,5-diphi-iiyltclrazolium bromide (MTT), is reduced by live cells and this reaction is used as the end point to evaluate the cytoxicity level of a test formulation. Results of MTT assay indicated that oil at different percentages exhibited almost equal cell viability (oilME ≅ oilNE) while surfactant mixture had a significant difference in the cell viability values (SmixME < SmixNE). Polyphenon 60 loaded ME and its PlaceboME showed higher toxicity as compared to Polyphenon 60 loaded NE and its PlaceboNE that can be attributed to the higher concentration of surfactants present in MEs. Another probable reason for high % cell viability of Polyphenon 60 loaded NE might be due to the effective release of Polyphenon 60 from NE formulation that helps in the sustenance of Vero cells.

Keywords: cell viability, microemulsion, MTT, nanoemulsion, surfactants, ultrasonication

Procedia PDF Downloads 416
7333 Increased Retention of Nanoparticle by Small Molecule Inhibitor in Cancer Cells

Authors: Neha Singh

Abstract:

Background: Nowadays, the nanoparticle is gaining unexceptional attention in targeted drug delivery. But before proceeding to this episode of accomplishment, the journey and closure of these nanoparticles inside the cells should be disentangle. Being foreign for the cells, nanoparticles will easily getcleared off without any effective outcome. As the cancer cells withhold these nanoparticles for a longer period of time, more will be the drug’s effect. Chlorpromazine is a cationic amphiphilic drug which is believed to inhibit clathrin-coated pit formation by a reversible translocation of clathrin and its adapter proteins from the plasma membrane to intracellular vesicles. Chlorpromazine has a role in increasing the retention of nanoparticles in cancer cells. The mechanism of action how this small molecule increases the retention of nanoparticles is still uncovered. Method: Polymeric nanoparticle (PLGA) with Cyanine3.5 dye were synthesized by solvent evaporation method and characterized for size and zeta potential. FTIR was also done. Pulse and chase studies with and without inhibitor were done to check the retention of nanoparticle using fluorescence microscopy. Mean fluorescence intensity was measured by ImageJ software. Results: Increased retention of nanoparticle with inhibitor was observed in both pulse and chase studies. Conclusion: Our results demonstrate that by repurposing these small molecule inhibitor, we can increase the retention of nanoparticle at the targeted site.

Keywords: nanoparticle, endocytosis, clathrin inhibitor, cancer cell

Procedia PDF Downloads 91
7332 Mycoplasmas and Pathogenesis in Preventive Medicine

Authors: Narin Salehiyan

Abstract:

The later sequencing of the complete genomes of Mycoplasma genitalium and M. pneumoniae has pulled in significant consideration to the atomic science of mycoplasmas, the littlest self-replicating living beings. It shows up that we are presently much closer to the objective of defining, in atomic terms, the complete apparatus of a self-replicating cell. Comparative genomics based on comparison of the genomic cosmetics of mycoplasmal genomes with those of other microbes, has opened better approaches of looking at the developmental history of the mycoplasmas. There's presently strong hereditary bolster for the speculation that mycoplasmas have advanced as a department of gram-positive microbes by a handle of reductive advancement. Amid this prepare, the mycoplasmas misplaced significant parcels of their ancestors’ chromosomes but held the qualities basic for life. In this way, the mycoplasmal genomes carry a tall rate of preserved qualities, incredibly encouraging quality comment. The critical genome compaction that happened in mycoplasmas was made conceivable by receiving a parasitic mode of life. The supply of supplements from their has clearly empowered mycoplasmas to lose, amid advancement, the qualities for numerous assimilative forms. Amid their advancement and adjustment to a parasitic mode of life, the mycoplasmas have created different hereditary frameworks giving a profoundly plastic set of variable surface proteins to avoid the have safe framework.

Keywords: mycoplasma, plasma, pathogen, genome

Procedia PDF Downloads 42
7331 Ab Initio Study of Hexahalometallate Single Crystals K₂XBr₆ (X=Se, Pt)

Authors: M. Fatmi, B. Gueridi, Z. Zerrougui

Abstract:

Some physical properties of hexahalometallate K₂XBr₆(X=Se, Pt) were computed in the zinc blend structure using generalized gradient approximation. The cell constant of K₂SeBr₆ and K₂PtBr₆ is consistent with the experiment value quoted in the literature, where the error is 0.95 % and 1 %. K₂SeBr₆ and K₂PtBr₆ present covalent bonding, high anisotropy and are ductile. The elastic constants of K₂SeBr₆ and K₂PtBr₆ are significantly smaller due to their larger reticular distances and lower Colombian forces, and then they are soft and damage tolerant. The interatomic separation is greater in K₂SeBr₆ than in K₂PtBr₆; hence the Colombian interaction in K₂PtBr₆ is greater than that of K2SeBr₆. The internal coordinate of the Br atom in K₂PtBr₆ is lower than that of the same atom in K2SeBr₆, and this can be explained by the fact that it is inversely proportional to the atom radius of Se and Pt. There are two major plasmonic processes, with intensities of 3.7 and 1.35, located around 53.5 nm and 72.8 nm for K₂SeBr₆ and K₂PtBr₆.

Keywords: hexahalometallate, band structure, morphology, absorption, band gap, absorber

Procedia PDF Downloads 76
7330 Histological Study on the Effect of Bone Marrow Transplantation Combined with Curcumin on Pancreatic Regeneration in Streptozotocin Induced Diabetic Rats

Authors: Manal M. Shehata, Kawther M. Abdel-Hamid, Nashwa A. Mohamed, Marwa H. Bakr, Maged S. Mahmoud, Hala M. Elbadre

Abstract:

Introduction: The worldwide rapid increase in diabetes poses a significant challenge to current therapeutic approaches. Therapeutic utility of bone marrow transplantation in diabetes is an attractive approach. However, the oxidative stress generated by hyperglycemia may hinder β-cell regeneration. Curcumin, is a dietary spice with antioxidant activity. Aim of work: The present study was undertaken to investigate the therapeutic potential of curcumin, bone marrow transplantation, and their combined effects in the reversal of experimental diabetes. Material and Methods: Fifty adult male healthy albino rats were included in the present study.They were divided into two groups: Group І: (control group) included 10 rats. Group П: (diabetic group): included 40 rats. Diabetes was induced by single intraperitoneal injection of streptozotocin (STZ). Group II will be further subdivided into four groups (10 rats for each): Group II-a (diabetic control). Group II-b: rats were received single intraperitoneal injection of bone marrow suspension (un-fractionated bone marrow cells) prepared from rats of the same family. Group II-c: rats were treated with curcumin orally by gastric intubation for 6 weeks. Group II-d: rats were received a combination of single bone marrow transplantation and curcumin for 6 weeks. After 6 weeks, blood glucose, insulin levels were measured and the pancreas from all rats were processed for Histological, Immunohistochemical and morphometric examination. Results: Diabetic group, showed progressive histological changes in the pancreatic islets. Treatment with either curcumin or bone marrow transplantation improved the structure of the islets and reversed streptozotocin-induced hyperglycemia and hypoinsulinemia. Combination of curcumin and bone marrow transplantation elicited more profound alleviation of streptozotocin-induced changes including islet regeneration and insulin secretion. Conclusion: The use of natural antioxidants combined with bone marrow transplantation to induce pancreatic regeneration is a promising strategy in the management of diabetes.

Keywords: diabtes, panceatic islets, bone marrow transplantation, curcumin

Procedia PDF Downloads 371
7329 Sequence Analysis of the Effect of HPV-16 E1 Variation on Cervical Carcinogenesis

Authors: Fern Baedyananda, Arkom Chaiwongkot, Somchai Niruthisard, Nakarin Kitkumthorn, Parvapan Bhattarakosol

Abstract:

High-risk human papillomavirus (HPV) infections cause transformation of the host cells by down-regulating and inhibiting host regulatory proteins such as p53 and pRb by overexpressing the viral oncoproteins E6 and E7. However, the E1 protein which is the only enzyme encoded by HPV has also been shown to cause DNA instability leading to the integration of the virus into the host genome and triggering carcinogenic events. A 63bp duplication in the E1 helicase region has been detected in European patients. However, the clinical prognosis of these patients is still controversial. This study was performed to determine the presence of the HPV-16 E1 63bp duplication in patient cervical samples in Thai women and determine the sequence of the variant in the Thai population. Detection of the HPV-16 E1 duplication in the helicase region was performed in 90 patient cell samples across normal, cervical intraepithelial neoplasia I-III, and squamous cervical carcinoma stages by PCR. The PCR products were purified and sequenced to determine the presence of duplication variants.The variant form was found in 10% of all CIN 1 patients. In this study, the presence of the 63 bp duplication variant in the Thai population was found to be present and was further characterized. Interestingly, all samples that exhibited the variant form of HPV-16 E1 were classified as CIN I. Presence of the variant, constricted to mild dysplasia signifies the importance of HPV-16 E1 in carcinogenesis.

Keywords: carcinogenesis, cervical cancer, human papillomavirus, HPV-16 E1

Procedia PDF Downloads 219
7328 Antimicrobial Properties of Copper in Gram-Negative and Gram-Positive Bacteria

Authors: Travis J. Meyer, Jasodra Ramlall, Phyo Thu, Nidhi Gadura

Abstract:

For centuries humans have used the antimicrobial properties of copper to their advantage. Yet, after all these years the underlying mechanisms of copper mediated cell death in various microbes remain unclear. We had explored the hypothesis that copper mediated increased levels of lipid peroxidation in the membrane fatty acids is responsible for increased killing inEscherichia coli. In this study we show that in both gram positive (Staphylococcus aureus) and gram negative (Pseudomonas aeruginosa) bacteria there is a strong correlation between copper mediated cell death and increased levels of lipid peroxidation. Interestingly, the non-spore forming gram positive bacteria as well as gram negative bacteria show similar patterns of cell death, increased levels of lipid peroxidation, as well as genomic DNA degradation, however there is some difference inloss in membrane integrity upon exposure to copper alloy surface.

Keywords: antimicrobial, copper, gram positive, gram negative

Procedia PDF Downloads 460
7327 Usage of Cord Blood Stem Cells of Asphyxia Infants for Treatment

Authors: Ahmad Shah Farhat

Abstract:

Background: Prenatal asphyxia or birth asphyxia is the medical situation resulting from a newborn infant that lasts long enough during the birth process to cause physical harm, usually to the brain. Human umbilical cord blood (UCB) is a well-established source of hematopoietic stem/progenitor cells (HSPCs) for allogeneic stem cell transplantation. These can be used clinically to care for children with malignant diseases. Low O2 can cause in proliferation and differentiation of stem cells. Method: the cord blood of 11 infants with 3-5 Apgar scores or need to cardiac pulmonary Resuscitation as an asphyxia group and ten normal infants with more than 8 Apgar scores as the normal group was collected, and after isolating hematopoietic stem cells, the cells were cultured in enriched media for 14 days to compare the numbers of colonies by microscope. Results: There was a significant difference in the number of RBC precursor colonies (red colonies) in cultured media with 107 cord blood hematopoietic stem cells of infants who were exposed to hypoxemia in two wells of palate. There was not a significant difference in the number of white cell colonies in the two groups in the two wells of the plate. Conclusion: Hypoxia in the perinatal period can cause the increase of hematopoietic stem cells of cord blood, special red precursor stem cells in vitro, like an increase of red blood cells in the body when exposed to low oxygen conditions. Thus, it will be usable.

Keywords: asphyxia, neonre, stem cell, red cell

Procedia PDF Downloads 58