Search results for: normalized Laplacian matrix
1607 Flexural Properties of Halloysite Nanotubes-Polyester Nanocomposites Exposed to Aggressive Environment
Authors: Mohd Shahneel Saharudin, Jiacheng Wei, Islam Shyha, Fawad Inam
Abstract:
This study aimed to investigate the effect of aggressive environment on the flexural properties of halloysite nanotubes-polyester nanocomposites. Results showed that the addition of halloysite nanotubes into polyester matrix was found to improve flexural properties of the nanocomposites in dry condition and after water-methanol exposure. Significant increase in surface roughness was also observed and measured by Alicona Infinite Focus optical microscope.Keywords: halloysite nanotube, composites, flexural properties, surface roughness
Procedia PDF Downloads 2791606 Selection of Strategic Suppliers for Partnership: A Model with Two Stages Approach
Authors: Safak Isik, Ozalp Vayvay
Abstract:
Strategic partnerships with suppliers play a vital role for the long-term value-based supply chain. This strategic collaboration keeps still being one of the top priority of many business organizations in order to create more additional value; benefiting mainly from supplier’s specialization, capacity and innovative power, securing supply and better managing costs and quality. However, many organizations encounter difficulties in initiating, developing and managing those partnerships and many attempts result in failures. One of the reasons for such failure is the incompatibility of members of this partnership or in other words wrong supplier selection which emphasize the significance of the selection process since it is the beginning stage. An effective selection process of strategic suppliers is critical to the success of the partnership. Although there are several research studies to select the suppliers in literature, only a few of them is related to strategic supplier selection for long-term partnership. The purpose of this study is to propose a conceptual model for the selection of strategic partnership suppliers. A two-stage approach has been used in proposed model incorporating first segmentation and second selection. In the first stage; considering the fact that not all suppliers are strategically equal and instead of a long list of potential suppliers, Kraljic’s purchasing portfolio matrix can be used for segmentation. This supplier segmentation is the process of categorizing suppliers based on a defined set of criteria in order to identify types of suppliers and determine potential suppliers for strategic partnership. In the second stage, from a pool of potential suppliers defined at first phase, a comprehensive evaluation and selection can be performed to finally define strategic suppliers considering various tangible and intangible criteria. Since a long-term relationship with strategic suppliers is anticipated, criteria should consider both current and future status of the supplier. Based on an extensive literature review; strategical, operational and organizational criteria have been determined and elaborated. The result of the selection can also be used to determine suppliers who are not ready for a partnership but to be developed for strategic partnership. Since the model is based on multiple criteria for both stages, it provides a framework for further utilization of Multi-Criteria Decision Making (MCDM) techniques. The model may also be applied to a wide range of industries and involve managerial features in business organizations.Keywords: Kraljic’s matrix, purchasing portfolio, strategic supplier selection, supplier collaboration, supplier partnership, supplier segmentation
Procedia PDF Downloads 2391605 Study of the Anti-Diabetic Activity of the Common Fig in the Region of the El Amra (Ain Defla), Algeria
Authors: Meliani Samiha, Hassaine Sarah
Abstract:
Figs are so much consumed in the Mediterranean region; they present a high nutritional value and also multiple therapeutic virtues. Our work contributes to the study of the antidiabetic activity of the common fig of the region of El Amra (AinDefla) Algeria. To do this, 20 Wistar rats female, divided into 4 lots, were used: Lot 1: 5 normal controls; Lot 2: 5 normal controls treated with dry fig juice at 20%; Lot 3: 5 diabetic controls; Lot 4: 5 diabetic controls treated with dry fig juice at 20%. The rats are rendered diabetic by intra-peritoneal injection of a streptozotocin solution. The blood glucose is measured after 1 hour, 2 hours, 3 hours and after 4 hours of the administration of the fig juice; it’s measured also on the 5th day, 8th day and 9th day of the beginning of the experiment. The determination of cholesterol and triglycerides blood is carried out at the beginning and the end of the study. On the 9th day, we recorded a very significant decrease of the blood sugar level of diabetic rats treated with dry fig juice. This blood glucose level normalized for 3 rats/5rats, we also recorded a decrease, but not significant, of cholesterol and triglycerides blood levels. In the short term (for 4 hours), an increase of blood sugar level, one hour after administration, for normal and diabetic rats. This increase is probably due to the high level of sugar content in the preparation. The blood glucose level is then corrected, four hours later. This may be the result of anti hyperglycemic effect of the active ingredients contained in the figs.Keywords: antidiabetic, figs, hypoglycemia, streptozotocin
Procedia PDF Downloads 2181604 Path Planning for Unmanned Aerial Vehicles in Constrained Environments for Locust Elimination
Authors: Aadiv Shah, Hari Nair, Vedant Mittal, Alice Cheeran
Abstract:
Present-day agricultural practices such as blanket spraying not only lead to excessive usage of pesticides but also harm the overall crop yield. This paper introduces an algorithm to optimize the traversal of an unmanned aerial vehicle (UAV) in constrained environments. The proposed system focuses on the agricultural application of targeted spraying for locust elimination. Given a satellite image of a farm, target zones that are prone to locust swarm formation are detected through the calculation of the normalized difference vegetation index (NDVI). This is followed by determining the optimal path for traversal of a UAV through these target zones using the proposed algorithm in order to perform pesticide spraying in the most efficient manner possible. Unlike the classic travelling salesman problem involving point-to-point optimization, the proposed algorithm determines an optimal path for multiple regions, independent of its geometry. Finally, the paper explores the idea of implementing reinforcement learning to model complex environmental behaviour and make the path planning mechanism for UAVs agnostic to external environment changes. This system not only presents a solution to the enormous losses incurred due to locust attacks but also an efficient way to automate agricultural practices across the globe in order to improve farmer ergonomics.Keywords: locust, NDVI, optimization, path planning, reinforcement learning, UAV
Procedia PDF Downloads 2511603 Automatic Target Recognition in SAR Images Based on Sparse Representation Technique
Authors: Ahmet Karagoz, Irfan Karagoz
Abstract:
Synthetic Aperture Radar (SAR) is a radar mechanism that can be integrated into manned and unmanned aerial vehicles to create high-resolution images in all weather conditions, regardless of day and night. In this study, SAR images of military vehicles with different azimuth and descent angles are pre-processed at the first stage. The main purpose here is to reduce the high speckle noise found in SAR images. For this, the Wiener adaptive filter, the mean filter, and the median filters are used to reduce the amount of speckle noise in the images without causing loss of data. During the image segmentation phase, pixel values are ordered so that the target vehicle region is separated from other regions containing unnecessary information. The target image is parsed with the brightest 20% pixel value of 255 and the other pixel values of 0. In addition, by using appropriate parameters of statistical region merging algorithm, segmentation comparison is performed. In the step of feature extraction, the feature vectors belonging to the vehicles are obtained by using Gabor filters with different orientation, frequency and angle values. A number of Gabor filters are created by changing the orientation, frequency and angle parameters of the Gabor filters to extract important features of the images that form the distinctive parts. Finally, images are classified by sparse representation method. In the study, l₁ norm analysis of sparse representation is used. A joint database of the feature vectors generated by the target images of military vehicle types is obtained side by side and this database is transformed into the matrix form. In order to classify the vehicles in a similar way, the test images of each vehicle is converted to the vector form and l₁ norm analysis of the sparse representation method is applied through the existing database matrix form. As a result, correct recognition has been performed by matching the target images of military vehicles with the test images by means of the sparse representation method. 97% classification success of SAR images of different military vehicle types is obtained.Keywords: automatic target recognition, sparse representation, image classification, SAR images
Procedia PDF Downloads 3661602 The Role of a Biphasic Implant Based on a Bioactive Silk Fibroin for Osteochondral Tissue Regeneration
Authors: Lizeth Fuentes-Mera, Vanessa Perez-Silos, Nidia K. Moncada-Saucedo, Alejandro Garcia-Ruiz, Alberto Camacho, Jorge Lara-Arias, Ivan Marino-Martinez, Victor Romero-Diaz, Adolfo Soto-Dominguez, Humberto Rodriguez-Rocha, Hang Lin, Victor Pena-Martinez
Abstract:
Biphasic scaffolds in cartilage tissue engineering have been designed to influence not only the recapitulation of the osteochondral architecture but also to take advantage of the healing ability of bone to promote the implant integration with the surrounding tissue and then bone restoration and cartilage regeneration. This study reports the development and characterization of a biphasic scaffold based on the assembly of a cartilage phase constituted by fibroin biofunctionalized with bovine cartilage matrix; cellularized with differentiated pre-chondrocytes from adipose tissue stem cells (autologous) and well attached to a bone phase (bone bovine decellularized) to mimic the structure of the nature of native tissue and to promote the cartilage regeneration in a model of joint damage in pigs. Biphasic scaffolds were assembled by fibroin crystallization with methanol. The histological and ultrastructural architectures were evaluated by optical and scanning electron microscopy respectively. Mechanical tests were conducted to evaluate Young's modulus of the implant. For the biological evaluation, pre-chondrocytes were loaded onto the scaffolds and cellular adhesion, proliferation, and gene expression analysis of cartilage extracellular matrix components was performed. The scaffolds that were cellularized and matured for 10 days were implanted into critical 3 mm in diameter and 9-mm in depth osteochondral defects in a porcine model (n=4). Three treatments were applied per knee: Group 1: monophasic cellular scaffold (MS) (single chondral phase), group 2: biphasic scaffold, cellularized only in the chondral phase (BS1), group 3: BS cellularized in both bone and chondral phases (BS2). Simultaneously, a control without treatment was evaluated. After 4 weeks of surgery, integration and regeneration tissues were analyzed by x-rays, histology and immunohistochemistry evaluation. The mechanical assessment showed that the acellular biphasic composites exhibited Young's modulus of 805.01 kPa similar to native cartilage (400-800 kPa). In vitro biological studies revealed the chondroinductive ability of the biphasic implant, evidenced by an increase in sulfated glycosaminoglycan (GAGs) and type II collagen, both secreted by the chondrocytes cultured on the scaffold during 28 days. No evidence of adverse or inflammatory reactions was observed in the in vivo trial; however, In group 1, the defects were not reconstructed. In group 2 and 3 a good integration of the implant with the surrounding tissue was observed. Defects in group 2 were fulfilled by hyaline cartilage and normal bone. Group 3 defects showed fibrous repair tissue. In conclusion; our findings demonstrated the efficacy of biphasic and bioactive scaffold based on silk fibroin, which entwined chondroinductive features and biomechanical capability with appropriate integration with the surrounding tissue, representing a promising alternative for osteochondral tissue-engineering applications.Keywords: biphasic scaffold, extracellular cartilage matrix, silk fibroin, osteochondral tissue engineering
Procedia PDF Downloads 1531601 Study on the Morphology and Dynamic Mechanical and Thermal Properties of HIPS/Graphene Nanocomposites
Authors: Amirhosein Rostampour, Mehdi Sharif
Abstract:
In this article, a series of high impact polystyrene/graphene (HIPS/Gr) nanocomposites were prepared by solution mixing method and their morphology and dynamic mechanical properties were investigated as a function of graphene content. SEM images and X-Ray diffraction data confirm that the graphene platelets are well dispersed in HIPS matrix for the nanocomposites with Gr contents up to 5.0 wt%. Mechanical properties analysis demonstrates that yielding strength and initial modulus of HIPS/Gr nanocomposites are highly improved with the increment of Gr content compared to pure HIPS.Keywords: nanocomposite, graphene, dynamic mechanical properties, morphology
Procedia PDF Downloads 5361600 A New Distribution and Application on the Lifetime Data
Authors: Gamze Ozel, Selen Cakmakyapan
Abstract:
We introduce a new model called the Marshall-Olkin Rayleigh distribution which extends the Rayleigh distribution using Marshall-Olkin transformation and has increasing and decreasing shapes for the hazard rate function. Various structural properties of the new distribution are derived including explicit expressions for the moments, generating and quantile function, some entropy measures, and order statistics are presented. The model parameters are estimated by the method of maximum likelihood and the observed information matrix is determined. The potentiality of the new model is illustrated by means of real life data set.Keywords: Marshall-Olkin distribution, Rayleigh distribution, estimation, maximum likelihood
Procedia PDF Downloads 5011599 The Conservation of the Roman Mosaics in the Museum of Sousse, Tunisia: Between Doctrines and Practices
Authors: Zeineb Yousse, Fakher Kharrat
Abstract:
Mosaic is a part of a broad universal cultural heritage; sometimes it represents a rather essential source for the researches on the everyday life of some of the previous civilizations. Tunisia has one of the finest and largest collections of mosaics in the world, which is essentially exhibited in the Museums of Bardo and Sousse. Restored and reconstituted, they bear witnesses to hard work. Our paper deals with the discipline of conservation of Roman mosaics based on the proceedings of the workshop of the Museum of Sousse. Thus, we highlight two main objectives. In the first place, it is a question of revealing the techniques adopted by professionals to handle mosaics and to which school of conservation these techniques belong. In the second place, we are going to interpret the works initiated to preserve the archaeological heritage in order to protect it in present time and transmit it to future generations. To this end, we paid attention to four Roman mosaics currently exhibited in the Museum of Sousse. These Mosaics show different voids or gaps at the level of their surfaces and the method used to fill these gaps seems to be interesting to analyze. These mosaics are known under the names of: Orpheus Charming the Animals, Gladiator and Bears, Stud farm of Sorothus and finally Head of Medusa. The study on the conservation passes through two chained phases. We start with a small historical overview in order to gather information related to the original location, the date of its composition as well as the description of its image. Afterward, the intervention process is analyzed by handling three complementary elements which are: diagnosis of the existing state, the study of the medium processing and the study of the processing of the tesselatum surface which includes the pictorial composition of the mosaic. Furthermore, we have implemented an evaluation matrix with six operating principles allowing the assessment of the appropriateness of the intervention. These principles are the following: minimal intervention, reversibility, compatibility, visibility, durability, authenticity and enhancement. Various accumulated outcomes are pointing out the techniques used to fill the gaps as well as the level of compliance with the principles of conservation. Accordingly, the conservation of mosaics in Tunisia is a practice that combines various techniques without really arguing about the choice of a particular theory.Keywords: conservation, matrix, museum of Sousse, operating particular theory, principles, Roman mosaics
Procedia PDF Downloads 3291598 Empirical Investigation of Barriers to Industrial Energy Conservation Measures in the Manufacturing Small and Medium Enterprises (SME's) of Pakistan
Authors: Muhammad Tahir Hassan, Stas Burek, Muhammad Asif, Mohamed Emad
Abstract:
Industrial sector in Pakistan accounts for 25% of total energy consumption in the country. The performance of this sector has been severely affected due to the adverse effect of current energy crises in the country. Energy conservation potentials of Pakistan’s industrial sectors through energy management can save wasted energy which would ultimately leads to economic and environmental benefits. However due to lack of financial incentives of energy efficiency and absence of energy benchmarking within same industrial sectors are some of the main challenges in the implementation of energy management. In Pakistan, this area has not been adequately explored, and there is a lack of focus on the need for industrial energy efficiency and proper management. The main objective of this research is to evaluate the current energy management performance of Pakistani industrial sector and empirical investigation of the existence of various barriers to industrial energy efficiency. Data was collected from the respondents of 192 small and medium-sized enterprises (SME’s) of Pakistan i.e. foundries, textile, plastic industries, light engineering, auto and spare parts and ceramic manufacturers and analysed using Statistical Package for the Social Sciences (SPSS) software. Current energy management performance of manufacturing SME’s in Pakistan has been evaluated by employing two significant indicators, ‘Energy Management Matrix’ and ‘pay-off criteria’, with modified approach. Using the energy management matrix, energy management profiles of overall industry and the individual sectors have been drawn to assess the energy management performance and identify the weak and strong areas as well. Results reveal that, energy management practices in overall surveyed industries are at very low level. Energy management profiles drawn against each sector suggest that performance of textile sector is better among all the surveyed manufacturing SME’s. The empirical barriers to industrial energy efficiency have also been ranked according to the overall responses. The results further reveal that there is a significant relationship exists among the industrial size, sector type and nature of barriers to industrial energy efficiency for the manufacturing SME’s in Pakistan. The findings of this study may help the industries and policy makers in Pakistan to formulate a sustainable energy policy to support industrial energy efficiency keeping in view the actual existing energy efficiency scenario in the industrial sector.Keywords: barriers, energy conservation, energy management profile, environment, manufacturing SME's of Pakistan
Procedia PDF Downloads 2901597 Efficacy of Remote Sensing Application in Monitoring the Effectiveness of Afforestation Project in Northern Nigeria
Authors: T. Garba, Y. Y. Babanyara, K. G. Ilellah, M. A. Modibbo, T. O. Quddus, M. J. Sani
Abstract:
After the United Nation Convention on Desertification (UNCD) in 1977 which was preceded by extensive, regional, and local studies, and consultations with numerous scientists, decision-makers, and relevant institutions. Global Plan of Action to Combat Desertification (PACD) was formulated, endorsed by member Countries. The role of implementing PACD was vested with Governments of countries affected by desertification. The Federal Government of Nigeria as a signatory and World Bank funded and implement afforestation project aimed at combating desertification between 1988 and 1999. This research, therefore, applied remote sensing techniques to assess the effectiveness of the project. To achieve that a small portion of about 143,609 hectares was curved out from the project area. Normalized Difference of the Vegetative Index (NDVI) and Land Use Land Cover were derived from Landsat TM 1986, Landsat ETM 1999 and Nigeria Sat 1, 2007 of the project area. The findings show that there was an increase in cultivated area due to the project from 1986 through 1999 and 2007. This is further buttressed by the three NDVI imageries due to their high positive pixel value from 0.04 in 1986 to 0.22 in 1999 and to 0.32 in 2007 These signifies the gradual physical development of Afforestation project in the area. In addition, it was also verified by histograms of changes in vegetation which indicated an increased vegetative cover from 60,192 in 1986, to 102,476 in 1999 and then to 88,343 in 2007. The study concluded that Remote Sensing approach has actually confirmed that the project was indeed successful and effective.Keywords: afforestation, desertification, landsat, vegetative index, remote sensing
Procedia PDF Downloads 3161596 Atmospheric Polycyclic Aromatic Hydrocarbons (PAHs) in Rural and Urban of Central Taiwan
Authors: Shih Yu Pan, Pao Chen Hung, Chuan Yao Lin, Charles C.-K. Chou, Yu Chi Lin, Kai Hsien Chi
Abstract:
This study analyzed 16 atmospheric PAHs species which were controlled by USEPA and IARC. To measure the concentration of PAHs, four rural sampling sites and two urban sampling sites were selected in Central Taiwan during spring and summer. In central Taiwan, the rural sampling stations were located in the downstream of Da-An River, Da-Jang River, Wu River and Chuo-shui River. On the other hand, the urban sampling sites were located in Taichung district and close to the roadside. Ambient air samples of both vapor phase and particle phase of PAHs compounds were collected using high volume sampling trains (Analitica). The sampling media were polyurethane foam (PUF) with XAD2 and quartz fiber filters. Diagnostic ratio, Principal component analysis (PCA), Positive Matrix Factorization (PMF) models were used to evaluate the apportionment of PAHs in the atmosphere and speculate the relative contribution of various emission sources. Because of the high temperature and low wind speed, high PAHs concentration in the atmosphere was observed. The total PAHs concentration, especially in vapor phase, had significant change during summer. During the sampling periods the total PAHs concentration of atmospheric at four rural and two urban sampling sites in spring and summer were 3.70±0.40 ng/m3,3.40±0.63 ng/m3,5.22±1.24 ng/m3,7.23±0.37 ng/m3,7.46±2.36 ng/m3,6.21±0.55 ng/m3 ; 15.0± 0.14 ng/m3,18.8±8.05 ng/m3,20.2±8.58 ng/m3,16.1±3.75 ng/m3,29.8±10.4 ng/m3,35.3±11.8 ng/m3, respectively. In order to identify PAHs sources, we used diagnostic ratio to classify the emission sources. The potential sources were diesel combustion and gasoline combustion in spring and summer, respectively. According to the principal component analysis (PCA), the PC1 and PC2 had 23.8%, 20.4% variance and 21.3%, 17.1% variance in spring and summer, respectively. Especially high molecular weight PAHs (BaP, IND, BghiP, Flu, Phe, Flt, Pyr) were dominated in spring when low molecular weight PAHs (AcPy, Ant, Acp, Flu) because of the dominating high temperatures were dominated in the summer. Analysis by using PMF model found the sources of PAHs in spring were stationary sources (34%), vehicle emissions (24%), coal combustion (23%) and petrochemical fuel gas (19%), while in summer the emission sources were petrochemical fuel gas (34%), the natural environment of volatile organic compounds (29%), coal combustion (19%) and stationary sources (18%).Keywords: PAHs, source identification, diagnostic ratio, principal component analysis, positive matrix factorization
Procedia PDF Downloads 2671595 The Realization of a System’s State Space Based on Markov Parameters by Using Flexible Neural Networks
Authors: Ali Isapour, Ramin Nateghi
Abstract:
— Markov parameters are unique parameters of the system and remain unchanged under similarity transformations. Markov parameters from a power series that is convergent only if the system matrix’s eigenvalues are inside the unity circle. Therefore, Markov parameters of a stable discrete-time system are convergent. In this study, we aim to realize the system based on Markov parameters by using Artificial Neural Networks (ANN), and this end, we use Flexible Neural Networks. Realization means determining the elements of matrices A, B, C, and D.Keywords: Markov parameters, realization, activation function, flexible neural network
Procedia PDF Downloads 1941594 Multi-Temporal Urban Land Cover Mapping Using Spectral Indices
Authors: Mst Ilme Faridatul, Bo Wu
Abstract:
Multi-temporal urban land cover mapping is of paramount importance for monitoring urban sprawl and managing the ecological environment. For diversified urban activities, it is challenging to map land covers in a complex urban environment. Spectral indices have proved to be effective for mapping urban land covers. To improve multi-temporal urban land cover classification and mapping, we evaluate the performance of three spectral indices, e.g. modified normalized difference bare-land index (MNDBI), tasseled cap water and vegetation index (TCWVI) and shadow index (ShDI). The MNDBI is developed to evaluate its performance of enhancing urban impervious areas by separating bare lands. A tasseled cap index, TCWVI is developed to evaluate its competence to detect vegetation and water simultaneously. The ShDI is developed to maximize the spectral difference between shadows of skyscrapers and water and enhance water detection. First, this paper presents a comparative analysis of three spectral indices using Landsat Enhanced Thematic Mapper (ETM), Thematic Mapper (TM) and Operational Land Imager (OLI) data. Second, optimized thresholds of the spectral indices are imputed to classify land covers, and finally, their performance of enhancing multi-temporal urban land cover mapping is assessed. The results indicate that the spectral indices are competent to enhance multi-temporal urban land cover mapping and achieves an overall classification accuracy of 93-96%.Keywords: land cover, mapping, multi-temporal, spectral indices
Procedia PDF Downloads 1531593 Landslide Vulnerability Assessment in Context with Indian Himalayan
Authors: Neha Gupta
Abstract:
Landslide vulnerability is considered as the crucial parameter for the assessment of landslide risk. The term vulnerability defined as the damage or degree of elements at risk of different dimensions, i.e., physical, social, economic, and environmental dimensions. Himalaya region is very prone to multi-hazard such as floods, forest fires, earthquakes, and landslides. With the increases in fatalities rates, loss of infrastructure, and economy due to landslide in the Himalaya region, leads to the assessment of vulnerability. In this study, a methodology to measure the combination of vulnerability dimension, i.e., social vulnerability, physical vulnerability, and environmental vulnerability in one framework. A combined result of these vulnerabilities has rarely been carried out. But no such approach was applied in the Indian Scenario. The methodology was applied in an area of east Sikkim Himalaya, India. The physical vulnerability comprises of building footprint layer extracted from remote sensing data and Google Earth imaginary. The social vulnerability was assessed by using population density based on land use. The land use map was derived from a high-resolution satellite image, and for environment vulnerability assessment NDVI, forest, agriculture land, distance from the river were assessed from remote sensing and DEM. The classes of social vulnerability, physical vulnerability, and environment vulnerability were normalized at the scale of 0 (no loss) to 1 (loss) to get the homogenous dataset. Then the Multi-Criteria Analysis (MCA) was used to assign individual weights to each dimension and then integrate it into one frame. The final vulnerability was further classified into four classes from very low to very high.Keywords: landslide, multi-criteria analysis, MCA, physical vulnerability, social vulnerability
Procedia PDF Downloads 3011592 Identification of Phenolic Compounds with Antibacterial Activity in Raisin Extract
Authors: Yousef M. Abouzeed A. Elfahem, F. Zgheel, M. A. Saad, Mohamed O. Ahmed
Abstract:
The bioactive properties of phytochemicals indicate their potential as natural drug products to prevent and treat human disease; in particular, compounds with antioxidant and antimicrobial activities may represent a novel class of safe and effective drugs. Following desiccation, grapes (Vitis vinifera) become more resistant to microbial-based degradation, suggesting that raisins may be a source of antimicrobial compounds. To investigate this hypothesis, total phenolic extracts were obtained from common raisins, local market-sourced. The acetone extract was tested for antibacterial activity against four prevalent bacterial pathogens (Staphylococcus aureus, Pseudomonas aeruginosa, Salmonella spp. and Escherichia coli). Antibiotic sensitivity and the Minimum Inhibitory Concentration (MIC) were determined for each bacterium. High performance liquid chromatography was used to identify compounds in the total phenolic extract. The raisin phenolic extract inhibited growth of all the tested bacteria; the greatest inhibitive effect (normalized to cefotaxime sodium control antibiotic) occurred against P. aeruginosa, followed by S. aureus > Salmonella spp.= E. coli. The phenolic extracts contained the bioactive compounds catechin, quercetin, and rutin. Thus, phytochemicals in raisin extract have antibacterial properties; this plant-based extract, or its bioactive constituents, may represent a promising natural preservative or antimicrobial agent for the food industry or anti-infective drug.Keywords: Vitis vinifera raisin, extraction, phenolic compounds, antibacterial activity
Procedia PDF Downloads 6061591 Stability Analysis of Rabies Model with Vaccination Effect and Culling in Dogs
Authors: Eti Dwi Wiraningsih, Folashade Agusto, Lina Aryati, Syamsuddin Toaha, Suzanne Lenhart, Widodo, Willy Govaerts
Abstract:
This paper considers a deterministic model for the transmission dynamics of rabies virus in the wild dogs-domestic dogs-human zoonotic cycle. The effect of vaccination and culling in dogs is considered on the model, then the stability was analysed to get basic reproduction number. We use the next generation matrix method and Routh-Hurwitz test to analyze the stability of the Disease-Free Equilibrium and Endemic Equilibrium of this model.Keywords: stability analysis, rabies model, vaccination effect, culling in dogs
Procedia PDF Downloads 6301590 Impacts of Aquaculture Farms on the Mangroves Forests of Sundarbans, India (2010-2018): Temporal Changes of NDVI
Authors: Sandeep Thakur, Ismail Mondal, Phani Bhusan Ghosh, Papita Das, Tarun Kumar De
Abstract:
Sundarbans Reserve forest of India has been undergoing major transformations in the recent past owing to population pressure and related changes. This has brought about major changes in the spatial landscape of the region especially in the western parts. This study attempts to assess the impacts of the Landcover changes on the mangrove habitats. Time series imageries of Landsat were used to analyze the Normalized Differential Vegetation Index (NDVI) patterns over the western parts of Indian Sundarbans forest in order to assess the heath of the mangroves in the region. The images were subjected to Land use Land cover (LULC) classification using sub-pixel classification techniques in ERDAS Imagine software and the changes were mapped. The spatial proliferation of aquaculture farms during the study period was also mapped. A multivariate regression analysis was carried out between the obtained NDVI values and the LULC classes. Similarly, the observed meteorological data sets (time series rainfall and minimum and maximum temperature) were also statistically correlated for regression. The study demonstrated the application of NDVI in assessing the environmental status of mangroves as the relationship between the changes in the environmental variables and the remote sensing based indices felicitate an efficient evaluation of environmental variables, which can be used in the coastal zone monitoring and development processes.Keywords: aquaculture farms, LULC, Mangrove, NDVI
Procedia PDF Downloads 1821589 Towards Real-Time Classification of Finger Movement Direction Using Encephalography Independent Components
Authors: Mohamed Mounir Tellache, Hiroyuki Kambara, Yasuharu Koike, Makoto Miyakoshi, Natsue Yoshimura
Abstract:
This study explores the practicality of using electroencephalographic (EEG) independent components to predict eight-direction finger movements in pseudo-real-time. Six healthy participants with individual-head MRI images performed finger movements in eight directions with two different arm configurations. The analysis was performed in two stages. The first stage consisted of using independent component analysis (ICA) to separate the signals representing brain activity from non-brain activity signals and to obtain the unmixing matrix. The resulting independent components (ICs) were checked, and those reflecting brain-activity were selected. Finally, the time series of the selected ICs were used to predict eight finger-movement directions using Sparse Logistic Regression (SLR). The second stage consisted of using the previously obtained unmixing matrix, the selected ICs, and the model obtained by applying SLR to classify a different EEG dataset. This method was applied to two different settings, namely the single-participant level and the group-level. For the single-participant level, the EEG dataset used in the first stage and the EEG dataset used in the second stage originated from the same participant. For the group-level, the EEG datasets used in the first stage were constructed by temporally concatenating each combination without repetition of the EEG datasets of five participants out of six, whereas the EEG dataset used in the second stage originated from the remaining participants. The average test classification results across datasets (mean ± S.D.) were 38.62 ± 8.36% for the single-participant, which was significantly higher than the chance level (12.50 ± 0.01%), and 27.26 ± 4.39% for the group-level which was also significantly higher than the chance level (12.49% ± 0.01%). The classification accuracy within [–45°, 45°] of the true direction is 70.03 ± 8.14% for single-participant and 62.63 ± 6.07% for group-level which may be promising for some real-life applications. Clustering and contribution analyses further revealed the brain regions involved in finger movement and the temporal aspect of their contribution to the classification. These results showed the possibility of using the ICA-based method in combination with other methods to build a real-time system to control prostheses.Keywords: brain-computer interface, electroencephalography, finger motion decoding, independent component analysis, pseudo real-time motion decoding
Procedia PDF Downloads 1381588 Automatic Classification of Lung Diseases from CT Images
Authors: Abobaker Mohammed Qasem Farhan, Shangming Yang, Mohammed Al-Nehari
Abstract:
Pneumonia is a kind of lung disease that creates congestion in the chest. Such pneumonic conditions lead to loss of life of the severity of high congestion. Pneumonic lung disease is caused by viral pneumonia, bacterial pneumonia, or Covidi-19 induced pneumonia. The early prediction and classification of such lung diseases help to reduce the mortality rate. We propose the automatic Computer-Aided Diagnosis (CAD) system in this paper using the deep learning approach. The proposed CAD system takes input from raw computerized tomography (CT) scans of the patient's chest and automatically predicts disease classification. We designed the Hybrid Deep Learning Algorithm (HDLA) to improve accuracy and reduce processing requirements. The raw CT scans have pre-processed first to enhance their quality for further analysis. We then applied a hybrid model that consists of automatic feature extraction and classification. We propose the robust 2D Convolutional Neural Network (CNN) model to extract the automatic features from the pre-processed CT image. This CNN model assures feature learning with extremely effective 1D feature extraction for each input CT image. The outcome of the 2D CNN model is then normalized using the Min-Max technique. The second step of the proposed hybrid model is related to training and classification using different classifiers. The simulation outcomes using the publically available dataset prove the robustness and efficiency of the proposed model compared to state-of-art algorithms.Keywords: CT scan, Covid-19, deep learning, image processing, lung disease classification
Procedia PDF Downloads 1551587 Semantic-Based Collaborative Filtering to Improve Visitor Cold Start in Recommender Systems
Authors: Baba Mbaye
Abstract:
In collaborative filtering recommendation systems, a user receives suggested items based on the opinions and evaluations of a community of users. This type of recommendation system uses only the information (notes in numerical values) contained in a usage matrix as input data. This matrix can be constructed based on users' behaviors or by offering users to declare their opinions on the items they know. The cold start problem leads to very poor performance for new users. It is a phenomenon that occurs at the beginning of use, in the situation where the system lacks data to make recommendations. There are three types of cold start problems: cold start for a new item, a new system, and a new user. We are interested in this article at the cold start for a new user. When the system welcomes a new user, the profile exists but does not have enough data, and its communities with other users profiles are still unknown. This leads to recommendations not adapted to the profile of the new user. In this paper, we propose an approach that improves cold start by using the notions of similarity and semantic proximity between users profiles during cold start. We will use the cold-metadata available (metadata extracted from the new user's data) useful in positioning the new user within a community. The aim is to look for similarities and semantic proximities with the old and current user profiles of the system. Proximity is represented by close concepts considered to belong to the same group, while similarity groups together elements that appear similar. Similarity and proximity are two close but not similar concepts. This similarity leads us to the construction of similarity which is based on: a) the concepts (properties, terms, instances) independent of ontology structure and, b) the simultaneous representation of the two concepts (relations, presence of terms in a document, simultaneous presence of the authorities). We propose an ontology, OIVCSRS (Ontology of Improvement Visitor Cold Start in Recommender Systems), in order to structure the terms and concepts representing the meaning of an information field, whether by the metadata of a namespace, or the elements of a knowledge domain. This approach allows us to automatically attach the new user to a user community, partially compensate for the data that was not initially provided and ultimately to associate a better first profile with the cold start. Thus, the aim of this paper is to propose an approach to improving cold start using semantic technologies.Keywords: visitor cold start, recommender systems, collaborative filtering, semantic filtering
Procedia PDF Downloads 2181586 A Method to Estimate Wheat Yield Using Landsat Data
Authors: Zama Mahmood
Abstract:
The increasing demand of food management, monitoring of the crop growth and forecasting its yield well before harvest is very important. These days, yield assessment together with monitoring of crop development and its growth are being identified with the help of satellite and remote sensing images. Studies using remote sensing data along with field survey validation reported high correlation between vegetation indices and yield. With the development of remote sensing technique, the detection of crop and its mechanism using remote sensing data on regional or global scales have become popular topics in remote sensing applications. Punjab, specially the southern Punjab region is extremely favourable for wheat production. But measuring the exact amount of wheat production is a tedious job for the farmers and workers using traditional ground based measurements. However, remote sensing can provide the most real time information. In this study, using the Normalized Differentiate Vegetation Index (NDVI) indicator developed from Landsat satellite images, the yield of wheat has been estimated during the season of 2013-2014 for the agricultural area around Bahawalpur. The average yield of the wheat was found 35 kg/acre by analysing field survey data. The field survey data is in fair agreement with the NDVI values extracted from Landsat images. A correlation between wheat production (ton) and number of wheat pixels has also been calculated which is in proportional pattern with each other. Also a strong correlation between the NDVI and wheat area was found (R2=0.71) which represents the effectiveness of the remote sensing tools for crop monitoring and production estimation.Keywords: landsat, NDVI, remote sensing, satellite images, yield
Procedia PDF Downloads 3351585 Indicator-Based Approach for Assessing Socio Economic Vulnerability of Dairy Farmers to Impacts of Climate Variability and Change in India
Authors: Aparna Radhakrishnan, Jancy Gupta, R. Dileepkumar
Abstract:
This paper aims at assessing the Socio Economic Vulnerability (SEV) of dairy farmers to Climate Variability and Change (CVC) in 3 states of Western Ghat region in India. For this purpose, a composite SEV index has been developed on the basis of functional relationships amongst sensitivity, exposure and adaptive capacity using 30 indicators related to dairy farming underlying the principles of Intergovernmental Panel on Climate Change and Fussel framework for nomenclature of vulnerable situation. Household level data were collected through Participatory Rural Appraisal and personal interviews of 540 dairy farmers of nine taluks, three each from a district selected from Kerala, Karnataka and Maharashtra, complemented by thirty years of gridded weather data. The data were normalized and then combined into three indices for sensitivity, exposure and adaptive capacity, which were then averaged with weights given using principal component analysis, to obtain the overall SEV index. Results indicated that the taluks of Western Ghats are vulnerable to CVC. The dairy farmers of Pulpally taluka were most vulnerable having the SEV score +1.24 and 42.66% farmers under high-level vulnerability category. Even though the taluks are geographically closer, there is wide variation in SEV components. Policies for incentivizing the ‘climate risk adaptation’ costs for small and marginal farmers and livelihood infrastructure for mitigating risks and promoting grass root level innovations are necessary to sustain dairy farming of the region.Keywords: climate change, dairy, vulnerability, livelihoods, adaptation strategies
Procedia PDF Downloads 4191584 A Fast Community Detection Algorithm
Authors: Chung-Yuan Huang, Yu-Hsiang Fu, Chuen-Tsai Sun
Abstract:
Community detection represents an important data-mining tool for analyzing and understanding real-world complex network structures and functions. We believe that at least four criteria determine the appropriateness of a community detection algorithm: (a) it produces useable normalized mutual information (NMI) and modularity results for social networks, (b) it overcomes resolution limitation problems associated with synthetic networks, (c) it produces good NMI results and performance efficiency for Lancichinetti-Fortunato-Radicchi (LFR) benchmark networks, and (d) it produces good modularity and performance efficiency for large-scale real-world complex networks. To our knowledge, no existing community detection algorithm meets all four criteria. In this paper, we describe a simple hierarchical arc-merging (HAM) algorithm that uses network topologies and rule-based arc-merging strategies to identify community structures that satisfy the criteria. We used five well-studied social network datasets and eight sets of LFR benchmark networks to validate the ground-truth community correctness of HAM, eight large-scale real-world complex networks to measure its performance efficiency, and two synthetic networks to determine its susceptibility to resolution limitation problems. Our results indicate that the proposed HAM algorithm is capable of providing satisfactory performance efficiency and that HAM-identified communities were close to ground-truth communities in social and LFR benchmark networks while overcoming resolution limitation problems.Keywords: complex network, social network, community detection, network hierarchy
Procedia PDF Downloads 2281583 On Parameter Estimation of Simultaneous Linear Functional Relationship Model for Circular Variables
Authors: N. A. Mokhtar, A. G. Hussin, Y. Z. Zubairi
Abstract:
This paper proposes a new simultaneous simple linear functional relationship model by assuming equal error variances. We derive the maximum likelihood estimate of the parameters in the simultaneous model and the covariance. We show by simulation study the small bias values of the parameters suggest the suitability of the estimation method. As an illustration, the proposed simultaneous model is applied to real data of the wind direction and wave direction measured by two different instruments.Keywords: simultaneous linear functional relationship model, Fisher information matrix, parameter estimation, circular variables
Procedia PDF Downloads 3661582 ACTN3 Genotype Association with Motoric Performance of Roma Children
Authors: J. Bernasovska, I. Boronova, J. Poracova, M. Mydlarova Blascakova, V. Szabadosova, P. Ruzbarsky, E. Petrejcikova, I. Bernasovsky
Abstract:
The paper presents the results of the molecular genetics analysis in sports research, with special emphasis to use genetic information in diagnosing of motoric predispositions in Roma boys from East Slovakia. The ability and move are the basic characteristics of all living organisms. The phenotypes are influenced by a combination of genetic and environmental factors. Genetic tests differ in principle from the traditional motoric tests, because the DNA of an individual does not change during life. The aim of the presented study was to examine motion abilities and to determine the frequency of ACTN3 (R577X) gene in Roma children. Genotype data were obtained from 138 Roma and 155 Slovak boys from 7 to 15 years old. Children were investigated on physical performance level in association with their genotype. Biological material for genetic analyses comprised samples of buccal swabs. Genotypes were determined using Real Time High resolution melting PCR method (Rotor-Gene 6000 Corbett and Light Cycler 480 Roche). The software allows creating reports of any analysis, where information of the specific analysis, normalized and differential graphs and many information of the samples are shown. Roma children of analyzed group legged to non-Romany children at the same age in all the compared tests. The % distribution of R and X alleles in Roma children was different from controls. The frequency of XX genotype was 9.26%, RX 46.33% and RR was 44.41%. The frequency of XX genotype was 9.26% which is comparable to a frequency of an Indian population. Data were analyzed with the ANOVA test.Keywords: ACTN3 gene, R577X polymorphism, Roma children, sport performance, Slovakia
Procedia PDF Downloads 3341581 Multi-Criteria Assessment of Biogas Feedstock
Authors: Rawan Hakawati, Beatrice Smyth, David Rooney, Geoffrey McCullough
Abstract:
Targets have been set in the EU to increase the share of renewable energy consumption to 20% by 2020, but developments have not occurred evenly across the member states. Northern Ireland is almost 90% dependent on imported fossil fuels. With such high energy dependency, Northern Ireland is particularly susceptible to the security of supply issues. Linked to fossil fuels are greenhouse gas emissions, and the EU plans to reduce emissions by 20% by 2020. The use of indigenously produced biomass could reduce both greenhouse gas emissions and external energy dependence. With a wide range of both crop and waste feedstock potentially available in Northern Ireland, anaerobic digestion has been put forward as a possible solution for renewable energy production, waste management, and greenhouse gas reduction. Not all feedstock, however, is the same, and an understanding of feedstock suitability is important for both plant operators and policy makers. The aim of this paper is to investigate biomass suitability for anaerobic digestion in Northern Ireland. It is also important that decisions are based on solid scientific evidence. For this reason, the methodology used is multi-criteria decision matrix analysis which takes multiple criteria into account simultaneously and ranks alternatives accordingly. The model uses the weighted sum method (which follows the Entropy Method to measure uncertainty using probability theory) to decide on weights. The Topsis method is utilized to carry out the mathematical analysis to provide the final scores. Feedstock that is currently available in Northern Ireland was classified into two categories: wastes (manure, sewage sludge and food waste) and energy crops, specifically grass silage. To select the most suitable feedstock, methane yield, feedstock availability, feedstock production cost, biogas production, calorific value, produced kilowatt-hours, dry matter content, and carbon to nitrogen ratio were assessed. The highest weight (0.249) corresponded to production cost reflecting a variation of £41 gate fee to 22£/tonne cost. The weights calculated found that grass silage was the most suitable feedstock. A sensitivity analysis was then conducted to investigate the impact of weights. The analysis used the Pugh Matrix Method which relies upon The Analytical Hierarchy Process and pairwise comparisons to determine a weighting for each criterion. The results showed that the highest weight (0.193) corresponded to biogas production indicating that grass silage and manure are the most suitable feedstock. Introducing co-digestion of two or more substrates can boost the biogas yield due to a synergistic effect induced by the feedstock to favor positive biological interactions. A further benefit of co-digesting manure is that the anaerobic digestion process also acts as a waste management strategy. From the research, it was concluded that energy from agricultural biomass is highly advantageous in Northern Ireland because it would increase the country's production of renewable energy, manage waste production, and would limit the production of greenhouse gases (current contribution from agriculture sector is 26%). Decision-making methods based on scientific evidence aid policy makers in classifying multiple criteria in a logical mathematical manner in order to reach a resolution.Keywords: anaerobic digestion, biomass as feedstock, decision matrix, renewable energy
Procedia PDF Downloads 4621580 Development of Wound Dressing System Based on Hydrogel Matrix Incorporated with pH-Sensitive Nanocarrier-Drug Systems
Authors: Dagmara Malina, Katarzyna Bialik-Wąs, Klaudia Pluta
Abstract:
The growing significance of transdermal systems, in which skin is a route for systemic drug delivery, has generated a considerable amount of data which has resulted in a deeper understanding of the mechanisms of transport across the skin in the context of the controlled and prolonged release of active substances. One of such solutions may be the use of carrier systems based on intelligent polymers with different physicochemical properties. In these systems, active substances, e.g. drugs, can be conjugated (attached), immobilized, or encapsulated in a polymer matrix that is sensitive to specific environmental conditions (e.g. pH or temperature changes). Intelligent polymers can be divided according to their sensitivity to specific environmental stimuli such as temperature, pH, light, electric, magnetic, sound, or electromagnetic fields. Materials & methods—The first stage of the presented research concerned the synthesis of pH-sensitive polymeric carriers by a radical polymerization reaction. Then, the selected active substance (hydrocortisone) was introduced into polymeric carriers. In a further stage, bio-hybrid sodium alginate/poly(vinyl alcohol) – SA/PVA-based hydrogel matrices modified with various carrier-drug systems were prepared with the chemical cross-linking method. The conducted research included the assessment of physicochemical properties of obtained materials i.e. degree of hydrogel swelling and degradation studies as a function of pH in distilled water and phosphate-buffered saline (PBS) at 37°C in time. The gel fraction represents the insoluble gel fraction as a result of inter-molecule cross-linking formation was also measured. Additionally, the chemical structure of obtained hydrogels was confirmed using FT-IR spectroscopic technique. The dynamic light scattering (DLS) technique was used for the analysis of the average particle size of polymer-carriers and carrier-drug systems. The nanocarriers morphology was observed using SEM microscopy. Results & Discussion—The analysis of the encapsulated polymeric carriers showed that it was possible to obtain the time-stable empty pH-sensitive carrier with an average size 479 nm and the encapsulated system containing hydrocortisone with an average 543 nm, which was introduced into hydrogel structure. Bio-hybrid hydrogel matrices are stable materials, and the presence of an additional component: pH-sensitive carrier – hydrocortisone system, does not reduce the degree of cross-linking of the matrix nor its swelling ability. Moreover, the results of swelling tests indicate that systems containing higher concentrations of the drug have a slightly higher sorption capacity in each of the media used. All analyzed materials show stable and statically changing swelling values in simulated body fluids - there is no sudden fluid uptake and no rapid release from the material. The analysis of FT-IR spectra confirms the chemical structure of the obtained bio-hybrid hydrogel matrices. In the case of modifications with a pH-sensitive carrier, a much more intense band can be observed in the 3200-3500 cm⁻¹ range, which most likely originates from the strong hydrogen interactions that occur between individual components.Keywords: hydrogels, polymer nanocarriers, sodium alginate/poly(vinyl alcohol) matrices, wound dressings.
Procedia PDF Downloads 1471579 Representation of the Solution of One Dynamical System on the Plane
Authors: Kushakov Kholmurodjon, Muhammadjonov Akbarshox
Abstract:
This present paper is devoted to a system of second-order nonlinear differential equations with a special right-hand side, exactly, the linear part and a third-order polynomial of a special form. It is shown that for some relations between the parameters, there is a second-order curve in which trajectories leaving the points of this curve remain in the same place. Thus, the curve is invariant with respect to the given system. Moreover, this system is invariant under a non-degenerate linear transformation of variables. The form of this curve, depending on the relations between the parameters and the eigenvalues of the matrix, is proved. All solutions of this system of differential equations are shown analytically.Keywords: dynamic system, ellipse, hyperbola, Hess system, polar coordinate system
Procedia PDF Downloads 1931578 Microstructure and Mechanical Properties Evaluation of Graphene-Reinforced AlSi10Mg Matrix Composite Produced by Powder Bed Fusion Process
Authors: Jitendar Kumar Tiwari, Ajay Mandal, N. Sathish, A. K. Srivastava
Abstract:
Since the last decade, graphene achieved great attention toward the progress of multifunction metal matrix composites, which are highly demanded in industries to develop energy-efficient systems. This study covers the two advanced aspects of the latest scientific endeavor, i.e., graphene as reinforcement in metallic materials and additive manufacturing (AM) as a processing technology. Herein, high-quality graphene and AlSi10Mg powder mechanically mixed by very low energy ball milling with 0.1 wt. % and 0.2 wt. % graphene. Mixed powder directly subjected to the powder bed fusion process, i.e., an AM technique to produce composite samples along with bare counterpart. The effects of graphene on porosity, microstructure, and mechanical properties were examined in this study. The volumetric distribution of pores was observed under X-ray computed tomography (CT). On the basis of relative density measurement by X-ray CT, it was observed that porosity increases after graphene addition, and pore morphology also transformed from spherical pores to enlarged flaky pores due to improper melting of composite powder. Furthermore, the microstructure suggests the grain refinement after graphene addition. The columnar grains were able to cross the melt pool boundaries in case of the bare sample, unlike composite samples. The smaller columnar grains were formed in composites due to heterogeneous nucleation by graphene platelets during solidification. The tensile properties get affected due to induced porosity irrespective of graphene reinforcement. The optimized tensile properties were achieved at 0.1 wt. % graphene. The increment in yield strength and ultimate tensile strength was 22% and 10%, respectively, for 0.1 wt. % graphene reinforced sample in comparison to bare counterpart while elongation decreases 20% for the same sample. The hardness indentations were taken mostly on the solid region in order to avoid the collapse of the pores. The hardness of the composite was increased progressively with graphene content. Around 30% of increment in hardness was achieved after the addition of 0.2 wt. % graphene. Therefore, it can be concluded that powder bed fusion can be adopted as a suitable technique to develop graphene reinforced AlSi10Mg composite. Though, some further process modification required to avoid the induced porosity after the addition of graphene, which can be addressed in future work.Keywords: graphene, hardness, porosity, powder bed fusion, tensile properties
Procedia PDF Downloads 128