Search results for: plastic hinges
33 Interdigitated Flexible Li-Ion Battery by Aerosol Jet Printing
Authors: Yohann R. J. Thomas, Sébastien Solan
Abstract:
Conventional battery technology includes the assembly of electrode/separator/electrode by standard techniques such as stacking or winding, depending on the format size. In that type of batteries, coating or pasting techniques are only used for the electrode process. The processes are suited for large scale production of batteries and perfectly adapted to plenty of application requirements. Nevertheless, as the demand for both easier and cost-efficient production modes, flexible, custom-shaped and efficient small sized batteries is rising. Thin-film, printable batteries are one of the key areas for printed electronics. In the frame of European BASMATI project, we are investigating the feasibility of a new design of lithium-ion battery: interdigitated planar core design. Polymer substrate is used to produce bendable and flexible rechargeable accumulators. Direct fully printed batteries lead to interconnect the accumulator with other electronic functions for example organic solar cells (harvesting function), printed sensors (autonomous sensors) or RFID (communication function) on a common substrate to produce fully integrated, thin and flexible new devices. To fulfill those specifications, a high resolution printing process have been selected: Aerosol jet printing. In order to fit with this process parameters, we worked on nanomaterials formulation for current collectors and electrodes. In addition, an advanced printed polymer-electrolyte is developed to be implemented directly in the printing process in order to avoid the liquid electrolyte filling step and to improve safety and flexibility. Results: Three different current collectors has been studied and printed successfully. An ink of commercial copper nanoparticles has been formulated and printed, then a flash sintering was applied to the interdigitated design. A gold ink was also printed, the resulting material was partially self-sintered and did not require any high temperature post treatment. Finally, carbon nanotubes were also printed with a high resolution and well defined patterns. Different electrode materials were formulated and printed according to the interdigitated design. For cathodes, NMC and LFP were efficaciously printed. For anodes, LTO and graphite have shown to be good candidates for the fully printed battery. The electrochemical performances of those materials have been evaluated in a standard coin cell with lithium-metal counter electrode and the results are similar with those of a traditional ink formulation and process. A jellified plastic crystal solid state electrolyte has been developed and showed comparable performances to classical liquid carbonate electrolytes with two different materials. In our future developments, focus will be put on several tasks. In a first place, we will synthesize and formulate new specific nano-materials based on metal-oxyde. Then a fully printed device will be produced and its electrochemical performance will be evaluated.Keywords: high resolution digital printing, lithium-ion battery, nanomaterials, solid-state electrolytes
Procedia PDF Downloads 25132 Influence of Protein Malnutrition and Different Stressful Conditions on Aluminum-Induced Neurotoxicity in Rats: Focus on the Possible Protection Using Epigallocatechin-3-Gallate
Authors: Azza A. Ali, Asmaa Abdelaty, Mona G. Khalil, Mona M. Kamal, Karema Abu-Elfotuh
Abstract:
Background: Aluminium (Al) is known as a neurotoxin environmental pollutant that can cause certain diseases as Dementia, Alzheimer's disease, and Parkinsonism. It is widely used in antacid drugs as well as in food additives and toothpaste. Stresses have been linked to cognitive impairment; Social isolation (SI) may exacerbate memory deficits while protein malnutrition (PM) increases oxidative damage in cortex, hippocampus and cerebellum. The risk of cognitive decline may be lower by maintaining social connections. Epigallocatechin-3-gallate (EGCG) is the most abundant catechin in green tea and has antioxidant, anti-inflammatory and anti-atherogenic effects as well as health-promoting effects in CNS. Objective: To study the influence of different stressful conditions as social isolation, electric shock (EC) and inadequate Nutritional condition as PM on neurotoxicity induced by Al in rats as well as to investigate the possible protective effect of EGCG in these stressful and PM conditions. Methods: Rats were divided into two major groups; protected group which was daily treated during three weeks of the experiment by EGCG (10 mg/kg, IP) or non-treated. Protected and non-protected groups included five subgroups as following: One normal control received saline and four Al toxicity groups injected daily for three weeks by ALCl3 (70 mg/kg, IP). One of them served as Al toxicity model, two groups subjected to different stresses either by isolation as mild stressful condition (SI-associated Al toxicity model) or by electric shock as high stressful condition (EC- associated Al toxicity model). The last was maintained on 10% casein diet (PM -associated Al toxicity model). Isolated rats were housed individually in cages covered with black plastic. Biochemical changes in the brain as acetyl cholinesterase (ACHE), Aβ, brain derived neurotrophic factor (BDNF), inflammatory mediators (TNF-α, IL-1β), oxidative parameters (MDA, SOD, TAC) were estimated for all groups. Histopathological changes in different brain regions were also evaluated. Results: Rats exposed to Al for three weeks showed brain neurotoxicity and neuronal degenerations. Both mild (SI) and high (EC) stressful conditions as well as inadequate nutrition (PM) enhanced Al-induced neurotoxicity and brain neuronal degenerations; the enhancement induced by stresses especially in its higher conditions (ES) was more pronounced than that of inadequate nutritional conditions (PM) as indicated by the significant increase in Aβ, ACHE, MDA, TNF-α, IL-1β together with the significant decrease in SOD, TAC, BDNF. On the other hand, EGCG showed more pronounced protection against hazards of Al in both stressful conditions (SI and EC) rather than in PM .The protective effects of EGCG were indicated by the significant decrease in Aβ, ACHE, MDA, TNF-α, IL-1β together with the increase in SOD, TAC, BDNF and confirmed by brain histopathological examinations. Conclusion: Neurotoxicity and brain neuronal degenerations induced by Al were more severe with stresses than with PM. EGCG can protect against Al-induced brain neuronal degenerations in all conditions. Consequently, administration of EGCG together with socialization as well as adequate protein nutrition is advised especially on excessive Al-exposure to avoid the severity of its neuronal toxicity.Keywords: environmental pollution, aluminum, social isolation, protein malnutrition, neuronal degeneration, epigallocatechin-3-gallate, rats
Procedia PDF Downloads 39131 Analysis of the Evolution of Techniques and Review in Cleft Surgery
Authors: Tomaz Oliveira, Rui Medeiros, André Lacerda
Abstract:
Introduction: Cleft lip and/or palate are the most frequent forms of congenital craniofacial anomalies, affecting mainly the middle third of the face and manifesting by functional and aesthetic changes. Bilateral cleft lip represents a reconstructive surgical challenge, not only for the labial component but also for the associated nasal deformation. Recently, the paradigm of the approach to this pathology has changed, placing the focus on muscle reconstruction and anatomical repositioning of the nasal cartilages in order to obtain the best aesthetic and functional results. The aim of this study is to carry out a systematic review of the surgical approach to bilateral cleft lip, retrospectively analyzing the case series of Plastic Surgery Service at Hospital Santa Maria (Lisbon, Portugal) regarding this pathology, the global assessment of the characteristics of the operated patients and the study of the different surgical approaches and their complications in the last 20 years. Methods: The present work demonstrates a retrospective and descriptive study of patients who underwent at least one reconstructive surgery for cleft lip and/or palate, in the CPRE service of the HSM, in the period between January 1 of 1997 and December 31 of 2017, in which the data relating to 361 individuals were analyzed who, after applying the exclusion criteria, constituted a sample of 212 participants. The variables analyzed were the year of the first surgery, gender, age, type of orofacial cleft, surgical approach, and its complications. Results: There was a higher overall prevalence in males, with cleft lip and cleft palate occurring in greater proportion in males, with the cleft palate being more common in females. The most frequently recorded malformation was cleft lip and palate, which is complete in most cases. Regarding laterality, alterations with a unilateral labial component were the most commonly observed, with the left lip being described as the most affected. It was found that the vast majority of patients underwent primary intervention up to 12 months of age. The surgical techniques used in the approach to this pathology showed an important chronological variation over the years. Discussion: Cleft lip and/or palate is a medical condition associated with high aesthetic and functional morbidity, which requires early treatment in order to optimize the long-term outcome. The existence of a nasolabial component and its respective surgical correction plays a central role in the treatment of this pathology. The high rates of post-surgical complications and unconvincing aesthetic results have motivated an evolution of the surgical technique, increasingly evident in recent years, allowing today to achieve satisfactory aesthetic results, even in bilateral cleft lip with high deformation complexity. The introduction of techniques that favor nasolabial reconstruction based on anatomical principles has been producing increasingly convincing results. The analyzed sample shows that most of the results obtained in this study are, in general, compatible with the results published in the literature. Conclusion: This work showed that the existence of small variations in the surgical technique can bring significant improvements in the functional and aesthetic results in the treatment of bilateral cleft lip.Keywords: cleft lip, palate lip, congenital abnormalities, cranofacial malformations
Procedia PDF Downloads 11130 The Temperature Degradation Process of Siloxane Polymeric Coatings
Authors: Andrzej Szewczak
Abstract:
Study of the effect of high temperatures on polymer coatings represents an important field of research of their properties. Polymers, as materials with numerous features (chemical resistance, ease of processing and recycling, corrosion resistance, low density and weight) are currently the most widely used modern building materials, among others in the resin concrete, plastic parts, and hydrophobic coatings. Unfortunately, the polymers have also disadvantages, one of which decides about their usage - low resistance to high temperatures and brittleness. This applies in particular thin and flexible polymeric coatings applied to other materials, such a steel and concrete, which degrade under varying thermal conditions. Research about improvement of this state includes methods of modification of the polymer composition, structure, conditioning conditions, and the polymerization reaction. At present, ways are sought to reflect the actual environmental conditions, in which the coating will be operating after it has been applied to other material. These studies are difficult because of the need for adopting a proper model of the polymer operation and the determination of phenomena occurring at the time of temperature fluctuations. For this reason, alternative methods are being developed, taking into account the rapid modeling and the simulation of the actual operating conditions of polymeric coating’s materials in real conditions. The nature of a duration is typical for the temperature influence in the environment. Studies typically involve the measurement of variation one or more physical and mechanical properties of such coating in time. Based on these results it is possible to determine the effects of temperature loading and develop methods affecting in the improvement of coatings’ properties. This paper contains a description of the stability studies of silicone coatings deposited on the surface of a ceramic brick. The brick’s surface was hydrophobized by two types of inorganic polymers: nano-polymer preparation based on dialkyl siloxanes (Series 1 - 5) and an aqueous solution of the silicon (series 6 - 10). In order to enhance the stability of the film formed on the brick’s surface and immunize it to variable temperature and humidity loading, the nano silica was added to the polymer. The right combination of the polymer liquid phase and the solid phase of nano silica was obtained by disintegration of the mixture by the sonification. The changes of viscosity and surface tension of polymers were defined, which are the basic rheological parameters affecting the state and the durability of the polymer coating. The coatings created on the brick’s surfaces were then subjected to a temperature loading of 100° C and moisture by total immersion in water, in order to determine any water absorption changes caused by damages and the degradation of the polymer film. The effect of moisture and temperature was determined by measurement (at specified number of cycles) of changes in the surface hardness (using a Vickers’ method) and the absorption of individual samples. As a result, on the basis of the obtained results, the degradation process of polymer coatings related to their durability changes in time was determined.Keywords: silicones, siloxanes, surface hardness, temperature, water absorption
Procedia PDF Downloads 24329 Advanced Bio-Fuels for Biorefineries: Incorporation of Waste Tires and Calcium-Based Catalysts to the Pyrolysis of Biomass
Authors: Alberto Veses, Olga Sanhauja, María Soledad Callén, Tomás García
Abstract:
The appropriate use of renewable sources emerges as a decisive point to minimize the environmental impact caused by fossil fuels use. Particularly, the use of lignocellulosic biomass becomes one of the best promising alternatives since it is the only carbon-containing renewable source that can produce bioproducts similar to fossil fuels and it does not compete with food market. Among all the processes that can valorize lignocellulosic biomass, pyrolysis is an attractive alternative because it is the only thermochemical process that can produce a liquid biofuel (bio-oil) in a simple way and solid and gas fractions that can be used as energy sources to support the process. However, in order to incorporate bio-oils in current infrastructures and further process in future biorefineries, their quality needs to be improved. Introducing different low-cost catalysts and/or incorporating different polymer residues to the process are some of the new, simple and low-cost strategies that allow the user to directly obtain advanced bio-oils to be used in future biorefineries in an economic way. In this manner, from previous thermogravimetric analyses, local agricultural wastes such as grape seeds (GS) were selected as lignocellulosic biomass while, waste tires (WT) were selected as polymer residue. On the other hand, CaO was selected as low-cost catalyst based on previous experiences by the group. To reach this aim, a specially-designed fixed bed reactor using N₂ as a carrier gas was used. This reactor has the peculiarity to incorporate a vertical mobile liner that allows the user to introduce the feedstock in the oven once the selected temperature (550 ºC) is reached, ensuring higher heating rates needed for the process. Obtaining a well-defined phase distribution in the resulting bio-oil is crucial to ensure the viability to the process. Thus, once experiments were carried out, not only a well-defined two layers was observed introducing several mixtures (reaching values up to 40 wt.% of WT) but also, an upgraded organic phase, which is the one considered to be processed in further biorefineries. Radical interactions between GS and WT released during the pyrolysis process and dehydration reactions enhanced by CaO can promote the formation of better-quality bio-oils. The latter was reflected in a reduction of water and oxygen content of bio-oil and hence, a substantial increase of its heating value and its stability. Moreover, not only sulphur content was reduced from solely WT pyrolysis but also potential and negative issues related to a strong acidic environment of conventional bio-oils were minimized due to its basic pH and lower total acid numbers. Therefore, acidic compounds obtained in the pyrolysis such as CO₂-like substances can react with the CaO and minimize acidic problems related to lignocellulosic bio-oils. Moreover, this CO₂ capture promotes H₂ production from water gas shift reaction favoring hydrogen-transfer reactions, improving the final quality of the bio-oil. These results show the great potential of grapes seeds to carry out the catalytic co-pyrolysis process with different plastic residues in order to produce a liquid bio-oil that can be considered as a high-quality renewable vector.Keywords: advanced bio-oils, biorefinery, catalytic co-pyrolysis of biomass and waste tires, lignocellulosic biomass
Procedia PDF Downloads 23528 Development of a Bead Based Fully Automated Mutiplex Tool to Simultaneously Diagnose FIV, FeLV and FIP/FCoV
Authors: Andreas Latz, Daniela Heinz, Fatima Hashemi, Melek Baygül
Abstract:
Introduction: Feline leukemia virus (FeLV), feline immunodeficiency virus (FIV), and feline coronavirus (FCoV) are serious infectious diseases affecting cats worldwide. Transmission of these viruses occurs primarily through close contact with infected cats (via saliva, nasal secretions, faeces, etc.). FeLV, FIV, and FCoV infections can occur in combination and are expressed in similar clinical symptoms. Diagnosis can therefore be challenging: Symptoms are variable and often non-specific. Sick cats show very similar clinical symptoms: apathy, anorexia, fever, immunodeficiency syndrome, anemia, etc. Sample volume for small companion animals for diagnostic purposes can be challenging to collect. In addition, multiplex diagnosis of diseases can contribute to an easier, cheaper, and faster workflow in the lab as well as to the better differential diagnosis of diseases. For this reason, we wanted to develop a new diagnostic tool that utilizes less sample volume, reagents, and consumables than multiplesingleplex ELISA assays Methods: The Multiplier from Dynextechonogies (USA) has been used as platform to develop a Multiplex diagnostic tool for the detection of antibodies against FIV and FCoV/FIP and antigens for FeLV. Multiplex diagnostics. The Dynex®Multiplier®is a fully automated chemiluminescence immunoassay analyzer that significantly simplifies laboratory workflow. The Multiplier®ease-of-use reduces pre-analytical steps by combining the power of efficiently multiplexing multiple assays with the simplicity of automated microplate processing. Plastic beads have been coated with antigens for FIV and FCoV/FIP, as well as antibodies for FeLV. Feline blood samples are incubated with the beads. Read out of results is performed via chemiluminescence Results: Bead coating was optimized for each individual antigen or capture antibody and then combined in the multiplex diagnostic tool. HRP: Antibody conjugates for FIV and FCoV antibodies, as well as detection antibodies for FeLV antigen, have been adjusted and mixed. 3 individual prototyple batches of the assay have been produced. We analyzed for each disease 50 well defined positive and negative samples. Results show an excellent diagnostic performance of the simultaneous detection of antibodies or antigens against these feline diseases in a fully automated system. A 100% concordance with singleplex methods like ELISA or IFA can be observed. Intra- and Inter-Assays showed a high precision of the test with CV values below 10% for each individual bead. Accelerated stability testing indicate a shelf life of at least 1 year. Conclusion: The new tool can be used for multiplex diagnostics of the most important feline infectious diseases. Only a very small sample volume is required. Fully automation results in a very convenient and fast method for diagnosing animal diseases.With its large specimen capacity to process over 576 samples per 8-hours shift and provide up to 3,456 results, very high laboratory productivity and reagent savings can be achieved.Keywords: Multiplex, FIV, FeLV, FCoV, FIP
Procedia PDF Downloads 10427 Sustainable Marine Tourism: Opinion and Segmentation of Italian Generation Z
Authors: M. Bredice, M. B. Forleo, L. Quici
Abstract:
Coastal tourism is currently facing huge challenges on how to balance environmental problems and tourist activities. Recent literature shows a growing interest in the issue of sustainable tourism from a so-called civilized tourists’ perspective by investigating opinions, perceptions, and behaviors. This study investigates the opinions of youth on what makes them responsible tourists and the ability of coastal marine areas to support tourism in future scenarios. A sample of 778 Italians attending the last year of high school was interviewed. Descriptive statistics, tests, and cluster analyses are applied to highlight the distribution of opinions among youth, detect significant differences based on demographic characteristics, and make segmentation of the different profiles based on students’ opinions and behaviors. Preliminary results show that students are largely convinced (62%) that by 2050 the quality of coastal environments could limit seaside tourism, while 10% of them believe that the problem can be solved simply by changing the tourist destination. Besides the cost of the holiday, the most relevant aspect respondents consider when choosing a marine destination is the presence of tourist attractions followed by the quality of the marine-coastal environment, the specificity of the local gastronomy and cultural traditions, and finally, the activities offered to guests such as sports and events. The reduction of waste and lower air emissions are considered the most important environmental areas in which marine-coastal tourism activities can contribute to preserving the quality of seas and coasts. Areas in which, as a tourist, they believe possible to give a personal contribution were (responses “very much” and “somewhat”); do not throw litter in the sea and on the beach (84%), do not buy single-use plastic products (66%), do not use soap or shampoo when showering in beaches (53%), do not have bonfires (47%), do not damage dunes (46%), and do not remove natural materials (e.g., sand, shells) from the beach (46%). About 6% of the sample stated that they were not interested in contributing to the aforementioned activities, while another 7% replied that they could not contribute at all. Finally, 80% of the sample has never participated in voluntary environmental initiatives or citizen science projects; moreover, about 64% of the students have never participated in events organized by environmental associations in marine or coastal areas. Regarding the test analysis -based on Kruskal-Wallis and Mann and Whitney tests - gender, region, and studying area of students reveals significance in terms of variables expressing knowledge and interest in sustainability topics and sustainable tourism behaviors. The classification of the education field is significant for a great number of variables, among which those related to several sustainable behaviors that respondents declare to be able to contribute as tourists. The ongoing cluster analysis will reveal different profiles in the sample and relevant variables. Based on preliminary results, implications are envisaged in the fields of education, policy, and business strategies for sustainable scenarios. Under these perspectives, the study has the potential to contribute to the conference debate about marine and coastal sustainable development and management.Keywords: cluster analysis, education, knowledge, young people
Procedia PDF Downloads 7726 Modeling of Hot Casting Technology of Beryllium Oxide Ceramics with Ultrasonic Activation
Authors: Zamira Sattinova, Tassybek Bekenov
Abstract:
The article is devoted to modeling the technology of hot casting of beryllium oxide ceramics. The stages of ultrasonic activation of beryllium oxide slurry in the plant vessel to improve the rheological property, hot casting in the moulding cavity with cooling and solidification of the casting are described. Thermoplastic slurry (hereinafter referred to as slurry) shows the rheology of a non-Newtonian fluid with yield and plastic viscosity. Cooling-solidification of the slurry in the forming cavity occurs in the liquid, taking into account crystallization and solid state. In this work is the method of calculation of hot casting of the slurry using the method of effective molecular viscosity of viscoplastic fluid. It is shown that the slurry near the cooled wall is in a state of crystallization and plasticity, and the rest may still be in the liquid phase. Nonuniform distribution of temperature, density and concentration of kinetically free binder takes place along the cavity section. This leads to compensation of shrinkage by the influx of slurry from the liquid into the crystallization zones and plasticity of the castings. In the plasticity zone, the shrinkage determined by the concentration of kinetically free binder is compensated under the action of the pressure gradient. The solidification mechanism, as well as the mechanical behavior of the casting mass during casting, the rheological and thermophysical properties of the thermoplastic BeO slurry due to ultrasound exposure have not been well studied. Nevertheless, experimental data allow us to conclude that the effect of ultrasonic vibrations on the slurry mass leads to it: a change in structure, an increase in technological properties, a decrease in heterogeneity and a change in rheological properties. In the course of experiments, the effect of ultrasonic treatment and its duration on the change in viscosity and ultimate shear stress of the slurry depending on temperature (55-75℃) and the mass fraction of the binder (10 - 11.7%) have been studied. At the same time, changes in these properties before and after ultrasound exposure have been analyzed, as well as the nature of the flow in the system under study. The experience of operating the unit with ultrasonic impact has shown that at the same time, the casting capacity of the slurry increases by an average of 15%, and the viscosity decreases by more than half. Experimental study of physicochemical properties and phase change with simultaneous consideration of all factors affecting the quality of products in the process of continuous casting is labor-intensive. Therefore, an effective way to control the physical processes occurring in the formation of articles with predetermined properties and shapes is to simulate the process and determine its basic characteristics. The results of the calculations show the whole stage of hot casting of beryllium oxide slurry, taking into account the change in its state of aggregation. Ultrasonic treatment improves rheological properties and increases the fluidity of the slurry in the forming cavity. Calculations show the influence of velocity, temperature factors and structural data of the cavity on the cooling-solidification process of the casting. In the calculations, conditions for molding with shrinkage of the slurry by hot casting have been found, which makes it possible to obtain a solidifying product with a uniform beryllium oxide structure at the outlet of the cavity.Keywords: hot casting, thermoplastic slurry molding, shrinkage, beryllium oxide
Procedia PDF Downloads 2425 Multiple Plant-Based Cell Suspension as a Bio-Ink for 3D Bioprinting Applications in Food Technology
Authors: Yusuf Hesham Mohamed
Abstract:
Introduction: Three-dimensional printing technology includes multiple procedures that fabricate three-dimensional objects through consecutively layering two-dimensional cross-sections on top of each other. 3D bioprinting is a promising field of 3D printing, which fabricates tissues and organs by accurately controlling the proper arrangement of diverse biological components. 3D bioprinting uses software and prints biological materials and their supporting components layer-by-layer on a substrate or in a tissue culture plate to produce complex live tissues and organs. 3D food printing is an emerging field of 3D bioprinting in which the 3D printed products are food products that are cheap, require less effort to produce, and have more desirable traits. The Aim of the Study is the development of an affordable 3D bioprinter by altering a locally made CNC instrument with an open-source platform to suit the 3D bio-printer purposes. Later, we went through applying the prototype in several applications regarding food technology and drug testing, including the organ-On-Chip. Materials and Methods: An off-the-shelf 3D printer was modified by designing and fabricating the syringe unit, which was designed on the basis of the Milli-fluidics system. Sodium alginate and gelatin hydrogels were prepared, followed by leaf cell suspension preparation from narrow sections of Fragaria’s viable leaves. The desired 3D structure was modeled, and 3D printing preparations took place. Cell-free and cell-laden hydrogels were printed at room temperature under sterile conditions. Post printing curing process was performed. The printed structure was further studied. Results: Positive results have been achieved using the altered 3D bioprinter where a 3D hydrogel construct of two layers made of the combination of sodium alginate to gelatin (15%: 0.5%) has been printed. DLP 3D printer was used to design the syringe component with a transparent PLA-Pro resin for the creation of a microfluidics system having two channels altered to the double extruder. The hydrogel extruder’s design was based on peristaltic pumps, which utilized a stepper motor. The design and fabrication were made using DIY-3D printed parts. Hard plastic PLA was the material utilized for printing. SEM was used to carry out the porous 3D construct imaging. Multiple physical and chemical tests were performed in order to ensure that the cell line was suitable for hosting. Fragaria plant was developed by suspending Fragaria’s cells from its leaves using the 3D bioprinter. Conclusion: 3D bioprinting is considered to be an emerging scientific field that can facilitate and improve many scientific tests and studies. Thus, having a 3D bioprinter in labs is considered to be an essential requirement. 3D bioprinters are very expensive; however, the fabrication of a 3D printer into a 3D bioprinter can lower the cost of the bioprinter. The 3D bioprinter implemented made use of peristaltic pumps instead of syringe-based pumps in order to extend the ability to print multiple types of materials and cells.Keywords: scaffold, eco on chip, 3D bioprinter, DLP printer
Procedia PDF Downloads 11924 Prostheticly Oriented Approach for Determination of Fixture Position for Facial Prostheses Retention in Cases with Atypical and Combined Facial Defects
Authors: K. A.Veselova, N. V.Gromova, I. N.Antonova, I. N. Kalakutskii
Abstract:
There are many diseases and incidents that may result facial defects and deformities: cancer, trauma, burns, congenital anomalies, and autoimmune diseases. In some cases, patient may acquire atypically extensive facial defect, including more than one anatomical region or, by contrast, atypically small defect (e.g. partial auricular defect). The anaplastology gives us opportunity to help patient with facial disfigurement in cases when plastic surgery is contraindicated. Using of implant retention for facial prosthesis is strongly recommended because improves both aesthetic and functional results and makes using of the prosthesis more comfortable. Prostheticly oriented fixture position is extremely important for aesthetic and functional long-term result; however, the optimal site for fixture placement is not clear in cases with atypical configuration of facial defect. The objective of this report is to demonstrate challenges in fixture position determination we have faced with and offer the solution. In this report, four cases of implant-supported facial prosthesis are described. Extra-oral implants with four millimeter length were used in all cases. The decision regarding the quantity of surgical stages was based on anamnesis of disease. Facial prostheses were manufactured according to conventional technique. Clinical and technological difficulties and mistakes are described, and prostheticly oriented approach for determination of fixture position is demonstrated. The case with atypically large combined orbital and nasal defect resulting after arteriovenous malformation is described: the correct positioning of artificial eye was impossible due to wrong position of the fixture (with suprastructure) located in medial aspect of supraorbital rim. The suprastructure was unfixed and this fixture wasn`t used for retention in order to achieve appropriate artificial eye placement and better aesthetic result. In other case with small partial auricular defect (only helix and antihelix were absent) caused by squamoized cell carcinoma T1N0M0 surgical template was used to avoid the difficulties. To achieve the prostheticly oriented fixture position in case of extremely small defect the template was made on preliminary cast using vacuum thermoforming method. Two radiopaque markers were incorporated into template in preferable for fixture placement positions taking into account future prosthesis configuration. The template was put on remaining ear and cone-beam CT was performed to insure, that the amount of bone is enough for implant insertion in preferable position. Before the surgery radiopaque markers were extracted and template was holed for guide drill. Fabrication of implant-retained facial prostheses gives us opportunity to improve aesthetics, retention and patients’ quality of life. But every inaccuracy in planning leads to challenges on surgery and prosthetic stages. Moreover, in cases with atypically small or extended facial defects prostheticly oriented approach for determination of fixture position is strongly required. The approach including surgical template fabrication is effective, easy and cheap way to avoid mistakes and unpredictable result.Keywords: anaplastology, facial prosthesis, implant-retained facial prosthesis., maxillofacil prosthese
Procedia PDF Downloads 11423 A Wasp Parasitoids of Genus Cotesia (Hymenoptera: Braconidae) Naturally Parasitizing Pectinophora gossypiella (Saunders) on Transgenic Cotton in Indian Punjab
Authors: Vijay Kumar, G. K. Grewal, Prasad S. Burange
Abstract:
India is one of the largest cultivators of cotton in the world. Among the various constraints, insect pests are posing a major hurdle to the success of cotton cultivation. Various bollworms, including the pink bollworm, Pectinophora gossypiella (Saunders), cause serious losses in India, China, Pakistan, Egypt, Brazil, tropical America, and Africa, etc. Bt cotton cultivars having Cry genes were introduced in India in 2002 (Cry1Ac) and 2006 (Cry1Ac+ Cry2Ab) for control of American, spotted, and pink bollworms. Pink bollworm (PBW) larvae infest flowers, squares, and bolls. Larva burrows into flowers and bolls to feed on pollen and seeds, respectively. It has a shorter lifecycle and more generations per year, so it develops resistance more quickly than other bollworms. Further, it has cryptic feeding sites, i.e., flowers and bolls/seeds, so it is not exposed to harsh environmental fluctuations and insecticidal applications. The cry toxin concentration is low in its feeding sites, i.e., seeds and flowers of cotton. The use of insecticide and Bt cotton is the primary control measure that has been successful in limiting the damage of PBW. But with the passage of time, it has developed resistance against insecticides and Bt cotton. However, the use of insecticides increases chemical control costs while causing secondary pest problems and environmental pollution. Extensive research has indicated that monitoring and control measures such as biological, cultural, chemical, and host plant resistance methods can be integrated for effective PBW management. The potential of various biological control organisms needs to be explored. The impact of transgenic cotton on non-target organisms, particularly natural enemies, which play an important role in pest control, is still being debated. According to some authors, Bt crops have a negative impact on natural enemies, particularly parasitoids. An experiment was carried out in the Integrated Pest Management Laboratory of the Department of Entomology, Punjab Agricultural University, Ludhiana, Punjab, India, to study the natural parasitization of PBW on Bt cotton in 2022. A large population of larvae of PBW were kept individually in plastic containers and fed with cotton bolls until the emergence of a parasitoid cocoon. The first cocoon of the parasitoid was observed on October 25, 2022. Symptoms of parasitization were never seen on larvae. Larvae stopped feeding and became inactive before the emergence of parasitoids for pupation. Grub makes its way out of larvae by making a hole in the integument, and immediately after coming out, it spins the cocoon. The adult parasitoid emerged from the cocoon after eight days. The parasitoids that emerged from the cocoon were identified as Cotesia (Braconidae: Hymenoptera) based on the features of the adult. Out of 475 larvae of PBW, 87 were parasitized, with 18.31% of parasitization. Out of these, 6.73% were first instar, 10.52% were second instar, and 1.05% were third instar larvae of PBW. No parasitization was observed in fourth instar larvae. Parasitoids were observed during the fag end of cropping season and mostly on the earlier instars. It is concluded that the potential of Cotesia may be explored as a biological control agent against PBW, which is safer to human beings, environment and non-taraltoget organisms.Keywords: biocontrol, Bt cotton, Cotesia, Pectinophora gossypiella
Procedia PDF Downloads 8122 Impact of Anthropogenic Stresses on Plankton Biodiversity in Indian Sundarban Megadelta: An Approach towards Ecosystem Conservation and Sustainability
Authors: Dibyendu Rakshit, Santosh K. Sarkar
Abstract:
The study illustrates a comprehensive account of large-scale changes plankton community structure in relevance to water quality characteristics due to anthropogenic stresses, mainly concerned for Annual Gangasagar Festival (AGF) at the southern tip of Sagar Island of Indian Sundarban wetland for 3-year duration (2012-2014; n=36). This prograding, vulnerable and tide-dominated megadelta has been formed in the estuarine phase of the Hooghly Estuary infested by largest continuous tract of luxurious mangrove forest, enriched with high native flora and fauna. The sampling strategy was designed to characterize the changes in plankton community and water quality considering three diverse phases, namely during festival period (January) and its pre - (December) as well as post (February) events. Surface water samples were collected for estimation of different environmental variables as well as for phytoplankton and microzooplankton biodiversity measurement. The preservation and identification techniques of both biotic and abiotic parameters were carried out by standard chemical and biological methods. The intensive human activities lead to sharp ecological changes in the context of poor water quality index (WQI) due to high turbidity (14.02±2.34 NTU) coupled with low chlorophyll a (1.02±0.21 mg m-3) and dissolved oxygen (3.94±1.1 mg l-1), comparing to pre- and post-festival periods. Sharp reduction in abundance (4140 to 2997 cells l-1) and diversity (H′=2.72 to 1.33) of phytoplankton and microzooplankton tintinnids (450 to 328 ind l-1; H′=4.31 to 2.21) was very much pronounced. The small size tintinnid (average lorica length=29.4 µm; average LOD=10.5 µm) composed of Tintinnopsis minuta, T. lobiancoi, T. nucula, T. gracilis are predominant and reached some of the greatest abundances during the festival period. Results of ANOVA revealed a significant variation in different festival periods with phytoplankton (F= 1.77; p=0.006) and tintinnid abundance (F= 2.41; P=0.022). RELATE analyses revealed a significant correlation between the variations of planktonic communities with the environmental data (R= 0.107; p= 0.005). Three distinct groups were delineated from principal component analysis, in which a set of hydrological parameters acted as the causative factor(s) for maintaining diversity and distribution of the planktonic organisms. The pronounced adverse impact of anthropogenic stresses on plankton community could lead to environmental deterioration, disrupting the productivity of benthic and pelagic ecosystems as well as fishery potentialities which directly related to livelihood services. The festival can be considered as multiple drivers of changes in relevance to beach erosion, shoreline changes, pollution from discarded plastic and electronic wastes and destruction of natural habitats resulting loss of biodiversity. In addition, deterioration in water quality was also evident from immersion of idols, causing detrimental effects on aquatic biota. The authors strongly recommend for adopting integrated scientific and administrative strategies for resilience, sustainability and conservation of this megadelta.Keywords: Gangasagar festival, phytoplankton, Sundarban megadelta, tintinnid
Procedia PDF Downloads 23421 Seismic History and Liquefaction Resistance: A Comparative Study of Sites in California
Authors: Tarek Abdoun, Waleed Elsekelly
Abstract:
Introduction: Liquefaction of soils during earthquakes can have significant consequences on the stability of structures and infrastructure. This study focuses on comparing two liquefaction case histories in California, namely the response of the Wildlife site in the Imperial Valley to the 2010 El-Mayor Cucapah earthquake (Mw = 7.2, amax = 0.15g) and the response of the Treasure Island Fire Station (F.S.) site in the San Francisco Bay area to the 1989 Loma Prieta Earthquake (Mw = 6.9, amax = 0.16g). Both case histories involve liquefiable layers of silty sand with non-plastic fines, similar shear wave velocities, low CPT cone penetration resistances, and groundwater tables at similar depths. The liquefaction charts based on shear wave velocity field predict liquefaction at both sites. However, a significant difference arises in their pore pressure responses during the earthquakes. The Wildlife site did not experience liquefaction, as evidenced by piezometer data, while the Treasure Island F.S. site did liquefy during the shaking. Objective: The primary objective of this study is to investigate and understand the reason for the contrasting pore pressure responses observed at the Wildlife site and the Treasure Island F.S. site despite their similar geological characteristics and predicted liquefaction potential. By conducting a detailed analysis of similarities and differences between the two case histories, the objective is to identify the factors that contributed to the higher liquefaction resistance exhibited by the Wildlife site. Methodology: To achieve this objective, the geological and seismic data available for both sites were gathered and analyzed. Then their soil profiles, seismic characteristics, and liquefaction potential as predicted by shear wave velocity-based liquefaction charts were analyzed. Furthermore, the seismic histories of both regions were examined. The number of previous earthquakes capable of generating significant excess pore pressures for each critical layer was assessed. This analysis involved estimating the total seismic activity that the Wildlife and Treasure Island F.S. critical layers experienced over time. In addition to historical data, centrifuge and large-scale experiments were conducted to explore the impact of prior seismic activity on liquefaction resistance. These findings served as supporting evidence for the investigation. Conclusions: The higher liquefaction resistance observed at the Wildlife site and other sites in the Imperial Valley can be attributed to preshaking by previous earthquakes. The Wildlife critical layer was subjected to a substantially greater number of seismic events capable of generating significant excess pore pressures over time compared to the Treasure Island F.S. layer. This crucial disparity arises from the difference in seismic activity between the two regions in the past century. In conclusion, this research sheds light on the complex interplay between geological characteristics, seismic history, and liquefaction behavior. It emphasizes the significant impact of past seismic activity on liquefaction resistance and can provide valuable insights for evaluating the stability of sandy sites in other seismic regions.Keywords: liquefaction, case histories, centrifuge, preshaking
Procedia PDF Downloads 7520 Sustainability Communications Across Multi-Stakeholder Groups: A Critical Review of the Findings from the Hospitality and Tourism Sectors
Authors: Frederica Pettit
Abstract:
Contribution: Stakeholder involvement in CSR is essential to ensuring pro-environmental attitudes and behaviours across multi-stakeholder groups. Despite increased awareness of the benefits surrounding a collaborative approach to sustainability communications, its success is limited by difficulties engaging with active online conversations with stakeholder groups. Whilst previous research defines the effectiveness of sustainability communications; this paper contributes to knowledge through the development of a theoretical framework that explores the processes to achieving pro-environmental attitudes and behaviours in stakeholder groups. The research will also consider social media as an opportunity to communicate CSR information to all stakeholder groups. Approach: A systematic review was chosen to investigate the effectiveness of the types of sustainability communications used in the hospitality and tourism industries. The systematic review was completed using Web of Science and Scopus using the search terms “sustainab* communicat*” “effective or effectiveness,” and “hospitality or tourism,” limiting the results to peer-reviewed research. 133 abstracts were initially read, with articles being excluded for irrelevance, duplicated articles, non-empirical studies, and language. A total of 45 papers were included as part of the systematic review. 5 propositions were created based on the results of the systematic review, helping to develop a theoretical framework of the processes needed for companies to encourage pro-environmental behaviours across multi-stakeholder groups. Results: The theoretical framework developed in the paper determined the processes necessary for companies to achieve pro-environmental behaviours in stakeholders. The processes to achieving pro-environmental attitudes and behaviours are stakeholder-focused, identifying the need for communications to be specific to their targeted audience. Collaborative communications that enable stakeholders to engage with CSR information and provide feedback lead to a higher awareness of CSR shared visions and pro-environmental attitudes and behaviours. These processes should also aim to improve their relationships with stakeholders through transparency of CSR, CSR strategies that match stakeholder values and ethics whilst prioritizing sustainability as part of their job role. Alternatively, companies can prioritize pro-environmental behaviours using choice editing by mainstreaming sustainability as the only option. In recent years, there has been extensive research on social media as a viable source of sustainability communications, with benefits including direct interactions with stakeholders, the ability to enforce the authenticity of CSR activities and encouragement of pro-environmental behaviours. Despite this, there are challenges to implementing CSR, including difficulties controlling stakeholder criticisms, negative stakeholder influences and comments left on social media platforms. Conclusion: A lack of engagement with CSR information is a reoccurring reason for preventing pro-environmental attitudes and behaviours across stakeholder groups. Traditional CSR strategies contribute to this due to their inability to engage with their intended audience. Hospitality and tourism companies are improving stakeholder relationships through collaborative processes which reduce single-use plastic consumption. A collaborative approach to communications can lead to stakeholder satisfaction, leading to changes in attitudes and behaviours. Different sources of communications are accessed by different stakeholder groups, identifying the need for targeted sustainability messaging, creating benefits such as direct interactions with stakeholders, the ability to enforce the authenticity of CSR activities, and encouraging engagement with sustainability information.Keywords: hospitality, pro-environmental attitudes and behaviours, sustainability communication, social media
Procedia PDF Downloads 13919 Environmental Forensic Analysis of the Shoreline Microplastics Debris on the Limbe Coastline, Cameroon
Authors: Ndumbe Eric Esongami, Manga Veronica Ebot, Foba Josepha Tendo, Yengong Fabrice Lamfu, Tiku David Tambe
Abstract:
The prevalence and unpleasant nature of plastics pollution constantly observed on beach shore on stormy events has prompt researchers worldwide to thesis on sustainable economic and environmental designs on plastics, especially in Cameroon, a major touristic destination in the Central Africa Region. The inconsistent protocols develop by researchers has added to this burden, thus the morphological nature of microplastic remediation is a call for concerns. The prime aim of the study is to morphologically identify, quantify and forensically understands the distribution of each plastics polymer composition. Duplicates of 2×2 m (4m2) quadrants were sampled in each beach/month over 8 months period across five purposive beaches along the Limbe – Idenau coastline, Cameroon. Collected plastic samples were thoroughly washed and separation done using a 2 mm sieve. Only particles of size, < 2 mm, were considered and forward follow the microplastics laboratory analytical processes. Established step by step methodological procedures of particle filtration, organic matter digestion, density separation, particle extraction and polymer identification including microscope and were applied for the beach microplastics samples. Microplastics were observed in each sample/beach/month with an overall abundance of 241 particles/number weighs 89.15 g in total and with a mean abundance of 2 particles/m2 (0.69 g/m2) and 6 particles/month (2.0 g/m2). The accumulation of beach shoreline MPs rose dramatically towards decreasing size with microbeads and fiber only found in the < 1 mm size fraction. Approximately 75% of beach MPs contamination were found in LDB 2, LDB 1 and IDN beaches/average particles/number while the most dominant polymer type frequently observed also were PP, PE, and PS in all morphologically parameters analysed. Beach MPs accumulation significantly varied temporally and spatially at p = 0.05. ANOVA and Spearman’s rank correlation used shows linear relationships between the sizes categories considered in this study. In terms of polymer MPs analysis, the colour class recorded that white coloured MPs was dominant, 50 particles/number (22.25 g) with recorded abundance/number in PP (25), PE (15) and PS (5). The shape class also revealed that irregularly shaped MPs was dominant, 98 particles/number (30.5 g) with higher abundance/number in PP (39), PE (33), and PS (11). Similarly, MPs type class shows that fragmented MPs type was also dominant, 80 particles/number (25.25 g) with higher abundance/number in PP (30), PE (28) and PS (15). Equally, the sized class forward revealed that 1.5 – 1.99 mm sized ranged MPs had the highest abundance of 102 particles/number (51.77 g) with higher concentration observed in PP (47), PE (41), and PS (7) as well and finally, the weight class also show that 0.01 g weighs MPs was dominated by 98 particles/number (56.57 g) with varied numeric abundance seen in PP (49), PE (29) and PS (13). The forensic investigation of the pollution indicated that majority of the beach microplastic is sourced from the site/nearby area. The investigation could draw useful conclusions regarding the pathways of pollution. The fragmented microplastic, a significant component in the sample, was found to be sourced from recreational activities and partly from fishing boat installations and repairs activities carried out close to the shore.Keywords: forensic analysis, beach MPs, particle/number, polymer composition, cameroon
Procedia PDF Downloads 7818 Finite Element Analysis of Mini-Plate Stabilization of Mandible Fracture
Authors: Piotr Wadolowski, Grzegorz Krzesinski, Piotr Gutowski
Abstract:
The aim of the presented investigation is to recognize the possible mechanical issues of mini-plate connection used to treat mandible fractures and to check the impact of different factors for the stresses and displacements within the bone-stabilizer system. The mini-plate osteosynthesis technique is a common type of internal fixation using metal plates connected to the fractured bone parts by a set of screws. The selected two types of plate application methodology used by maxillofacial surgeons were investigated in the work. Those patterns differ in location and number of plates. The bone geometry was modeled on the base of computed tomography scans of hospitalized patient done just after mini-plate application. The solid volume geometry consisting of cortical and cancellous bone was created based on gained cloud of points. Temporomandibular joint and muscle system were simulated to imitate the real masticatory system behavior. Finite elements mesh and analysis were performed by ANSYS software. To simulate realistic connection behavior nonlinear contact conditions were used between the connecting elements and bones. The influence of the initial compression of the connected bone parts or the gap between them was analyzed. Nonlinear material properties of the bone tissues and elastic-plastic model of titanium alloy were used. The three cases of loading assuming the force of magnitude of 100N acting on the left molars, the right molars and the incisors were investigated. Stress distribution within connecting plate shows that the compression of the bone parts in the connection results in high stress concentration in the plate and the screws, however the maximum stress levels do not exceed material (titanium) yield limit. There are no significant differences between negative offset (gap) and no-offset conditions. The location of the external force influences the magnitude of stresses around both the plate and bone parts. Two-plate system gives generally lower von Misses stress under the same loading than the one-plating approach. Von Mises stress distribution within the cortical bone shows reduction of high stress field for the cases without the compression (neutral initial contact). For the initial prestressing there is a visible significant stress increase around the fixing holes at the bottom mini-plate due to the assembly stress. The local stress concentration may be the reason of bone destruction in those regions. The performed calculations prove that the bone-mini-plate system is able to properly stabilize the fractured mandible bone. There is visible strong dependency between the mini-plate location and stress distribution within the stabilizer structure and the surrounding bone tissue. The results (stresses within the bone tissues and within the devices, relative displacements of the bone parts at the interface) corresponding to different models of the connection provide a basis for the mechanical optimization of the mini-plate connections. The results of the performed numerical simulations were compared to clinical observation. They provide information helpful for better understanding of the load transfer in the mandible with the stabilizer and for improving stabilization techniques.Keywords: finite element modeling, mandible fracture, mini-plate connection, osteosynthesis
Procedia PDF Downloads 24617 Effectiveness of an Intervention to Increase Physics Students' STEM Self-Efficacy: Results of a Quasi-Experimental Study
Authors: Stephanie J. Sedberry, William J. Gerace, Ian D. Beatty, Michael J. Kane
Abstract:
Increasing the number of US university students who attain degrees in STEM and enter the STEM workforce is a national priority. Demographic groups vary in their rates of participation in STEM, and the US produces just 10% of the world’s science and engineering degrees (2014 figures). To address these gaps, we have developed and tested a practical, 30-minute, single-session classroom-based intervention to improve students’ self-efficacy and academic performance in University STEM courses. Self-efficacy is a psychosocial construct that strongly correlates with academic success. Self-efficacy is a construct that is internal and relates to the social, emotional, and psychological aspects of student motivation and performance. A compelling body of research demonstrates that university students’ self-efficacy beliefs are strongly related to their selection of STEM as a major, aspirations for STEM-related careers, and persistence in science. The development of an intervention to increase students’ self-efficacy is motivated by research showing that short, social-psychological interventions in education can lead to large gains in student achievement. Our intervention addresses STEM self-efficacy via two strong, but previously separate, lines of research into attitudinal/affect variables that influence student success. The first is ‘attributional retraining,’ in which students learn to attribute their successes and failures to internal rather than external factors. The second is ‘mindset’ about fixed vs. growable intelligence, in which students learn that the brain remains plastic throughout life and that they can, with conscious effort and attention to thinking skills and strategies, become smarter. Extant interventions for both of these constructs have significantly increased academic performance in the classroom. We developed a 34-item questionnaire (Likert scale) to measure STEM Self-efficacy, Perceived Academic Control, and Growth Mindset in a University STEM context, and validated it with exploratory factor analysis, Rasch analysis, and multi-trait multi-method comparison to coded interviews. Four iterations of our 42-week research protocol were conducted across two academic years (2017-2018) at three different Universities in North Carolina, USA (UNC-G, NC A&T SU, and NCSU) with varied student demographics. We utilized a quasi-experimental prospective multiple-group time series research design with both experimental and control groups, and we are employing linear modeling to estimate the impact of the intervention on Self-Efficacy,wth-Mindset, Perceived Academic Control, and final course grades (performance measure). Preliminary results indicate statistically significant effects of treatment vs. control on Self-Efficacy, Growth-Mindset, Perceived Academic Control. Analyses are ongoing and final results pending. This intervention may have the potential to increase student success in the STEM classroom—and ownership of that success—to continue in a STEM career. Additionally, we have learned a great deal about the complex components and dynamics of self-efficacy, their link to performance, and the ways they can be impacted to improve students’ academic performance.Keywords: academic performance, affect variables, growth mindset, intervention, perceived academic control, psycho-social variables, self-efficacy, STEM, university classrooms
Procedia PDF Downloads 12716 Dynamic High-Rise Moment Resisting Frame Dissipation Performances Adopting Glazed Curtain Walls with Superelastic Shape Memory Alloy Joints
Authors: Lorenzo Casagrande, Antonio Bonati, Ferdinando Auricchio, Antonio Occhiuzzi
Abstract:
This paper summarizes the results of a survey on smart non-structural element dynamic dissipation when installed in modern high-rise mega-frame prototypes. An innovative glazed curtain wall was designed using Shape Memory Alloy (SMA) joints in order to increase the energy dissipation and enhance the seismic/wind response of the structures. The studied buildings consisted of thirty- and sixty-storey planar frames, extracted from reference three-dimensional steel Moment Resisting Frame (MRF) with outriggers and belt trusses. The internal core was composed of a CBF system, whilst outriggers were placed every fifteen stories to limit second order effects and inter-storey drifts. These structural systems were designed in accordance with European rules and numerical FE models were developed with an open-source code, able to account for geometric and material nonlinearities. With regard to the characterization of non-structural building components, full-scale crescendo tests were performed on aluminium/glass curtain wall units at the laboratory of the Construction Technologies Institute (ITC) of the Italian National Research Council (CNR), deriving force-displacement curves. Three-dimensional brick-based inelastic FE models were calibrated according to experimental results, simulating the fac¸ade response. Since recent seismic events and extreme dynamic wind loads have generated the large occurrence of non-structural components failure, which causes sensitive economic losses and represents a hazard for pedestrians safety, a more dissipative glazed curtain wall was studied. Taking advantage of the mechanical properties of SMA, advanced smart joints were designed with the aim to enhance both the dynamic performance of the single non-structural unit and the global behavior. Thus, three-dimensional brick-based plastic FE models were produced, based on the innovated non-structural system, simulating the evolution of mechanical degradation in aluminium-to-glass and SMA-to-glass connections when high deformations occurred. Consequently, equivalent nonlinear links were calibrated to reproduce the behavior of both tested and smart designed units, and implemented on the thirty- and sixty-storey structural planar frame FE models. Nonlinear time history analyses (NLTHAs) were performed to quantify the potential of the new system, when considered in the lateral resisting frame system (LRFS) of modern high-rise MRFs. Sensitivity to the structure height was explored comparing the responses of the two prototypes. Trends in global and local performance were discussed to show that, if accurately designed, advanced materials in non-structural elements provide new sources of energy dissipation.Keywords: advanced technologies, glazed curtain walls, non-structural elements, seismic-action reduction, shape memory alloy
Procedia PDF Downloads 32915 Flexural Response of Sandwiches with Micro Lattice Cores Manufactured via Selective Laser Sintering
Authors: Emre Kara, Ali Kurşun, Halil Aykul
Abstract:
The lightweight sandwiches obtained with the use of various core materials such as foams, honeycomb, lattice structures etc., which have high energy absorbing capacity and high strength to weight ratio, are suitable for several applications in transport industry (automotive, aerospace, shipbuilding industry) where saving of fuel consumption, load carrying capacity increase, safety of vehicles and decrease of emission of harmful gases are very important aspects. While the sandwich structures with foams and honeycombs have been applied for many years, there is a growing interest on a new generation sandwiches with micro lattice cores. In order to produce these core structures, various production methods were created with the development of the technology. One of these production technologies is an additive manufacturing technique called selective laser sintering/melting (SLS/SLM) which is very popular nowadays because of saving of production time and achieving the production of complex topologies. The static bending and the dynamic low velocity impact tests of the sandwiches with carbon fiber/epoxy skins and the micro lattice cores produced via SLS/SLM were already reported in just a few studies. The goal of this investigation was the analysis of the flexural response of the sandwiches consisting of glass fiber reinforced plastic (GFRP) skins and the micro lattice cores manufactured via SLS under thermo-mechanical loads in order to compare the results in terms of peak load and absorbed energy values respect to the effect of core cell size, temperature and support span length. The micro lattice cores were manufactured using SLS technology that creates the product drawn by a 3D computer aided design (CAD) software. The lattice cores which were designed as body centered cubic (BCC) model having two different cell sizes (d= 2 and 2.5 mm) with the strut diameter of 0.3 mm were produced using titanium alloy (Ti6Al4V) powder. During the production of all the core materials, the same production parameters such as laser power, laser beam diameter, building direction etc. were kept constant. Vacuum Infusion (VI) method was used to produce skin materials, made of [0°/90°] woven S-Glass prepreg laminates. The combination of the core and skins were implemented under VI. Three point bending tests were carried out by a servo-hydraulic test machine with different values of support span distances (L = 30, 45, and 60 mm) under various temperature values (T = 23, 40 and 60 °C) in order to analyze the influences of support span and temperature values. The failure mode of the collapsed sandwiches has been investigated using 3D computed tomography (CT) that allows a three-dimensional reconstruction of the analyzed object. The main results of the bending tests are: load-deflection curves, peak force and absorbed energy values. The results were compared according to the effect of cell size, support span and temperature values. The obtained results have particular importance for applications that require lightweight structures with a high capacity of energy dissipation, such as the transport industry, where problems of collision and crash have increased in the last years.Keywords: light-weight sandwich structures, micro lattice cores, selective laser sintering, transport application
Procedia PDF Downloads 34014 An Integrated Solid Waste Management Strategy for Semi-Urban and Rural Areas of Pakistan
Authors: Z. Zaman Asam, M. Ajmal, R. Saeed, H. Miraj, M. Muhammad Ahtisham, B. Hameed, A. -Sattar Nizami
Abstract:
In Pakistan, environmental degradation and consequent human health deterioration has rapidly accelerated in the past decade due to solid waste mismanagement. As the situation worsens with time, establishment of proper waste management practices is urgently needed especially in semi urban and rural areas of Pakistan. This study uses a concept of Waste Bank, which involves a transfer station for collection of sorted waste fractions and its delivery to the targeted market such as recycling industries, biogas plants, composting facilities etc. The management efficiency and effectiveness of Waste Bank depend strongly on the proficient sorting and collection of solid waste fractions at household level. However, the social attitude towards such a solution in semi urban/rural areas of Pakistan demands certain prerequisites to make it workable. Considering these factors the objectives of this study are to: [A] Obtain reliable data about quantity and characteristics of generated waste to define feasibility of business and design factors, such as required storage area, retention time, transportation frequency of the system etc. [B] Analyze the effects of various social factors on waste generation to foresee future projections. [C] Quantify the improvement in waste sorting efficiency after awareness campaign. We selected Gujrat city of Central Punjab province of Pakistan as it is semi urban adjoined by rural areas. A total of 60 houses (20 from each of the three selected colonies), belonging to different social status were selected. Awareness sessions about waste segregation were given through brochures and individual lectures in each selected household. Sampling of waste, that households had attempted to sort, was then carried out in the three colored bags that were provided as part of the awareness campaign. Finally, refined waste sorting, weighing of various fractions and measurement of dry mass was performed in environmental laboratory using standard methods. It was calculated that sorting efficiency of waste improved from 0 to 52% as a result of the awareness campaign. The generation of waste (dry mass basis) on average from one household was 460 kg/year whereas per capita generation was 68 kg/year. Extrapolating these values for Gujrat Tehsil, the total waste generation per year is calculated to be 101921 tons dry mass (DM). Characteristics found in waste were (i) organic decomposable (29.2%, 29710 tons/year DM), (ii) recyclables (37.0%, 37726 tons/year DM) that included plastic, paper, metal and glass, and (iii) trash (33.8%, 34485 tons/year DM) that mainly comprised of polythene bags, medicine packaging, pampers and wrappers. Waste generation was more in colonies with comparatively higher income and better living standards. In future, data collection for all four seasons and improvements due to expansion of awareness campaign to educational institutes will be quantified. This waste management system can potentially fulfill vital sustainable development goals (e.g. clean water and sanitation), reduce the need to harvest fresh resources from the ecosystem, create business and job opportunities and consequently solve one of the most pressing environmental issues of the country.Keywords: integrated solid waste management, waste segregation, waste bank, community development
Procedia PDF Downloads 14113 Polysaccharide Polyelectrolyte Complexation: An Engineering Strategy for the Development of Commercially Viable Sustainable Materials
Authors: Jeffrey M. Catchmark, Parisa Nazema, Caini Chen, Wei-Shu Lin
Abstract:
Sustainable and environmentally compatible materials are needed for a wide variety of volume commercial applications. Current synthetic materials such as plastics, fluorochemicals (such as PFAS), adhesives and resins in form of sheets, laminates, coatings, foams, fibers, molded parts and composites are used for countless products such as packaging, food handling, textiles, biomedical, construction, automotive and general consumer devices. Synthetic materials offer distinct performance advantages including stability, durability and low cost. These attributes are associated with the physical and chemical properties of these materials that, once formed, can be resistant to water, oils, solvents, harsh chemicals, salt, temperature, impact, wear and microbial degradation. These advantages become disadvantages when considering the end of life of these products which generate significant land and water pollution when disposed of and few are recycled. Agriculturally and biologically derived polymers offer the potential of remediating these environmental and life-cycle difficulties, but face numerous challenges including feedstock supply, scalability, performance and cost. Such polymers include microbial biopolymers like polyhydroxyalkanoates and polyhydroxbutirate; polymers produced using biomonomer chemical synthesis like polylactic acid; proteins like soy, collagen and casein; lipids like waxes; and polysaccharides like cellulose and starch. Although these materials, and combinations thereof, exhibit the potential for meeting some of the performance needs of various commercial applications, only cellulose and starch have both the production feedstock volume and cost to compete with petroleum derived materials. Over 430 million tons of plastic is produced each year and plastics like low density polyethylene cost ~$1500 to $1800 per ton. Over 400 million tons of cellulose and over 100 million tons of starch are produced each year at a volume cost as low as ~$500 to $1000 per ton with the capability of increased production. Cellulose and starches, however, are hydroscopic materials that do not exhibit the needed performance in most applications. Celluloses and starches can be chemically modified to contain positive and negative surface charges and such modified versions of these are used in papermaking, foods and cosmetics. Although these modified polysaccharides exhibit the same performance limitations, recent research has shown that composite materials comprised of cationic and anionic polysaccharides in polyelectrolyte complexation exhibit significantly improved performance including stability in diverse environments. Moreover, starches with added plasticizers can exhibit thermoplasticity, presenting the possibility of improved thermoplastic starches when comprised of starches in polyelectrolyte complexation. In this work, the potential for numerous volume commercial products based on polysaccharide polyelectrolyte complexes (PPCs) will be discussed, including the engineering design strategy used to develop them. Research results will be detailed including the development and demonstration of starch PPC compositions for paper coatings to replace PFAS; adhesives; foams for packaging, insulation and biomedical applications; and thermoplastic starches. In addition, efforts to demonstrate the potential for volume manufacturing with industrial partners will be discussed.Keywords: biomaterials engineering, commercial materials, polysaccharides, sustainable materials
Procedia PDF Downloads 1712 Keratin Reconstruction: Evaluation of Green Peptides Technology on Hair Performance
Authors: R. Di Lorenzo, S. Laneri, A. Sacchi
Abstract:
Hair surface properties affect hair texture and shine, whereas the healthy state of the hair cortex sways hair ends. Even if cosmetic treatments are intrinsically safe, there is potentially damaging action on the hair fibers. Loss of luster, frizz, split ends, and other hair problems are particularly prevalent among people who repeatedly alter the natural style of their hair or among people with intrinsically weak hair. Technological and scientific innovations in hair care thus become invaluable allies to preserve their natural well-being and shine. The study evaluated restoring keratin-like ingredients that improve hair fibers' structural integrity, increase tensile strength, improve hair manageability and moisturizing. The hair shaft is composed of 65 - 95% of keratin. It gives the hair resistance, elasticity, and plastic properties and also contributes to their waterproofing. Providing exogenous keratin is, therefore, a practical approach to protect and nourish the hair. By analyzing the amino acid composition of keratin, we find a high frequency of hydrophobic amino acids. It confirms the critical role interactions, mainly hydrophobic, between cosmetic products and hair. The active ingredient analyzed comes from vegetable proteins through an enzymatic cut process that selected only oligo- and polypeptides (> 3500 KDa) rich in amino acids with hydrocarbon side chains apolar or sulfur. These chemical components are the most expressed amino acids at the level of the capillary keratin structure, and it determines the most significant possible compatibility with the target substrate. Given the biological variability of the sources, it isn't easy to define a constant and reproducible molecular formula of the product. Still, it consists of hydroxypropiltrimonium vegetable peptides with keratin-like performances. 20 natural hair tresses (30 cm in length and 0.50 g weight) were treated with the investigated products (5 % v/v aqueous solution) following a specific protocol and compared with non-treated (Control) and benchmark-keratin-treated strands (Benchmark). Their brightness, moisture content, cortical and surface integrity, and tensile strength were evaluated and statistically compared. Keratin-like treated hair tresses showed better results than the other two groups (Control and Benchmark). The product improves the surface with significant regularization of the cuticle closure, improves the cortex and the peri-medullar area filling, gives a highly organized and tidy structure, delivers a significant amount of sulfur on the hair, and is more efficient moisturization and imbibition power, increases hair brightness. The hydroxypropyltrimonium quaternized group added to the C-terminal end interacts with the negative charges that form on the hair after washing when disheveled and tangled. The interactions anchor the product to the hair surface, keeping the cuticles adhered to the shaft. The small size allows the peptides to penetrate and give body to the hair, together with a conditioning effect that gives an image of healthy hair. Results suggest that the product is a valid ally in numerous restructuring/conditioning, shaft protection, straightener/dryer-damage prevention hair care product.Keywords: conditioning, hair damage, hair, keratin, polarized light microscopy, scanning electron microscope, thermogravimetric analysis
Procedia PDF Downloads 12511 Numerical Analysis of Mandible Fracture Stabilization System
Authors: Piotr Wadolowski, Grzegorz Krzesinski, Piotr Gutowski
Abstract:
The aim of the presented work is to recognize the impact of mini-plate application approach on the stress and displacement within the stabilization devices and surrounding bones. The mini-plate osteosynthesis technique is widely used by craniofacial surgeons as an improved replacement of wire connection approach. Many different types of metal plates and screws are used to the physical connection of fractured bones. Below investigation is based on a clinical observation of patient hospitalized with mini-plate stabilization system. Analysis was conducted on a solid mandible geometry, which was modeled basis on the computed tomography scan of the hospitalized patient. In order to achieve most realistic connected system behavior, the cortical and cancellous bone layers were assumed. The temporomandibular joint was simplified to the elastic element to allow physiological movement of loaded bone. The muscles of mastication system were reduced to three pairs, modeled as shell structures. Finite element grid was created by the ANSYS software, where hexahedral and tetrahedral variants of SOLID185 element were used. A set of nonlinear contact conditions were applied on connecting devices and bone common surfaces. Properties of particular contact pair depend on screw - mini-plate connection type and possible gaps between fractured bone around osteosynthesis region. Some of the investigated cases contain prestress introduced to the mini-plate during the application, what responds the initial bending of the connecting device to fit the retromolar fossa region. Assumed bone fracture occurs within the mandible angle zone. Due to the significant deformation of the connecting plate in some of the assembly cases the elastic-plastic model of titanium alloy was assumed. The bone tissues were covered by the orthotropic material. As a loading were used the gauge force of magnitude of 100N applied in three different locations. Conducted analysis shows significant impact of mini-plate application methodology on the stress distribution within the miniplate. Prestress effect introduces additional loading, which leads to locally exceed the titanium alloy yield limit. Stress in surrounding bone increases rapidly around the screws application region, exceeding assumed bone yield limit, what indicate the local bone destruction. Approach with the doubled mini-plate shows increased stress within the connector due to the too rigid connection, where the main path of loading leads through the mini-plates instead of plates and connected bones. Clinical observations confirm more frequent plate destruction of stiffer connections. Some of them could be an effect of decreased low cyclic fatigue capability caused by the overloading. The executed analysis prove that the mini-plate system provides sufficient support to mandible fracture treatment, however, many applicable solutions shifts the entire system to the allowable material limits. The results show that connector application with the initial loading needs to be carefully established due to the small material capability tolerances. Comparison to the clinical observations allows optimizing entire connection to prevent future incidents.Keywords: mandible fracture, mini-plate connection, numerical analysis, osteosynthesis
Procedia PDF Downloads 27510 Numerical Prediction of Width Crack of Concrete Dapped-End Beams
Authors: Jatziri Y. Moreno-Martinez, Arturo Galvan, Xavier Chavez Cardenas, Hiram Arroyo
Abstract:
Several methods have been utilized to study the prediction of cracking of concrete structural under loading. The finite element analysis is an alternative that shows good results. The aim of this work was the numerical study of the width crack in reinforced concrete beams with dapped ends, these are frequently found in bridge girders and precast concrete construction. Properly restricting cracking is an important aspect of the design in dapped ends, it has been observed that the cracks that exceed the allowable widths are unacceptable in an aggressive environment for reinforcing steel. For simulating the crack width, the discrete crack approach was considered by means of a Cohesive Zone (CZM) Model using a function to represent the crack opening. Two cases of dapped-end were constructed and tested in the laboratory of Structures and Materials of Engineering Institute of UNAM. The first case considers a reinforcement based on hangers as well as on vertical and horizontal ring, the second case considers 50% of the vertical stirrups in the dapped end to the main part of the beam were replaced by an equivalent area (vertically projected) of diagonal bars under. The loading protocol consisted on applying symmetrical loading to reach the service load. The models were performed using the software package ANSYS v. 16.2. The concrete structure was modeled using three-dimensional solid elements SOLID65 capable of cracking in tension and crushing in compression. Drucker-Prager yield surface was used to include the plastic deformations. The reinforcement was introduced with smeared approach. Interface delamination was modeled by traditional fracture mechanics methods such as the nodal release technique adopting softening relationships between tractions and the separations, which in turn introduce a critical fracture energy that is also the energy required to break apart the interface surfaces. This technique is called CZM. The interface surfaces of the materials are represented by a contact elements Surface-to-Surface (CONTA173) with bonded (initial contact). The Mode I dominated bilinear CZM model assumes that the separation of the material interface is dominated by the displacement jump normal to the interface. Furthermore, the opening crack was taken into consideration according to the maximum normal contact stress, the contact gap at the completion of debonding, and the maximum equivalent tangential contact stress. The contact elements were placed in the crack re-entrant corner. To validate the proposed approach, the results obtained with the previous procedure are compared with experimental test. A good correlation between the experimental and numerical Load-Displacement curves was presented, the numerical models also allowed to obtain the load-crack width curves. In these two cases, the proposed model confirms the capability of predicting the maximum crack width, with an error of ± 30 %. Finally, the orientation of the crack is a fundamental for the prediction of crack width. The results regarding the crack width can be considered as good from the practical point view. Load-Displacement curve of the test and the location of the crack were able to obtain favorable results.Keywords: cohesive zone model, dapped-end beams, discrete crack approach, finite element analysis
Procedia PDF Downloads 1679 Metal Contamination in an E-Waste Recycling Community in Northeastern Thailand
Authors: Aubrey Langeland, Richard Neitzel, Kowit Nambunmee
Abstract:
Electronic waste, ‘e-waste’, refers generally to discarded electronics and electrical equipment, including products from cell phones and laptops to wires, batteries and appliances. While e-waste represents a transformative source of income in low- and middle-income countries, informal e-waste workers use rudimentary methods to recover materials, simultaneously releasing harmful chemicals into the environment and creating a health hazard for themselves and surrounding communities. Valuable materials such as precious metals, copper, aluminum, ferrous metals, plastic and components are recycled from e-waste. However, persistent organic pollutants such as polychlorinated biphenyls (PCBs) and some polybrominated diphenyl ethers (PBDEs), and heavy metals are toxicants contained within e-waste and are of great concern to human and environmental health. The current study seeks to evaluate the environmental contamination resulting from informal e-waste recycling in a predominantly agricultural community in northeastern Thailand. To accomplish this objective, five types of environmental samples were collected and analyzed for concentrations of eight metals commonly associated with e-waste recycling during the period of July 2016 through July 2017. Rice samples from the community were collected after harvest and analyzed using inductively coupled plasma mass spectrometry (ICP-MS) and gas furnace atomic spectroscopy (GF-AS). Soil samples were collected and analyzed using methods similar to those used in analyzing the rice samples. Surface water samples were collected and analyzed using absorption colorimetry for three heavy metals. Environmental air samples were collected using a sampling pump and matched-weight PVC filters, then analyzed using Inductively Coupled Argon Plasma-Atomic Emission Spectroscopy (ICAP-AES). Finally, surface wipe samples were collected from surfaces in homes where e-waste recycling activities occur and were analyzed using ICAP-AES. Preliminary1 results indicate that some rice samples have concentrations of lead and cadmium significantly higher than limits set by the United States Department of Agriculture (USDA) and the World Health Organization (WHO). Similarly, some soil samples show levels of copper, lead and cadmium more than twice the maximum permissible level set by the USDA and WHO, and significantly higher than other areas of Thailand. Surface water samples indicate that areas near e-waste recycling activities, particularly the burning of e-waste products, result in increased levels of cadmium, lead and copper in surface waters. This is of particular concern given that many of the surface waters tested are used in irrigation of crops. Surface wipe samples measured concentrations of metals commonly associated with e-waste, suggesting a danger of ingestion of metals during cooking and other activities. Of particular concern is the relevance of surface contamination of metals to child health. Finally, air sampling showed that the burning of e-waste presents a serious health hazard to workers and the environment through inhalation and deposition2. Our research suggests a need for improved methods of e-waste recycling that allows workers to continue this valuable revenue stream in a sustainable fashion that protects both human and environmental health. 1Statistical analysis to be finished in October 2017 due to follow-up field studies occurring in July and August 2017. 2Still awaiting complete analytic results.Keywords: e-waste, environmental contamination, informal recycling, metals
Procedia PDF Downloads 3628 Structural Behavior of Subsoil Depending on Constitutive Model in Calculation Model of Pavement Structure-Subsoil System
Authors: M. Kadela
Abstract:
The load caused by the traffic movement should be transferred in the road constructions in a harmless way to the pavement as follows: − on the stiff upper layers of the structure (e.g. layers of asphalt: abrading and binding), and − through the layers of principal and secondary substructure, − on the subsoil, directly or through an improved subsoil layer. Reliable description of the interaction proceeding in a system “road construction – subsoil” should be in such case one of the basic requirements of the assessment of the size of internal forces of structure and its durability. Analyses of road constructions are based on: − elements of mechanics, which allows to create computational models, and − results of the experiments included in the criteria of fatigue life analyses. Above approach is a fundamental feature of commonly used mechanistic methods. They allow to use in the conducted evaluations of the fatigue life of structures arbitrarily complex numerical computational models. Considering the work of the system “road construction – subsoil”, it is commonly accepted that, as a result of repetitive loads on the subsoil under pavement, the growth of relatively small deformation in the initial phase is recognized, then this increase disappears, and the deformation takes the character completely reversible. The reliability of calculation model is combined with appropriate use (for a given type of analysis) of constitutive relationships. Phenomena occurring in the initial stage of the system “road construction – subsoil” is unfortunately difficult to interpret in the modeling process. The classic interpretation of the behavior of the material in the elastic-plastic model (e-p) is that elastic phase of the work (e) is undergoing to phase (e-p) by increasing the load (or growth of deformation in the damaging structure). The paper presents the essence of the calibration process of cooperating subsystem in the calculation model of the system “road construction – subsoil”, created for the mechanistic analysis. Calibration process was directed to show the impact of applied constitutive models on its deformation and stress response. The proper comparative base for assessing the reliability of created. This work was supported by the on-going research project “Stabilization of weak soil by application of layer of foamed concrete used in contact with subsoil” (LIDER/022/537/L-4/NCBR/2013) financed by The National Centre for Research and Development within the LIDER Programme. M. Kadela is with the Department of Building Construction Elements and Building Structures on Mining Areas, Building Research Institute, Silesian Branch, Katowice, Poland (phone: +48 32 730 29 47; fax: +48 32 730 25 22; e-mail: m.kadela@ itb.pl). models should be, however, the actual, monitored system “road construction – subsoil”. The paper presents too behavior of subsoil under cyclic load transmitted by pavement layers. The response of subsoil to cyclic load is recorded in situ by the observation system (sensors) installed on the testing ground prepared for this purpose, being a part of the test road near Katowice, in Poland. A different behavior of the homogeneous subsoil under pavement is observed for different seasons of the year, when pavement construction works as a flexible structure in summer, and as a rigid plate in winter. Albeit the observed character of subsoil response is the same regardless of the applied load and area values, this response can be divided into: - zone of indirect action of the applied load; this zone extends to the depth of 1,0 m under the pavement, - zone of a small strain, extending to about 2,0 m.Keywords: road structure, constitutive model, calculation model, pavement, soil, FEA, response of soil, monitored system
Procedia PDF Downloads 3577 Production, Characterisation, and in vitro Degradation and Biocompatibility of a Solvent-Free Polylactic-Acid/Hydroxyapatite Composite for 3D-Printed Maxillofacial Bone-Regeneration Implants
Authors: Carlos Amnael Orozco-Diaz, Robert David Moorehead, Gwendolen Reilly, Fiona Gilchrist, Cheryl Ann Miller
Abstract:
The current gold-standard for maxillofacial reconstruction surgery (MRS) utilizes auto-grafted cancellous bone as a filler. This study was aimed towards developing a polylactic-acid/hydroxyapatite (PLA-HA) composite suitable for fused-deposition 3D printing. Functionalization of the polymer through the addition of HA was directed to promoting bone-regeneration properties so that the material can rival the performance of cancellous bone grafts in terms of bone-lesion repair. This kind of composite enables the production of MRS implants based off 3D-reconstructions from image studies – namely computed tomography – for anatomically-correct fitting. The present study encompassed in-vitro degradation and in-vitro biocompatibility profiling for 3D-printed PLA and PLA-HA composites. PLA filament (Verbatim Co.) and Captal S hydroxyapatite micro-scale HA powder (Plasma Biotal Ltd) were used to produce PLA-HA composites at 5, 10, and 20%-by-weight HA concentration. These were extruded into 3D-printing filament, and processed in a BFB-3000 3D-Printer (3D Systems Co.) into tensile specimens, and were mechanically challenged as per ASTM D638-03. Furthermore, tensile specimens were subjected to accelerated degradation in phosphate-buffered saline solution at 70°C for 23 days, as per ISO-10993-13-2010. This included monitoring of mass loss (through dry-weighing), crystallinity (through thermogravimetric analysis/differential thermal analysis), molecular weight (through gel-permeation chromatography), and tensile strength. In-vitro biocompatibility analysis included cell-viability and extracellular matrix deposition, which were performed both on flat surfaces and on 3D-constructs – both produced through 3D-printing. Discs of 1 cm in diameter and cubic 3D-meshes of 1 cm3 were 3D printed in PLA and PLA-HA composites (n = 6). The samples were seeded with 5000 MG-63 osteosarcoma-like cells, with cell viability extrapolated throughout 21 days via resazurin reduction assays. As evidence of osteogenicity, collagen and calcium deposition were indirectly estimated through Sirius Red staining and Alizarin Red staining respectively. Results have shown that 3D printed PLA loses structural integrity as early as the first day of accelerated degradation, which was significantly faster than the literature suggests. This was reflected in the loss of tensile strength down to untestable brittleness. During degradation, mass loss, molecular weight, and crystallinity behaved similarly to results found in similar studies for PLA. All composite versions and pure PLA were found to perform equivalent to tissue-culture plastic (TCP) in supporting the seeded-cell population. Significant differences (p = 0.05) were found on collagen deposition for higher HA concentrations, with composite samples performing better than pure PLA and TCP. Additionally, per-cell-calcium deposition on the 3D-meshes was significantly lower when comparing 3D-meshes to discs of the same material (p = 0.05). These results support the idea that 3D-printable PLA-HA composites are a viable resorbable material for artificial grafts for bone-regeneration. Degradation data suggests that 3D-printing of these materials – as opposed to other manufacturing methods – might result in faster resorption than currently-used PLA implants.Keywords: bone regeneration implants, 3D-printing, in vitro testing, biocompatibility, polymer degradation, polymer-ceramic composites
Procedia PDF Downloads 1556 Nonlinear Homogenized Continuum Approach for Determining Peak Horizontal Floor Acceleration of Old Masonry Buildings
Authors: Andreas Rudisch, Ralf Lampert, Andreas Kolbitsch
Abstract:
It is a well-known fact among the engineering community that earthquakes with comparatively low magnitudes can cause serious damage to nonstructural components (NSCs) of buildings, even when the supporting structure performs relatively well. Past research works focused mainly on NSCs of nuclear power plants and industrial plants. Particular attention should also be given to architectural façade elements of old masonry buildings (e.g. ornamental figures, balustrades, vases), which are very vulnerable under seismic excitation. Large numbers of these historical nonstructural components (HiNSCs) can be found in highly frequented historical city centers and in the event of failure, they pose a significant danger to persons. In order to estimate the vulnerability of acceleration sensitive HiNSCs, the peak horizontal floor acceleration (PHFA) is used. The PHFA depends on the dynamic characteristics of the building, the ground excitation, and induced nonlinearities. Consequently, the PHFA can not be generalized as a simple function of height. In the present research work, an extensive case study was conducted to investigate the influence of induced nonlinearity on the PHFA for old masonry buildings. Probabilistic nonlinear FE time-history analyses considering three different hazard levels were performed. A set of eighteen synthetically generated ground motions was used as input to the structure models. An elastoplastic macro-model (multiPlas) for nonlinear homogenized continuum FE-calculation was calibrated to multiple scales and applied, taking specific failure mechanisms of masonry into account. The macro-model was calibrated according to the results of specific laboratory and cyclic in situ shear tests. The nonlinear macro-model is based on the concept of multi-surface rate-independent plasticity. Material damage or crack formation are detected by reducing the initial strength after failure due to shear or tensile stress. As a result, shear forces can only be transmitted to a limited extent by friction when the cracking begins. The tensile strength is reduced to zero. The first goal of the calibration was the consistency of the load-displacement curves between experiment and simulation. The calibrated macro-model matches well with regard to the initial stiffness and the maximum horizontal load. Another goal was the correct reproduction of the observed crack image and the plastic strain activities. Again the macro-model proved to work well in this case and shows very good correlation. The results of the case study show that there is significant scatter in the absolute distribution of the PHFA between the applied ground excitations. An absolute distribution along the normalized building height was determined in the framework of probability theory. It can be observed that the extent of nonlinear behavior varies for the three hazard levels. Due to the detailed scope of the present research work, a robust comparison with code-recommendations and simplified PHFA distributions are possible. The chosen methodology offers a chance to determine the distribution of PHFA along the building height of old masonry structures. This permits a proper hazard assessment of HiNSCs under seismic loads.Keywords: nonlinear macro-model, nonstructural components, time-history analysis, unreinforced masonry
Procedia PDF Downloads 1695 New Hybrid Process for Converting Small Structural Parts from Metal to CFRP
Authors: Yannick Willemin
Abstract:
Carbon fibre-reinforced plastic (CFRP) offers outstanding value. However, like all materials, CFRP also has its challenges. Many forming processes are largely manual and hard to automate, making it challenging to control repeatability and reproducibility (R&R); they generate significant scrap and are too slow for high-series production; fibre costs are relatively high and subject to supply and cost fluctuations; the supply chain is fragmented; many forms of CFRP are not recyclable, and many materials have yet to be fully characterized for accurate simulation; shelf life and outlife limitations add cost; continuous-fibre forms have design limitations; many materials are brittle; and small and/or thick parts are costly to produce and difficult to automate. A majority of small structural parts are metal due to high CFRP fabrication costs for the small-size class. The fact that CFRP manufacturing processes that produce the highest performance parts also tend to be the slowest and least automated is another reason CFRP parts are generally higher in cost than comparably performing metal parts, which are easier to produce. Fortunately, business is in the midst of a major manufacturing evolution—Industry 4.0— one technology seeing rapid growth is additive manufacturing/3D printing, thanks to new processes and materials, plus an ability to harness Industry 4.0 tools. No longer limited to just prototype parts, metal-additive technologies are used to produce tooling and mold components for high-volume manufacturing, and polymer-additive technologies can incorporate fibres to produce true composites and be used to produce end-use parts with high aesthetics, unmatched complexity, mass customization opportunities, and high mechanical performance. A new hybrid manufacturing process combines the best capabilities of additive—high complexity, low energy usage and waste, 100% traceability, faster to market—and post-consolidation—tight tolerances, high R&R, established materials, and supply chains—technologies. The platform was developed by Zürich-based 9T Labs AG and is called Additive Fusion Technology (AFT). It consists of a design software offering the possibility to determine optimal fibre layup, then exports files back to check predicted performance—plus two pieces of equipment: a 3d-printer—which lays up (near)-net-shape preforms using neat thermoplastic filaments and slit, roll-formed unidirectional carbon fibre-reinforced thermoplastic tapes—and a post-consolidation module—which consolidates then shapes preforms into final parts using a compact compression press fitted with a heating unit and matched metal molds. Matrices—currently including PEKK, PEEK, PA12, and PPS, although nearly any high-quality commercial thermoplastic tapes and filaments can be used—are matched between filaments and tapes to assure excellent bonding. Since thermoplastics are used exclusively, larger assemblies can be produced by bonding or welding together smaller components, and end-of-life parts can be recycled. By combining compression molding with 3D printing, higher part quality with very-low voids and excellent surface finish on A and B sides can be produced. Tight tolerances (min. section thickness=1.5mm, min. section height=0.6mm, min. fibre radius=1.5mm) with high R&R can be cost-competitively held in production volumes of 100 to 10,000 parts/year on a single set of machines.Keywords: additive manufacturing, composites, thermoplastic, hybrid manufacturing
Procedia PDF Downloads 964 3D Non-Linear Analyses by Using Finite Element Method about the Prediction of the Cracking in Post-Tensioned Dapped-End Beams
Authors: Jatziri Y. Moreno-Martínez, Arturo Galván, Israel Enrique Herrera Díaz, José Ramón Gasca Tirado
Abstract:
In recent years, for the elevated viaducts in Mexico City, a construction system based on precast/pre-stressed concrete elements has been used, in which the bridge girders are divided in two parts by imposing a hinged support in sections where the bending moments that are originated by the gravity loads in a continuous beam are minimal. Precast concrete girders with dapped ends are a representative sample of a behavior that has complex configurations of stresses that make them more vulnerable to cracking due to flexure–shear interaction. The design procedures for ends of the dapped girders are well established and are based primarily on experimental tests performed for different configurations of reinforcement. The critical failure modes that can govern the design have been identified, and for each of them, the methods for computing the reinforcing steel that is needed to achieve adequate safety against failure have been proposed. Nevertheless, the design recommendations do not include procedures for controlling diagonal cracking at the entrant corner under service loading. These cracks could cause water penetration and degradation because of the corrosion of the steel reinforcement. The lack of visual access to the area makes it difficult to detect this damage and take timely corrective actions. Three-dimensional non-linear numerical models based on Finite Element Method to study the cracking at the entrant corner of dapped-end beams were performed using the software package ANSYS v. 11.0. The cracking was numerically simulated by using the smeared crack approach. The concrete structure was modeled using three-dimensional solid elements SOLID65 capable of cracking in tension and crushing in compression. Drucker-Prager yield surface was used to include the plastic deformations. The longitudinal post-tension was modeled using LINK8 elements with multilinear isotropic hardening behavior using von Misses plasticity. The reinforcement was introduced with smeared approach. The numerical models were calibrated using experimental tests carried out in “Instituto de Ingeniería, Universidad Nacional Autónoma de México”. In these numerical models the characteristics of the specimens were considered: typical solution based on vertical stirrups (hangers) and on vertical and horizontal hoops with a post-tensioned steel which contributed to a 74% of the flexural resistance. The post-tension is given by four steel wires with a 5/8’’ (16 mm) diameter. Each wire was tensioned to 147 kN and induced an average compressive stress of 4.90 MPa on the concrete section of the dapped end. The loading protocol consisted on applying symmetrical loading to reach the service load (180 kN). Due to the good correlation between experimental and numerical models some additional numerical models were proposed by considering different percentages of post-tension in order to find out how much it influences in the appearance of the cracking in the reentrant corner of the dapped-end beams. It was concluded that the increasing of percentage of post-tension decreases the displacements and the cracking in the reentrant corner takes longer to appear. The authors acknowledge at “Universidad de Guanajuato, Campus Celaya-Salvatierra” and the financial support of PRODEP-SEP (UGTO-PTC-460) of the Mexican government. The first author acknowledges at “Instituto de Ingeniería, Universidad Nacional Autónoma de México”.Keywords: concrete dapped-end beams, cracking control, finite element analysis, postension
Procedia PDF Downloads 226