Search results for: reverse engineering
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 3552

Search results for: reverse engineering

2532 The Need For Higher Education Stem Integrated into the Social Science

Authors: Luis Fernando Calvo Prieto, Raul Herrero Martínez, Mónica Santamarta Llorente, Sergio Paniagua Bermejo

Abstract:

The project that is presented starts from the questioning about the compartmentalization of knowledge that occurs in university higher education. There are several authors who describe the problems associated with this reality (Rodamillans, M) indicating a lack of integration of the knowledge acquired by students throughout the subjects taken in their university degree. Furthermore, this disintegration is accentuated by the enrollment system of some Faculties and/or Schools of Engineering, which allows the student to take subjects outside the recommended curricular path. This problem is accentuated in an ostentatious way when trying to find an integration between humanistic subjects and the world of experimental sciences or engineering. This abrupt separation between humanities and sciences can be observed in any study plan of Spanish degrees. Except for subjects such as economics or English, in the Faculties of Sciences and the Schools of Engineering, the absence of any humanistic content is striking. At some point it was decided that the only value to take into account when designing their study plans was “usefulness”, considering the humanities systematically useless for their training, and therefore banishing them from the study plans. forgetting the role they have on the capacity of both Leadership and Civic Humanism in our professionals of tomorrow. The teaching guides for the different subjects in the branch of science or engineering do not include any competency, not even transversal, related to leadership capacity or the need, in today's world, for social, civic and humanitarian knowledge part of the people who will offer medical, pharmaceutical, environmental, biotechnological or engineering solutions to a society that is generated thanks to more or less complex relationships based on human relationships and historical events that have occurred so far. If we want professionals who know how to deal effectively and rationally with their leadership tasks and who, in addition, find and develop an ethically civic sense and a humanistic profile in their functions and scientific tasks, we must not leave aside the importance that it has, for the themselves, know the causes, facts and consequences of key events in the history of humanity. The words of the humanist Paul Preston are well known: “he who does not know his history is condemned to repeat the mistakes of the past.” The idea, therefore, that today there can be men of science in the way that the scientists of the Renaissance were, becomes, at the very least, difficult to conceive. To think that a Leonardo da Vinci can be repeated in current times is a more than crazy idea; and although at first it may seem that the specialization of a professional is inevitable but beneficial, there are authors who consider (Sánchez Inarejos) that it has an extremely serious negative side effect: the entrenchment behind the different postulates of each area of knowledge, disdaining everything. what is foreign to it.

Keywords: STEM, higher education, social sciences, history

Procedia PDF Downloads 66
2531 Real-Time Generative Architecture for Mesh and Texture

Authors: Xi Liu, Fan Yuan

Abstract:

In the evolving landscape of physics-based machine learning (PBML), particularly within fluid dynamics and its applications in electromechanical engineering, robot vision, and robot learning, achieving precision and alignment with researchers' specific needs presents a formidable challenge. In response, this work proposes a methodology that integrates neural transformation with a modified smoothed particle hydrodynamics model for generating transformed 3D fluid simulations. This approach is useful for nanoscale science, where the unique and complex behaviors of viscoelastic medium demand accurate neurally-transformed simulations for materials understanding and manipulation. In electromechanical engineering, the method enhances the design and functionality of fluid-operated systems, particularly microfluidic devices, contributing to advancements in nanomaterial design, drug delivery systems, and more. The proposed approach also aligns with the principles of PBML, offering advantages such as multi-fluid stylization and consistent particle attribute transfer. This capability is valuable in various fields where the interaction of multiple fluid components is significant. Moreover, the application of neurally-transformed hydrodynamical models extends to manufacturing processes, such as the production of microelectromechanical systems, enhancing efficiency and cost-effectiveness. The system's ability to perform neural transfer on 3D fluid scenes using a deep learning algorithm alongside physical models further adds a layer of flexibility, allowing researchers to tailor simulations to specific needs across scientific and engineering disciplines.

Keywords: physics-based machine learning, robot vision, robot learning, hydrodynamics

Procedia PDF Downloads 66
2530 Biodegradable and Bioactive Scaffold for Bone Tissue Engineering

Authors: A. M. Malagon Escandon, J. A. Arenas Alatorre, C. P. Chaires Rosas, N. A. Vazquez Torres, B. Hernandez Tellez, G. Pinon Zarate, M. Herrera Enriquez, A. E. Castell Rodriguez

Abstract:

The current approach to the treatment of bone defects involves the use of scaffolds that provide a biological and mechanically stable niche to favor tissue repair. Despite the significant progress in the field of bone tissue engineering, several main problems associated are attributed to giving a low biodegradation degree, does not promote osseointegration and regeneration, if the bone is not healing as well as expected or fails to heal, will not be given a proper ossification or new bone formation. The actual approaches of bone tissue regeneration are directed to the use of decellularized native extracellular matrices, which are able of retain their own architecture, mechanic properties, biodegradability and promote new bone formation because they are capable of conserving proteins and other factors that are founded in physiological concentrations. Therefore, we propose an extracellular matrix-based bioscaffolds derived from bovine cancellous bone, which is processed by decellularization, demineralization, and hydrolysis of the collagen protein, these protocols have been successfully carried out in other organs and tissues; the effectiveness of its biosafety has also been previously evaluated in vivo and Food and Drug Administration (FDA) approved. In the specific case of bone, a more complex treatment is needed in comparison with other organs and tissues because is necessary demineralization and collagen denaturalization. The present work was made in order to obtain a temporal scaffold that succeed in degradation in an inversely proportional way to the synthesis of extracellular matrix and the maturation of the bone by the cells of the host.

Keywords: bioactive, biodegradable, bone, extracellular matrix-based bioscaffolds, stem cells, tissue engineering

Procedia PDF Downloads 158
2529 Fabrication and Assessment of Poly (butylene succinate)/ Poly (ԑ-caprolactone)/Eucomis Autumnalis Cellulose Bio-Composites for Tissue Engineering Applications

Authors: Kumalo F. I., Malimabe M. A., Gumede T. P., Mosoabisane M. F. T.

Abstract:

This study investigates the fabrication and characterization of bio-nanocomposites consisting of poly (butylene succinate) (PBS) and poly (ԑ-caprolactone) (PCL), reinforced with cellulose extracted from Eucomis autumnalis, a medicinal plant. Bio-nanocomposite films were prepared using the solvent casting method, with cellulose content ranging from 1 to 3 wt%. Comprehensive analysis was conducted using FTIR, SEM, TEM, DSC, TGA, and XRD, to assess morphological, thermal, and structural properties. The results indicated significant improvements in the thermal stability and morphological properties with increasing cellulose content, showcasing the potential of these materials for tissue engineering applications. The use of cellulose extracted from a medicinal plant highlight the potential for sustainable and biocompatible materials in biomedical applications.

Keywords: Bionanocomposites, poly(butylene succinate), poly(caprolactone), eucomis autumnalis, medicinal plant

Procedia PDF Downloads 53
2528 Use of Two-Dimensional Hydraulics Modeling for Design of Erosion Remedy

Authors: Ayoub. El Bourtali, Abdessamed.Najine, Amrou Moussa. Benmoussa

Abstract:

One of the main goals of river engineering is river training, which is defined as controlling and predicting the behavior of a river. It is taking effective measurements to eliminate all related risks and thus improve the river system. In some rivers, the riverbed continues to erode and degrade; therefore, equilibrium will never be reached. Generally, river geometric characteristics and riverbed erosion analysis are some of the most complex but critical topics in river engineering and sediment hydraulics; riverbank erosion is the second answering process in hydrodynamics, which has a major impact on the ecological chain and socio-economic process. This study aims to integrate the new computer technology that can analyze erosion and hydraulic problems through computer simulation and modeling. Choosing the right model remains a difficult and sensitive job for field engineers. This paper makes use of the 5.0.4 version of the HEC-RAS model. The river section is adopted according to the gauged station and the proximity of the adjustment. In this work, we will demonstrate how 2D hydraulic modeling helped clarify the design and cover visuals to set up depth and velocities at riverbanks and throughout advanced structures. The hydrologic engineering center's-river analysis system (HEC-RAS) 2D model was used to create a hydraulic study of the erosion model. The geometric data were generated from the 12.5-meter x 12.5-meter resolution digital elevation model. In addition to showing eroded or overturned river sections, the model output also shows patterns of riverbank changes, which can help us reduce problems caused by erosion.

Keywords: 2D hydraulics model, erosion, floodplain, hydrodynamic, HEC-RAS, riverbed erosion, river morphology, resolution digital data, sediment

Procedia PDF Downloads 189
2527 Faculty Use of Geospatial Tools for Deep Learning in Science and Engineering Courses

Authors: Laura Rodriguez Amaya

Abstract:

Advances in science, technology, engineering, and mathematics (STEM) are viewed as important to countries’ national economies and their capacities to be competitive in the global economy. However, many countries experience low numbers of students entering these disciplines. To strengthen the professional STEM pipelines, it is important that students are retained in these disciplines at universities. Scholars agree that to retain students in universities’ STEM degrees, it is necessary that STEM course content shows the relevance of these academic fields to their daily lives. By increasing students’ understanding on the importance of these degrees and careers, students’ motivation to remain in these academic programs can also increase. An effective way to make STEM content relevant to students’ lives is the use of geospatial technologies and geovisualization in the classroom. The Geospatial Revolution, and the science and technology associated with it, has provided scientists and engineers with an incredible amount of data about Earth and Earth systems. This data can be used in the classroom to support instruction and make content relevant to all students. The purpose of this study was to find out the prevalence use of geospatial technologies and geovisualization as teaching practices in a USA university. The Teaching Practices Inventory survey, which is a modified version of the Carl Wieman Science Education Initiative Teaching Practices Inventory, was selected for the study. Faculty in the STEM disciplines that participated in a summer learning institute at a 4-year university in the USA constituted the population selected for the study. One of the summer learning institute’s main purpose was to have an impact on the teaching of STEM courses, particularly the teaching of gateway courses taken by many STEM majors. The sample population for the study is 97.5 of the total number of summer learning institute participants. Basic descriptive statistics through the Statistical Package for the Social Sciences (SPSS) were performed to find out: 1) The percentage of faculty using geospatial technologies and geovisualization; 2) Did the faculty associated department impact their use of geospatial tools?; and 3) Did the number of years in a teaching capacity impact their use of geospatial tools? Findings indicate that only 10 percent of respondents had used geospatial technologies, and 18 percent had used geospatial visualization. In addition, the use of geovisualization among faculty of different disciplines was broader than the use of geospatial technologies. The use of geospatial technologies concentrated in the engineering departments. Data seems to indicate the lack of incorporation of geospatial tools in STEM education. The use of geospatial tools is an effective way to engage students in deep STEM learning. Future research should look at the effect on student learning and retention in science and engineering programs when geospatial tools are used.

Keywords: engineering education, geospatial technology, geovisualization, STEM

Procedia PDF Downloads 252
2526 Fabrication of Drug-Loaded Halloysite Nanotubes Containing Sodium Alginate/Gelatin Composite Scaffolds

Authors: Masoumeh Haghbin Nazarpak, Hamidreza Tolabi, Aryan Ekhlasi

Abstract:

Bone defects are mentioned as one of the most challenging clinical conditions, affecting millions of people each year. A fracture, osteoporosis, tumor, or infection usually causes these defects. At present, autologous and allogeneic grafts are used to correct bone defects, but these grafts have some difficulties, such as limited access, infection, disease transmission, and immune rejection. Bone tissue engineering is considered a new strategy for repairing bone defects. However, problems with scaffolds’ design with unique structures limit their clinical applications. In addition, numerous in-vitro studies have been performed on the behavior of bone cells in two-dimensional environments. Still, cells grow in physiological situations in the human body in a three-dimensional environment. As a result, the controlled design of porous structures with high structural complexity and providing the necessary flexibility to meet specific needs in bone tissue repair is beneficial. For this purpose, a three-dimensional composite scaffold based on gelatin and sodium alginate hydrogels is used in this research. In addition, the antibacterial drug-loaded halloysite nanotubes were introduced into the hydrogel scaffold structure to provide a suitable substrate for controlled drug release. The presence of halloysite nanotubes improved hydrogel’s properties, while the drug eliminated infection and disease transmission. Finally, it can be acknowledged that the composite scaffold prepared in this study for bone tissue engineering seems promising.

Keywords: halloysite nanotubes, bone tissue engineering, composite scaffold, controlled drug release

Procedia PDF Downloads 74
2525 Controversies and Contradiction in (IR) Reversibility and the Equilibrium of Reactive Systems

Authors: Joao Teotonio Manzi

Abstract:

Reversibility, irreversibility, equilibrium and steady-state that play a central role in the thermodynamic analysis of processes arising in the context of reactive systems are discussed in this article. Such concepts have generated substantial doubts, even among the most experienced researchers, and engineers, because from the literature, conclusive or definitive statements cannot be extracted. Concepts such as the time-reversibility of irreversible processes seem paradoxical, requiring further analysis. Equilibrium and reversibility, which appear to be of the same nature, have also been re-examined in the light of maximum entropy. The goal of this paper is to revisit and explore these concepts based on classical thermodynamics in order to have a better understanding them due to their impacts on technological advances, as a result, to generate an optimal procedure for designing, monitoring, and engineering optimization. Furthermore, an effective graphic procedure for dimensioning a Plug Flow Reactor has been provided. Thus, to meet the needs of chemical engineering from a simple conceptual analysis but with significant practical effects, a macroscopic approach is taken so as to integrate the different parts of this paper.

Keywords: reversibility, equilibrium, steady-state, thermodynamics, reactive system

Procedia PDF Downloads 106
2524 Computational Aerodynamics and Aeroacoustics of a Nose Landing Gear

Authors: Kamal Haider

Abstract:

Numerical simulations over landing gear of simplified and partially-dressed configurations with closed cavity have been performed to compute aerodynamically and aeroacoustics parameters using commercial engineering software. The objective of numerical computations is two folds. Firstly, to validate experimental data of newly built nose landing gear and secondly perform high-fidelity calculations using CFD/FW-H hybrid approach, as future engineering challenges need more advanced aircraft configurations such as performance noise and efficiency. Both geometries are used for multi-block structured, and unstructured/hybrid meshed to develop some understanding of physics in terms of aerodynamics and aeroacoustics. Detached Eddy Simulation (DES) approach is employed to compute surface pressure. Also far-field noise calculations have been generated by Ffowcs-William and Hawking solver. Both results of aerodynamics and aeroacoustics are compared with experimental data.

Keywords: landing gear, computational aeroacoustics, computational aerodynamics, detached eddy simulation

Procedia PDF Downloads 286
2523 The Effects of Prosthetic Leg Stiffness on Gait, Comfort, and Satisfaction: A Review of Mechanical Engineering Approaches

Authors: Kourosh Fatehi, Niloofar Hanafi

Abstract:

One of the challenges in providing optimal prosthetic legs for lower limb amputees is to select the appropriate foot stiffness that suits their individual needs and preferences. Foot stiffness affects various aspects of walking, such as stability, comfort, and energy expenditure. However, the current prescription process is largely based on trial-and-error, manufacturer recommendations, or clinician judgment, which may not reflect the prosthesis user’s subjective experience or psychophysical sensitivity. Therefore, there is a need for more scientific and technological tools to measure and understand how prosthesis users perceive and prefer different foot stiffness levels, and how this preference relates to clinical outcomes. This review covers how to measure and design lower leg prostheses based on user preference and foot stiffness. It also explores how these factors affect walking outcomes and quality of life, and identifies the current challenges and gaps in this field from a mechanical engineering standpoint.

Keywords: perception, preference, prosthetics, stiffness

Procedia PDF Downloads 81
2522 Analysis of the Topics of Research of Brazilian Researchers Acting in the Areas of Engineering

Authors: Jether Gomes, Thiago M. R. Dias, Gray F. Moita

Abstract:

The production and publication of scientific works have increased significantly in the last years, being the Internet the main factor of access and diffusion of these. In view of this, researchers from several areas of knowledge have carried out several studies on scientific production data in order to analyze phenomena and trends about science. The understanding of how research has evolved can, for example, serve as a basis for building scientific policies for further advances in science and stimulating research groups to become more productive. In this context, the objective of this work is to analyze the main research topics investigated along the trajectory of the Brazilian science of researchers working in the areas of engineering, in order to map scientific knowledge and identify topics in highlights. To this end, studies are carried out on the frequency and relationship of the keywords of the set of scientific articles registered in the existing curricula in the Lattes Platform of each one of the selected researchers, counting with the aid of bibliometric analysis features.

Keywords: research topics, bibliometrics, topics of interest, Lattes Platform

Procedia PDF Downloads 221
2521 Designing Active Sites on Amicyanin Using Histidine S Plus Cobalt, and Measuring Their Functional Activity

Authors: Han-Bin Kim, Sooim Shin, Moonsung Choi

Abstract:

There is a growing interest in introducing a desired functional group on enzymes in the field of protein engineering. In here, various redox centers were newly created using histidine tag, which is widely used for protein purification, plus cobalt in one of cupredoxins, amicyanin. The coordination of Cobalt-His tag and reactivity of the Co²⁺ loaded His-tag also were characterized. 3xHis-tag, 6xHis-tag, and 9xHis-tag were introduced on amicyanin by site-directed mutagenesis, and then Co²⁺ was loaded on each His-tagged amicyanin. The spectral changes at 330 nm corresponding to cobalt binding on His-tag site indicated the binding ratio of 3xHis-tag, 6xHis-tag, and 9xHis-tag to cobalt as 1:1, 1:2, 1:3 respectively. Based on kinetic studies of binding cobalt to 3xHis-tag, 6xHis-tag, and 9xHis-tagged amicyanin, the nature of the sites was elucidated. In addition, internal electron transfer properties between Cu¹⁺ site and engineered site of amicyanin were determined. These results provide insight into improvement of metal coordination and alternation of the redox properties of metal as a new catalytic site on proteins.

Keywords: amicyanin, cobalt, histidine, protein engineering

Procedia PDF Downloads 162
2520 Nonlinear Analysis of Reinforced Concrete Arched Structures Considering Soil-Structure Interaction

Authors: Mohamed M. El Gendy, Ibrahim A. El Arabi, Rafeek W. Abdel-Missih, Omar A. Kandil

Abstract:

Nonlinear analysis is one of the most important design and safety tools in structural engineering. Based on the finite-element method, a geometrical and material nonlinear analysis of large span reinforced concrete arches is carried out considering soil-structure interaction. The concrete section details and reinforcement distribution are taken into account. The behavior of soil is considered via Winkler's and continuum models. A computer program (NARC II) is specially developed in order to follow the structural behavior of large span reinforced concrete arches up to failure. The results obtained by the proposed model are compared with available literature for verification. This work confirmed that the geometrical and material nonlinearities, as well as soil structure interaction, have considerable influence on the structural response of reinforced concrete arches.

Keywords: nonlinear analysis, reinforced concrete arched structure, soil-structure interaction, geotechnical engineering

Procedia PDF Downloads 438
2519 Student's Difficulties with Classes That Involve Laboratory Education Approach

Authors: Kayondoamunmose Kamafrika

Abstract:

Experimental based Engineering education approach plays a vital role in the development of student’s deep understanding of both social and physical sciences. Experimental based education approach through laboratory class activities prepare students to meet national demand for high-tech skilled individuals in the government and private sector. However, students across the country are faced with difficulties in classes that involve laboratory activities: poor experimental based exposure in their early development of student’s education-life-cycle, lack of student engagement in scientific method practical thinking approach, lack of communication between students and the instructor during class, a large number of students in one classroom, lack of instruments and improper equipment calibration. The purpose of this paper is to help students develop their own scientific knowledge and understanding, develop their methodologies in the design of experiments, collect and analyze data, write laboratory reports, present and explain their findings. Experimental based laboratory activities allow students to learn with high-level understanding as well as engage in the design processes of constructing knowledge through practical means of doing science. Experimental based education systems approach will act as a catalyst in the development of practical-based-educational methodologies in social and physical science and engineering domain of learning; thereby, converting laboratory classes into pilot industries and students into professional experts in finding a solution for complex problems, research, and development of super high- tech systems.

Keywords: experimental, engineering, innovation, practicability

Procedia PDF Downloads 188
2518 Study of Methods to Reduce Carbon Emissions in Structural Engineering

Authors: Richard Krijnen, Alan Wang

Abstract:

As the world is aiming to reach net zero around 2050, structural engineers must begin finding solutions to contribute to this global initiative. Approximately 40% of global energy-related emissions are due to buildings and construction, and a building’s structure accounts for 50% of its embodied carbon, which indicates that structural engineers are key contributors to finding solutions to reach carbon neutrality. However, this task presents a multifaceted challenge as structural engineers must navigate technical, safety and economic considerations while striving to reduce emissions. This study reviews several options and considerations to reduce carbon emissions that structural engineers can use in their future designs without compromising the structural integrity of their proposed design. Low-carbon structures should adhere to several guiding principles. Firstly, prioritize the selection of materials with low carbon footprints, such as recyclable or alternative materials. Optimization of design and engineering methods is crucial to minimize material usage. Encouraging the use of recyclable and renewable materials reduces dependency on natural resources. Energy efficiency is another key consideration involving the design of structures to minimize energy consumption across various systems. Choosing local materials and minimizing transportation distances help in reducing carbon emissions during transport. Innovation, such as pre-fabrication and modular design or low-carbon concrete, can further cut down carbon emissions during manufacturing and construction. Collaboration among stakeholders and sharing experiences and resources are essential for advancing the development and application of low-carbon structures. This paper identifies current available tools and solutions to reduce embodied carbon in structures, which can be used as part of daily structural engineering practice.

Keywords: efficient structural design, embodied carbon, low-carbon material, sustainable structural design

Procedia PDF Downloads 42
2517 Breaking Stress Criterion that Changes Everything We Know About Materials Failure

Authors: Ali Nour El Hajj

Abstract:

Background: The perennial deficiencies of the failure models in the materials field have profoundly and significantly impacted all associated technical fields that depend on accurate failure predictions. Many preeminent and well-known scientists from an earlier era of groundbreaking discoveries attempted to solve the issue of material failure. However, a thorough understanding of material failure has been frustratingly elusive. Objective: The heart of this study is the presentation of a methodology that identifies a newly derived one-parameter criterion as the only general failure theory for noncompressible, homogeneous, and isotropic materials subjected to multiaxial states of stress and various boundary conditions, providing the solution to this longstanding problem. This theory is the counterpart and companion piece to the theory of elasticity and is in a formalism that is suitable for broad application. Methods: Utilizing advanced finite-element analysis, the maximum internal breaking stress corresponding to the maximum applied external force is identified as a unified and universal material failure criterion for determining the structural capacity of any system, regardless of its geometry or architecture. Results: A comparison between the proposed criterion and methodology against design codes reveals that current provisions may underestimate the structural capacity by 2.17 times or overestimate the capacity by 2.096 times. It also shows that existing standards may underestimate the structural capacity by 1.4 times or overestimate the capacity by 2.49 times. Conclusion: The proposed failure criterion and methodology will pave the way for a new era in designing unconventional structural systems composed of unconventional materials.

Keywords: failure criteria, strength theory, failure mechanics, materials mechanics, rock mechanics, concrete strength, finite-element analysis, mechanical engineering, aeronautical engineering, civil engineering

Procedia PDF Downloads 79
2516 Improving Efficiency and Effectiveness of FMEA Studies

Authors: Joshua Loiselle

Abstract:

This paper discusses the challenges engineering teams face in conducting Failure Modes and Effects Analysis (FMEA) studies. This paper focuses on the specific topic of improving the efficiency and effectiveness of FMEA studies. Modern economic needs and increased business competition require engineers to constantly develop newer and better solutions within shorter timeframes and tighter margins. In addition, documentation requirements for meeting standards/regulatory compliance and customer needs are becoming increasingly complex and verbose. Managing open actions and continuous improvement activities across all projects, product variations, and processes in addition to daily engineering tasks is cumbersome, time consuming, and is susceptible to errors, omissions, and non-conformances. FMEA studies are proven methods for improving products and processes while subsequently reducing engineering workload and improving machine and resource availability through a pre-emptive, systematic approach of identifying, analyzing, and improving high-risk components. If implemented correctly, FMEA studies significantly reduce costs and improve productivity. However, the value of an effective FMEA is often shrouded by a lack of clarity and structure, misconceptions, and previous experiences and, as such, FMEA studies are frequently grouped with the other required information and documented retrospectively in preparation of customer requirements or audits. Performing studies in this way only adds cost to a project and perpetuates the misnomer that FMEA studies are not value-added activities. This paper discusses the benefits of effective FMEA studies, the challenges related to conducting FMEA studies, best practices for efficiently overcoming challenges via structure and automation, and the benefits of implementing those practices.

Keywords: FMEA, quality, APQP, PPAP

Procedia PDF Downloads 304
2515 The Construction of Research-Oriented/Practice-Oriented Engineering Testing and Measurement Technology Course under the Condition of New Technology

Authors: He Lingsong, Wang Junfeng, Tan Qiong, Xu Jiang

Abstract:

The paper describes efforts on reconstruction methods of engineering testing and measurement technology course by applying new techniques and applications. Firstly, flipped classroom was introduced. In-class time was used for in-depth discussions and interactions while theory concept teaching was done by self-study course outside of class. Secondly, two hands-on practices of technique applications, including the program design of MATLAB Signal Analysis and the measurement application of Arduino sensor, have been covered in class. Class was transformed from an instructor-centered teaching process into an active student-centered learning process, consisting of the pre-class massive open online course (MOOC), in-class discussion and after-class practice. The third is to change sole written homework to the research-oriented application practice assignments, so as to enhance the breadth and depth of the course.

Keywords: testing and measurement, flipped classroom, MOOC, research-oriented learning, practice-oriented learning

Procedia PDF Downloads 147
2514 Desktop High-Speed Aerodynamics by Shallow Water Analogy in a Tin Box for Engineering Students

Authors: Etsuo Morishita

Abstract:

In this paper, we show shallow water in a tin box as an analogous simulation tool for high-speed aerodynamics education and research. It is customary that we use a water tank to create shallow water flow. While a flow in a water tank is not necessarily uniform and is sometimes wavy, we can visualize a clear supercritical flow even when we move a body manually in stationary water in a simple shallow tin box. We can visualize a blunt shock wave around a moving circular cylinder together with a shock pattern around a diamond airfoil. Another interesting analogous experiment is a hydrodynamic shock tube with water and tea. We observe the contact surface clearly due to color difference of the two liquids those are invisible in the real gas dynamics experiment. We first revisit the similarities between high-speed aerodynamics and shallow water hydraulics. Several educational and research experiments are then introduced for engineering students. Shallow water experiments in a tin box simulate properly the high-speed flows.

Keywords: aerodynamics compressible flow, gas dynamics, hydraulics, shock wave

Procedia PDF Downloads 302
2513 Engineers 'Write' Job Description: Development of English for Specific Purposes (ESP)-Based Instructional Materials for Engineering Students

Authors: Marjorie Miguel

Abstract:

Globalization offers better career opportunities hence demands more competent professionals efficient for the job. With the transformation of the world industry from competition to collaboration coupled with the rapid development in the field of science and technology, engineers need not only to be technically proficient, but also multilingual-skilled: two characteristics that a global engineer possesses. English often serves as the global language between people from different cultures being the medium mostly used in international business. Ironically, most universities worldwide adapt engineering curriculum heavily built around the language of mathematics not realizing that the goal of an engineer is not only to create and design, but more importantly to promote his creations and designs to the general public through effective communication. This premise led to some developments in the teaching process of English subjects in the tertiary level which include the integration of the technical knowledge related to the area of specialization of the students in the English subjects that they are taking. This is also known as English for Specific Purposes. This study focused on the development of English for Specific Purposes-Based Instructional Materials for Engineering Students of Bulacan State University (BulSU). The materials were tailor-made in which the contents and structure were designed to meet the specific needs of the students as well as the industry. Based on the needs analysis, the needs of the students and the industry were determined to make the study descriptive in nature. The major respondents included fifty engineering students and ten professional engineers from selected institutions. The needs analysis was done and the results showed the common writing difficulties of the students and the writing skills needed among the engineers in the industry. The topics in the instructional materials were established after the needs analysis was conducted. Simple statistical treatment including frequency distribution, percentages, mean, standard deviation, and weighted mean were used. The findings showed that the greatest number of the respondents had an average proficiency rating in writing, and the much-needed skills that must be developed by the engineers are directly related to the preparation and presentation of technical reports about their projects, as well as to the different communications they transmit to their colleagues and superiors. The researcher undertook the following phases in the development of the instructional materials: a design phase, development phase, and evaluation phase. Evaluations are given by some college instructors about the instructional materials generally helped in its usefulness and significance making the study beneficial not only as a career enhancer for BulSU engineering students, but also creating the university one of the educational institutions ready for the new millennium.

Keywords: English for specific purposes, instructional materials, needs analysis, write (right) job description

Procedia PDF Downloads 239
2512 Functional Slow Release of Encapsulated Ibuprofen in Cross-linked Gellan Gum Hydrogel for Tissue Engineering Application

Authors: Nor Jannah Mohd Sebri, Khairul Anuar Mat Amin

Abstract:

Dication cross-linked gellan gum hydrogel loaded with Ibuprofen with excellent mechanical properties had been synthesized as potential candidate for non-toxic biocompatible polymer material in tissue engineering. The gellan gum hydrogel with 5% Ibuprofen had produced a slow release profile with total drug release time of 25 hours as a resulting low swelling value recorded at 22+0.5%. Its compressive strength, 200.13+21 kPa was highest of all other hydrogel ratio of 0.5% and 1.0% Ibuprofen incorporation. Young’s Modulus of the hydrogel with 5% Ibuprofen was recorded at 1.8+0.01 MPa, indicating good gel strength in which it is capable of withstanding a fair amount of subjected force during topical wound dressing application. Excellent mechanical properties, together with slow release profile, make the ibuprofen-loaded hydrogel a prospect candidate as biocompatible extracellular matrices in wound management.

Keywords: gellan gum, ibuprofen, slow drug release, hydrogel

Procedia PDF Downloads 400
2511 Risk Issues for Controlling Floods through Unsafe, Dual Purpose, Gated Dams

Authors: Gregory Michael McMahon

Abstract:

Risk management for the purposes of minimizing the damages from the operations of dams has met with opposition emerging from organisations and authorities, and their practitioners. It appears that the cause may be a misunderstanding of risk management arising from exchanges that mix deterministic thinking with risk-centric thinking and that do not separate uncertainty from reliability and accuracy from probability. This paper sets out those misunderstandings that arose from dam operations at Wivenhoe in 2011, using a comparison of outcomes that have been based on the methodology and its rules and those that have been operated by applying misunderstandings of the rules. The paper addresses the performance of one risk-centric Flood Manual for Wivenhoe Dam in achieving a risk management outcome. A mixture of engineering, administrative, and legal factors appear to have combined to reduce the outcomes from the risk approach. These are described. The findings are that a risk-centric Manual may need to assist administrations in the conduct of scenario training regimes, in responding to healthy audit reporting, and in the development of decision-support systems. The principal assistance needed from the Manual, however, is to assist engineering and the law to a good understanding of how risks are managed – do not assume that risk management is understood. The wider findings are that the critical profession for decision-making downstream of the meteorologist is not dam engineering or hydrology, or hydraulics; it is risk management. Risk management will provide the minimum flood damage outcome where actual rainfalls match or exceed forecasts of rainfalls, that therefore risk management will provide the best approach for the likely history of flooding in the life of a dam, and provisions made for worst cases may be state of the art in risk management. The principal conclusion is the need for training in both risk management as a discipline and also in the application of risk management rules to particular dam operational scenarios.

Keywords: risk management, flood control, dam operations, deterministic thinking

Procedia PDF Downloads 87
2510 Advanced Mechatronic Design of Robot Manipulator Using Hardware-In-The-Loop Simulation

Authors: Reza Karami, Ali Akbar Ebrahimi

Abstract:

This paper discusses concurrent engineering of robot manipulators, based on the Holistic Concurrent Design (HCD) methodology and by using a hardware-in-the-loop simulation platform. The methodology allows for considering numerous design variables with different natures concurrently. It redefines the ultimate goal of design based on the notion of satisfaction, resulting in the simplification of the multi-objective constrained optimization process. It also formalizes the effect of designer’s subjective attitude in the process. To enhance modeling efficiency for both computation and accuracy, a hardware-in-the-loop simulation platform is used, which involves physical joint modules and the control unit in addition to the software modules. This platform is implemented in the HCD design architecture to reliably evaluate the design attributes and performance super criterion during the design process. The resulting overall architecture is applied to redesigning kinematic, dynamic and control parameters of an industrial robot manipulator.

Keywords: concurrent engineering, hardware-in-the-loop simulation, robot manipulator, multidisciplinary systems, mechatronics

Procedia PDF Downloads 454
2509 Implementation of ALD in Product Development: Study of ROPS to Improve Energy Absorption Performance Using Absorption Part

Authors: Zefry Darmawan, Shigeyuki Haruyama, Ken Kaminishi

Abstract:

Product development is a big issue in the industrial competition and takes a serious part in development of technology. Product development process could adapt high changes of market needs and transform into engineering concept in order to produce high-quality product. One of the latest methods in product development is Analysis-Led-Design (ALD). It utilizes digital engineering design tools with finite analysis to perform product robust analysis and valuable for product reliability assurance. Heavy machinery which operates under severe condition should maintain safety to the customer when faced with potential hazard. Cab frame should able to absorb the energy while collision. Through ALD, a series of improvement of cab frame to increase energy absorption was made and analyzed. Improvement was made by modifying shapes of frame and-or install absorption device in certain areas. Simulation result showed that install absorption device could increase absorption energy than modifying shape.

Keywords: ALD, ROPS, energy absorption, cab frame

Procedia PDF Downloads 371
2508 Recovery of Petroleum Reservoir by Waterflooding Technique

Authors: Zabihullah Mahdi, Khwaja Naweed Seddiqi, Shigeo Honma

Abstract:

Through many types of research and practical studies, it has been identified that the average oil recovery factor of a petroleum reservoir is about 30 to 35 %. This study is focused on enhanced oil recovery by laboratory experiment and graphical investigation based on Buckley-Leverett theory. Horizontal oil displacement by water, in a petroleum reservoir is analyzed under the Buckley-Leverett frontal displacement theory. The extraction and prerequisite of this theory are based and pursued focusing on the key factors that control displacement. The theory is executable to the waterflooding method, which is generally employed in petroleum engineering reservoirs to sustain oil production recovery, and the techniques for evaluating the average water saturation behind the water front and the oil recovery factors in the reservoirs are presented. In this paper, the Buckley-Leverett theory handled to an experimental model and the amount of recoverable oil are investigated to be over 35%. The irreducible water saturation, viz. connate water saturation, in the reservoir is also a significant inspiration for the recovery.

Keywords: Buckley-Leverett theory, waterflooding technique, petroleum engineering, immiscible displacement

Procedia PDF Downloads 258
2507 Perception of Training Actors on the Effectiveness of Training Carried Out within the Company

Authors: Oussedik Lydia, Zaouani-Denoux Souâd

Abstract:

In an economic context characterized by intense competition and the impact of new technologies, companies have a constant need to adapt to the environment and the changes imposed. This situation leads companies to take training actions to develop employees’ required skills. Further, training is considered as a strategic lever for the company's growth. Accordingly, an increasing number of companies are adopting training to ensure continuous employees qualification. Thus, the aim of this research is to understand the process of training engineering occurring in the context of a company's continuous training, which will help to identify the gaps that can hinder or promote the development of employees' knowledge and skills. The research methodology is based on a mixed-method approach. Interviews and questionnaires are implemented to collect qualitative and quantitative data. The study results can help managers to identify gaps at each stage of training design. Finally, the research findings provide important information to help design a training plan to support the development of employees' knowledge and performance.

Keywords: training engineering, training needs, training plan, competences, continuing training, perception

Procedia PDF Downloads 136
2506 Motivation for Work and Organizational Commitment in an Engineering Public Faculty: A Perception of Technical and Administrative Employees

Authors: Fátima Aparecida de Carvalho, Ester Eliane Jeunon

Abstract:

This study addresses issues in the public service: motivation to work and organizational commitment. The goal of this research was to examine how it configures the motivation to work and organizational commitment of the technical and administrative effective staff of the School of Engineering at UFMG. For this purpose a descriptive research under a quantitative and qualitative approach has been performed. In the quantitative research it has been applied a questionnaire to all 146 technical and administrative institution effective staff, that configures a census research. This questionnaire was divided into three parts, the first one aimed at performing a socio-demographic survey of participants, the second one aimed to measure motivation and the third one aimed at measuring organizational commitment. The Bases Organizational Commitment Scale (EBACO) was used in the analysis of data obtained in the third part of the questionnaire. The qualitative research was conducted through interviews with 08 managers, with open-ended questions structured in an analysis category, thus contemplating the administrative structure of the School of Engineering. The results of the research revealed that there is no relevant difference between the hygiene and motivational indices, related to the staff´s gender and area of work. Nonetheless, it was observed higher motivational indices for staff with shorter duration of employment in the institution. Also, the results shown high organizational commitment of the staff with the institution, with a predominance of the component “Requirement for performance”, followed by commitments “Consistent line of activity”, “Affiliative” and “Affective”, which reached almost tge some average in this study. Finally the results showed that all commitment indices have positive moderated correlation to the motivational indices, except the “shortage of alternative” index.

Keywords: motivation to work, organizational commitment, public service, human resources

Procedia PDF Downloads 410
2505 Using Science, Technology, Engineering, Art and Mathematics (STEAM) Project-Based Learning Programs to Transition towards Whole School Pedagogical Shift

Authors: M. Richichi

Abstract:

Evidencing the learning and developmental needs of students in specific educational institutions is central to determining the type of whole school pedagogical shift required. Initiating this transition by designing and implementing STEAM (Science, technology, engineering, art, and mathematics) project-based learning opportunities, in collaboration with industry, exposes teachers to new pedagogical and assessment practices. This experience instills confidence and a renewed sense of energy, which contributes to greater efficacy. Championing teachers in such learning environments leads to “bleeding” of inventive pedagogical understanding and skills as well as motivation. This contributes positively to collective teacher efficacy and the transition towards more cross-disciplinary initiatives and opportunities, and hence an innovative pedagogical shift. Evidence of skill and knowledge development in students, combined with greater confidence, work ethic and interest in STEAM areas, are further indicators of the success of the transitioning process.

Keywords: efficacy, pedagogy, transition, STEAM

Procedia PDF Downloads 129
2504 Framework for Socio-Technical Issues in Requirements Engineering for Developing Resilient Machine Vision Systems Using Levels of Automation through the Lifecycle

Authors: Ryan Messina, Mehedi Hasan

Abstract:

This research is to examine the impacts of using data to generate performance requirements for automation in visual inspections using machine vision. These situations are intended for design and how projects can smooth the transfer of tacit knowledge to using an algorithm. We have proposed a framework when specifying machine vision systems. This framework utilizes varying levels of automation as contingency planning to reduce data processing complexity. Using data assists in extracting tacit knowledge from those who can perform the manual tasks to assist design the system; this means that real data from the system is always referenced and minimizes errors between participating parties. We propose using three indicators to know if the project has a high risk of failing to meet requirements related to accuracy and reliability. All systems tested achieved a better integration into operations after applying the framework.

Keywords: automation, contingency planning, continuous engineering, control theory, machine vision, system requirements, system thinking

Procedia PDF Downloads 204
2503 Reducing the Imbalance Penalty Through Artificial Intelligence Methods Geothermal Production Forecasting: A Case Study for Turkey

Authors: Hayriye Anıl, Görkem Kar

Abstract:

In addition to being rich in renewable energy resources, Turkey is one of the countries that promise potential in geothermal energy production with its high installed power, cheapness, and sustainability. Increasing imbalance penalties become an economic burden for organizations since geothermal generation plants cannot maintain the balance of supply and demand due to the inadequacy of the production forecasts given in the day-ahead market. A better production forecast reduces the imbalance penalties of market participants and provides a better imbalance in the day ahead market. In this study, using machine learning, deep learning, and, time series methods, the total generation of the power plants belonging to Zorlu Natural Electricity Generation, which has a high installed capacity in terms of geothermal, was estimated for the first one and two weeks of March, then the imbalance penalties were calculated with these estimates and compared with the real values. These modeling operations were carried out on two datasets, the basic dataset and the dataset created by extracting new features from this dataset with the feature engineering method. According to the results, Support Vector Regression from traditional machine learning models outperformed other models and exhibited the best performance. In addition, the estimation results in the feature engineering dataset showed lower error rates than the basic dataset. It has been concluded that the estimated imbalance penalty calculated for the selected organization is lower than the actual imbalance penalty, optimum and profitable accounts.

Keywords: machine learning, deep learning, time series models, feature engineering, geothermal energy production forecasting

Procedia PDF Downloads 110