Search results for: magnetic activated carbon
3965 A Rapid Reinforcement Technique for Columns by Carbon Fiber/Epoxy Composite Materials
Authors: Faruk Elaldi
Abstract:
There are lots of concrete columns and beams around in our living cities. Those columns are mostly open to aggressive environmental conditions and earthquakes. Mostly, they are deteriorated by sand, wind, humidity and other external applications at times. After a while, these beams and columns need to be repaired. Within the scope of this study, for reinforcement of concrete columns, samples were designed and fabricated to be strengthened with carbon fiber reinforced composite materials and conventional concrete encapsulation and followed by, and they were put into the axial compression test to determine load-carrying performance before column failure. In the first stage of this study, concrete column design and mold designs were completed for a certain load-carrying capacity. Later, the columns were exposed to environmental deterioration in order to reduce load-carrying capacity. To reinforce these damaged columns, two methods were applied, “concrete encapsulation” and the other one “wrapping with carbon fiber /epoxy” material. In the second stage of the study, the reinforced columns were applied to the axial compression test and the results obtained were analyzed. Cost and load-carrying performance comparisons were made and it was found that even though the carbon fiber/epoxy reinforced method is more expensive, this method enhances higher load-carrying capacity and reduces the reinforcement processing period.Keywords: column reinforcement, composite, earth quake, carbon fiber reinforced
Procedia PDF Downloads 1843964 The Effect of Carbon Nanotubes in Copolyamide Nonwovens on the Properties of CFRP Laminates
Authors: Kamil Dydek, Anna Boczkowska, Paulina Latko-Duralek, Rafal Kozera, Michal Salacinski
Abstract:
In recent years there has been increasing interest in many industries, such as the aviation, automotive, and military industries, in Carbon Fibre Reinforced Polymers (CFRP). This is because of the excellent properties of CFRP, which are characterized by very high strength and stiffness in relation to their mass, low density (almost twice as low as aluminum and more than five times as low as steel), and corrosion resistance. However, they do not have sufficient electrical conductivity, which is required in some applications. Therefore, work is underway to improve their electrical conductivity, for example, by incorporating carbon nanotubes (CNTs) into the CFRP structure. CNTs possess excellent properties, such as high electrical conductivity, high aspect ratio, high Young’s modulus, and high tensile strength. An idea developed by our team is a modification of CFRP by the use of thermoplastic nonwovens containing CNTs. Nanocomposite fibers were made from three different masterbatches differing in the content of multi-wall carbon nanotubes, and then nonwovens that differed in areal weight were produced using a thermo-press. The out of autoclave method was used to fabricate the laminates from commercial carbon-epoxy prepreg dedicated to aviation applications - one without the nonwovens (reference) and five containing nonwovens placed between each prepreg layer. The volume of electrical conductivity of the manufactured laminates was measured in three directions. In order to investigate the adhesion between carbon fibers and nonwovens, the microstructure of the produced laminates was observed. The mechanical properties of the CFRP composites were measured in a short-beam shear test. In addition, the influence of thermoplastic nonwovens on the thermos-mechanical properties of laminates was analyzed by Dynamic Mechanical Analysis. The studies were carried out within grant no. DOB-1-3/1/PS/2014 financed by the National Centre for Research and Development in Poland.Keywords: CFRP, thermoplastic nonwovens, carbon nanotubes, electrical conductivity
Procedia PDF Downloads 1343963 Supply Chain Decarbonisation – A Cost-Based Decision Support Model in Slow Steaming Maritime Operations
Authors: Eugene Y. C. Wong, Henry Y. K. Lau, Mardjuki Raman
Abstract:
CO2 emissions from maritime transport operations represent a substantial part of the total greenhouse gas emission. Vessels are designed with better energy efficiency. Minimizing CO2 emission in maritime operations plays an important role in supply chain decarbonisation. This paper reviews the initiatives on slow steaming operations towards the reduction of carbon emission. It investigates the relationship and impact among slow steaming cost reduction, carbon emission reduction, and shipment delay. A scenario-based cost-driven decision support model is developed to facilitate the selection of the optimal slow steaming options, considering the cost on bunker fuel consumption, available speed, carbon emission, and shipment delay. The incorporation of the social cost of cargo is reviewed and suggested. Additional measures on the effect of vessels sizes, routing, and type of fuels towards decarbonisation are discussed.Keywords: slow steaming, carbon emission, maritime logistics, sustainability, green supply chain
Procedia PDF Downloads 4583962 Biocarbon for High-Performance Supercapacitors Derived from the Wastewater Treatment of Sewage Sludge
Authors: Santhosh Ravichandran, F. J. Rodríguez-Varela
Abstract:
In this study, a biocarbon (BC) was made from sewage sludge from the water treatment plant (PTAR) in Saltillo, Coahuila, Mexico. The sludge was carbonized in water and then chemically activated by pyrolysis. The biocarbon was evaluated physicochemically using XRD, SEM-EDS, and FESEM. A broad (002) peak attributable to graphitic structures indicates that the material is amorphous. The resultant biocarbon has a high specific surface area (412 m2 g-1), a large pore volume (0.39 cm3 g-1), interconnected hierarchical porosity, and outstanding electrochemical performance. It is appropriate for high-performance supercapacitor electrode materials due to its high specific capacitance of 358 F g-1, great rate capability, and outstanding cycling stability (around 87% capacitance retention after 10,000 cycles, even at a high current density of 19 A g-1). In an aqueous solution, the constructed BC/BC symmetric supercapacitor exhibits increased super capacitor behavior with a high energy density of 29.5 Whkg-1. The concept provides an efficient method for producing high-performance electrode materials for supercapacitors from conventional water treatment biomass wastes.Keywords: supercapacitors, carbon, material science, batteries
Procedia PDF Downloads 843961 Design of Composite Joints from Carbon Fibre for Automotive Parts
Authors: G. Hemath Kumar, H. Mohit, K. Karthick
Abstract:
One of the most important issues in the composite technology is the repairing of parts of aircraft structures which is manufactured from composite materials. In such applications and also for joining various composite parts together, they are fastened together either using adhesives or mechanical fasteners. The tensile strength of these joints was carried out using Universal Testing Machine (UTM). A parametric study was also conducted to compare the performance of the hybrid joint with varying adherent thickness, adhesive thickness and overlap length. The composition of the material is combination of epoxy resin and carbon fibre under the method of reinforcement. To utilize the full potential of composite materials as structural elements, the strength and stress distribution of these joints must be understood. The study of tensile strength in the members involved under various design conditions and various joints were took place.Keywords: carbon fiber, FRP composite, MMC, automotive
Procedia PDF Downloads 4113960 Assessment of Carbon Dioxide Separation by Amine Solutions Using Electrolyte Non-Random Two-Liquid and Peng-Robinson Models: Carbon Dioxide Absorption Efficiency
Authors: Arash Esmaeili, Zhibang Liu, Yang Xiang, Jimmy Yun, Lei Shao
Abstract:
A high pressure carbon dioxide (CO2) absorption from a specific gas in a conventional column has been evaluated by the Aspen HYSYS simulator using a wide range of single absorbents and blended solutions to estimate the outlet CO2 concentration, absorption efficiency and CO2 loading to choose the most proper solution in terms of CO2 capture for environmental concerns. The property package (Acid Gas-Chemical Solvent) which is compatible with all applied solutions for the simulation in this study, estimates the properties based on an electrolyte non-random two-liquid (E-NRTL) model for electrolyte thermodynamics and Peng-Robinson equation of state for the vapor and liquid hydrocarbon phases. Among all the investigated single amines as well as blended solutions, piperazine (PZ) and the mixture of piperazine and monoethanolamine (MEA) have been found as the most effective absorbents respectively for CO2 absorption with high reactivity based on the simulated operational conditions.Keywords: absorption, amine solutions, Aspen HYSYS, carbon dioxide, simulation
Procedia PDF Downloads 1873959 Anti-Site Disorder Effects on the Magnetic Properties of Sm₂NiMnO₆ Thin Films
Authors: Geetanjali Singh, R. J. Choudhary, Anjana Dogra
Abstract:
Here we report the effects of anti-site disorder, present in the sample, on the magnetic properties of Sm₂NiMnO₆ (SNMO) thin films. To our best knowledge, there are no studies available on the thin films of SNMO. Thin films were grown using pulsed laser deposition technique on SrTiO₃ (STO) substrate under oxygen pressure of 800 mTorr. X-ray diffraction (XRD) profiles show that the film grown is epitaxial. Field cooled (FC) and zero field cooled (ZFC) magnetization curve increase as we decrease the temperature till ~135K. A broad dip was observed in both the curves below this temperature which is more dominating in ZFC curve. An additional sharp cusplike shape was observed at low temperature (~20 K) which is due to the re-entrant spin-glass like properties present in the sample. Super-exchange interaction between Ni²⁺-O-Mn⁴⁺ is attributed to the FM ordering in these samples. The spin-glass feature is due to anti-site disorder within the homogeneous sample which was stated to be due to the mixed valence states Ni³⁺ and Mn³⁺ present in the sample. Anti-site disorder was found to play very crucial role in different magnetic phases of the sample.Keywords: double perovskite, pulsed laser deposition, spin-glass, magnetization
Procedia PDF Downloads 2623958 Producing Carbon Nanoparticles from Agricultural and Municipal Wastes
Authors: Kanik Sharma
Abstract:
In the year of 2011, the global production of carbon nano-materials (CNMs) was around 3,500 tons, and it is projected to expand at a compound annual growth rate of 30.6%. Expanding markets for applications of CNMs, such as carbon nano-tubes (CNTs) and carbon nano-fibers (CNFs), place ever-increasing demands on lowering their production costs. Current technologies for CNM generation require intensive premium feedstock consumption and employ costly catalysts; they also require input of external energy. Industrial-scale CNM production is conventionally achieved through chemical vapor deposition (CVD) methods which consume a variety of expensive premium chemical feedstocks such as ethylene, carbon monoxide (CO) and hydrogen (H2); or by flame synthesis techniques, which also consume premium feedstock fuels. Additionally, CVD methods are energy-intensive. Renewable and replenishable feedstocks, such as those found in municipal, industrial, agricultural recycling streams have a more judicious reason for usage, in the light of current emerging needs for sustainability. Agricultural sugarcane bagasse and corn residues, scrap tire chips as well as post-consumer polyethylene (PE) and polyethylene terephthalate (PET) bottle shreddings when either thermally treated by sole pyrolysis or by sequential pyrolysis and partial oxidation result in the formation of gaseous carbon-bearing effluents which when channeled into a heated reactor, produce CNMs, including carbon nano-tubes, catalytically synthesized therein on stainless steel meshes. The structure of the nano-material synthesized depends on the type of feedstock available for pyrolysis, and can be determined by analysing the feedstock. These feedstocks could supersede the use of costly and often toxic or highly-flammable chemicals such as hydrocarbon gases, carbon monoxide and hydrogen, which are commonly used as feedstocks in current nano-manufacturing process for CNMs.Keywords: nanomaterials, waste plastics, sugarcane bagasse, pyrolysis
Procedia PDF Downloads 2303957 Investigation on the Kinetic Mechanism of the Reduction of Fe₂O₃/CoO-Decorated Carbon Xerogel
Authors: Mohammad Reza Ghaani, Michele Catti
Abstract:
The reduction of CoO/Fe₂O₃ oxides supported on carbon xerogels was studied to elucidate the effect of nano-size distribution of the catalyst in carbon matrices. Resorcinol formaldehyde xerogels were synthesized, impregnated with iron and cobalt nitrates, and subsequently heated to obtain the oxides. The mechanism of oxide reduction to metal was investigated by in-situ synchrotron X-ray diffraction in dynamic, non-isothermal conditions. Kinetic profiles of the reactions were obtained by plotting the diffraction intensities of selected Bragg peaks vs. temperature. The extracted Temperature-Programmed-Reduction (TPR) diagrams were analyzed by appropriate kinetic models, leading to best results with the Avrami-Erofeev model for all reduction reactions considered. The activation energies for the two-step reduction of iron oxide were 65 and 37 kJmol⁻¹, respectively. The average value for the reduction of CoO to Co was found to be around 21 kJ mol⁻¹. Such results may contribute to develop efficient and inexpensive non-noble metal-based catalysts in element form, e.g., Fe, Co, via heterogenization of metal complexes on mesoporous supports.Keywords: non-isothermal kinetics, carbon aerogel, in-situ synchrotron X-ray diffraction, reduction mechanisms
Procedia PDF Downloads 2423956 Integrated Mathematical Modeling and Advance Visualization of Magnetic Nanoparticle for Drug Delivery, Drug Release and Effects to Cancer Cell Treatment
Authors: Norma Binti Alias, Che Rahim Che The, Norfarizan Mohd Said, Sakinah Abdul Hanan, Akhtar Ali
Abstract:
This paper discusses on the transportation of magnetic drug targeting through blood within vessels, tissues and cells. There are three integrated mathematical models to be discussed and analyze the concentration of drug and blood flow through magnetic nanoparticles. The cell therapy brought advancement in the field of nanotechnology to fight against the tumors. The systematic therapeutic effect of Single Cells can reduce the growth of cancer tissue. The process of this nanoscale phenomena system is able to measure and to model, by identifying some parameters and applying fundamental principles of mathematical modeling and simulation. The mathematical modeling of single cell growth depends on three types of cell densities such as proliferative, quiescent and necrotic cells. The aim of this paper is to enhance the simulation of three types of models. The first model represents the transport of drugs by coupled partial differential equations (PDEs) with 3D parabolic type in a cylindrical coordinate system. This model is integrated by Non-Newtonian flow equations, leading to blood liquid flow as the medium for transportation system and the magnetic force on the magnetic nanoparticles. The interaction between the magnetic force on drug with magnetic properties produces induced currents and the applied magnetic field yields forces with tend to move slowly the movement of blood and bring the drug to the cancer cells. The devices of nanoscale allow the drug to discharge the blood vessels and even spread out through the tissue and access to the cancer cells. The second model is the transport of drug nanoparticles from the vascular system to a single cell. The treatment of the vascular system encounters some parameter identification such as magnetic nanoparticle targeted delivery, blood flow, momentum transport, density and viscosity for drug and blood medium, intensity of magnetic fields and the radius of the capillary. Based on two discretization techniques, finite difference method (FDM) and finite element method (FEM), the set of integrated models are transformed into a series of grid points to get a large system of equations. The third model is a single cell density model involving the three sets of first order PDEs equations for proliferating, quiescent and necrotic cells change over time and space in Cartesian coordinate which regulates under different rates of nutrients consumptions. The model presents the proliferative and quiescent cell growth depends on some parameter changes and the necrotic cells emerged as the tumor core. Some numerical schemes for solving the system of equations are compared and analyzed. Simulation and computation of the discretized model are supported by Matlab and C programming languages on a single processing unit. Some numerical results and analysis of the algorithms are presented in terms of informative presentation of tables, multiple graph and multidimensional visualization. As a conclusion, the integrated of three types mathematical modeling and the comparison of numerical performance indicates that the superior tool and analysis for solving the complete set of magnetic drug delivery system which give significant effects on the growth of the targeted cancer cell.Keywords: mathematical modeling, visualization, PDE models, magnetic nanoparticle drug delivery model, drug release model, single cell effects, avascular tumor growth, numerical analysis
Procedia PDF Downloads 4283955 Surfactant Free Synthesis of Magnetite/Hydroxyapatite Composites for Hyperthermia Treatment
Authors: M. Sneha, N. Meenakshi Sundaram
Abstract:
In recent times, magnetic hyperthermia is used for cancer treatment as a tool for active targeting of delivering drugs to the targeted site. It has a potential advantage over other heat treatment because there is no systemic buildup in organs and large doses are possible. The aim of this study is to develop a suitable magnetic biomaterial that can destroy the cancer cells as well as induce bone regeneration. In this work, the composite material was synthesized in two-steps. First, porous iron oxide nano needles were synthesized by hydrothermal process. Second, the hydroxyapatite, were synthesized from natural calcium (i.e., egg shell) and inorganic phosphorous source using wet chemical method. The crystalline nature is confirmed by powder X-ray diffraction analysis (XRD). Thermal analysis and the surface area of the material is studied by Thermo Gravimetric Analysis (TGA), Brunauer-Emmett and Teller (BET) technique. Scanning electron microscope (SEM) images show that the particles have nanoneedle-like morphology. The magnetic property is studied by vibrating sample magnetometer (VSM) technique which confirms the superparamagnetic behavior. This paper presents a simple and easy method for synthesis of magnetite/hydroxyapatite composites materials.Keywords: iron oxide nano needles, hydroxyapatite, superparamagnetic, hyperthermia
Procedia PDF Downloads 6413954 Laboratory Evaluation of Rutting and Fatigue Damage Resistance of Asphalt Mixtures Modified with Carbon Nano Tubes
Authors: Ali Zain Ul Abadeen, Arshad Hussain
Abstract:
Roads are considered as the national capital, and huge developmental budget is spent on its construction, maintenance, and rehabilitation. Due to proliferating traffic volume, heavier loads and challenging environmental factors, the need for high-performance asphalt pavement is increased. In this research, the asphalt mixture was modified with carbon nanotubes ranging from 0.2% to 2% of binder to study the effect of CNT modification on rutting potential and fatigue life of asphalt mixtures. During this study, the conventional and modified asphalt mixture was subjected to a uni-axial dynamic creep test and dry Hamburg wheel tracking test to study rutting resistance. Fatigue behavior of asphalt mixture was studied using a four-point bending test apparatus. The plateau value of asphalt mixture was taken as a measure of fatigue performance according to the ratio of dissipated energy approach. Results of these experiments showed that CNT modified asphalt mixtures had reduced rut depth and increased rutting and fatigue resistance at higher percentages of carbon nanotubes.Keywords: carbon nanotubes, fatigue, four point bending test, modified asphalt, rutting
Procedia PDF Downloads 1473953 Mechanical and Physical Properties of Aluminum Composite Reinforced with Carbon Nano Tube Dispersion via Ultrasonic and Ball Mill Attrition after Sever Plastic Deformation
Authors: Hassan Zare, Mohammad Jahedi, Mohammad Reza Toroghinejad, Mahmoud Meratian, Marko Knezevic
Abstract:
In this study, the carbon nanotube (CNT) reinforced Al matrix nanocomposites were fabricated by ECAP. Equal Channel Angular Pressing (ECAP) process is one of the most important methods for powder densification due to the presence of shear strain. This method samples with variety passes (one, two, four and eight passes) in C route were prepared at room temperature. A few study about metal matrix nanocomposite reinforced carbon nanotube done, the reaction intersection of interface and carbon nanotube cause to reduce the efficiency of nanocomposite. In this paper, we checked mechanical and physical properties of aluminum-CNT composite that manufactured by ECAP when the composite is deformed. The non-agglomerated CNTs were distributed homogeneously with 2% consolidation in the Aluminum matrix. The ECAP process was performed on the both monolithic and composite with distributed CNT samples for 8 passes.Keywords: powder metallurgy, ball mill attrition, ultrasonic, consolidation
Procedia PDF Downloads 4963952 Estimating the Technological Deviation Impact on the Value of the Output Parameter of the Induction Converter
Authors: Marinka K. Baghdasaryan, Siranush M. Muradyan, Avgen A. Gasparyan
Abstract:
Based on the experimental data, the impact of resistance and reactance of the winding, as well as the magnetic permeability of the magnetic circuit steel material on the value of the electromotive force of the induction converter is investigated. The obtained results allow to estimate the main technological spreads and determine the maximum level of the electromotive force change. By the method of experiment planning, the expression of a polynomial for the electromotive force which can be used to estimate the adequacy of mathematical models to be used at the investigation and design of induction converters is obtained.Keywords: induction converter, electromotive force, expectation, technological spread, deviation, planning an experiment, polynomial, confidence level
Procedia PDF Downloads 4653951 Integrated Simulation and Optimization for Carbon Capture and Storage System
Authors: Taekyoon Park, Seokgoo Lee, Sungho Kim, Ung Lee, Jong Min Lee, Chonghun Han
Abstract:
CO2 capture and storage/sequestration (CCS) is a key technology for addressing the global warming issue. This paper proposes an integrated model for the whole chain of CCS, from a power plant to a reservoir. The integrated model is further utilized to determine optimal operating conditions and study responses to various changes in input variables.Keywords: CCS, caron dioxide, carbon capture and storage, simulation, optimization
Procedia PDF Downloads 3523950 Effect of Different Carbon Fabric Orientations on the Fracture Properties of Carbon Fabric Reinforced Polymer Composites
Authors: S. F. Halim, H. F. Naguib, S. N. Lawandy, R. S. Hegazy, M. N. Baheg
Abstract:
The main drawbacks of the traditional carbon fabric reinforced epoxy resin (CFRP) are low strain failure, delamination between composites layers, and low impact resistance due to the brittleness of epoxy resin. The aim of this study is to enhance the fracture properties of the CFRP composites laminates via the variation of composite's designs. A series of composites were fabricated in which bidirectional (00/900) carbon fabric (CF) layers were laid inside the resin matrix with orientation codes as F1 [(00, 900)/ (00, 900)], F2 [(900, 00)/ (00, 900)] and F3 [(00,900)/ (900, 00). The mechanical and dynamic properties of the composites were estimated. In addition, the morphology of samples surface was examined by scanning electron microscope (SEM) after impact fracture. The results revealed that the CFRP properties could be tailored fitting specific applications by controlling the fabric orientation inside the CFRP composite design. F2 orientation [(900, 00)/ (00.900)] showed the highest tensile and flexural strength values. On the other hand, the impact strength values of composites were in the order F1 > F2 > F3. The storage modulus, loss modulus, and glass transition temperature Tg values obtained from the dynamic mechanical analysis (DMA) examination was in the order F1 > F2 > F3. The variation in the properties of the composite was clearly explained by the SEM micrographs as the failure of F3 orientation properties was referred to as the complete breakage of the CF layers upon fracture.Keywords: carbon fiber, CFRP, composites, epoxy resins, flexural strength
Procedia PDF Downloads 1293949 Study of Two Adsorbent-Refrigerant Pairs for the Application of Solar-Powered Adsorption Refrigeration System
Authors: Mohammed Ali Hadj Ammar, Fethi Bouras, Kamel Sahlaoui
Abstract:
This article presents a detailed study of two working pairs intended for use in solar adsorption refrigeration (SAR) system. The study was based on two indicators: the daily production and coefficient of performance (COP). The thermodynamic cycle of the system is based on the adsorption phenomena at a constant temperature. A computer simulation program has been developed for modeling and performance evaluation for the solar-powered adsorption refrigeration cycle. It was found that maximal cycled mass is obtained by S40/water (0.280kg/kg) followed by CarboTech C40/1/methanol (0.260kg/kg). At a condenser temperature of 30°C, with an adsorbent mass of 38.59 kg, and an integrated collector/bed configuration, the couple CarboTech C40/1/methanol for the ice-maker purpose can reach cycle COP of 0.63 and can produce about 13.6kg ice per day, while the couple S40/water for the air-conditioning can reach cycle COP of 0.66 and 212kg as daily cold-water production. Additionally, adequate indicators are evaluated addressing the economic and environmental associated with each working pair.Keywords: solar adsorption, refrigeration, activated carbon, silica gel
Procedia PDF Downloads 1323948 Altering Surface Properties of Magnetic Nanoparticles with Single-Step Surface Modification with Various Surface Active Agents
Authors: Krupali Mehta, Sandip Bhatt, Umesh Trivedi, Bhavesh Bharatiya, Mukesh Ranjan, Atindra D. Shukla
Abstract:
Owing to the dominating surface forces and large-scale surface interactions, the nano-scale particles face difficulties in getting suspended in various media. Magnetic nanoparticles of iron oxide offer a great deal of promise due to their ease of preparation, reasonable magnetic properties, low cost and environmental compatibility. We intend to modify the surface of magnetic Fe₂O₃ nanoparticles with selected surface modifying agents using simple and effective single-step chemical reactions in order to enhance dispersibility of magnetic nanoparticles in non-polar media. Magnetic particles were prepared by hydrolysis of Fe²⁺/Fe³⁺ chlorides and their subsequent oxidation in aqueous medium. The dried particles were then treated with Octadecyl quaternary ammonium silane (Terrasil™), stearic acid and gallic acid ester of stearyl alcohol in ethanol separately to yield S-2 to S-4 respectively. The untreated Fe₂O₃ was designated as S-1. The surface modified nanoparticles were then analysed with Dynamic Light Scattering (DLS), Fourier Transform Infrared spectroscopy (FTIR), X-Ray Diffraction (XRD), Thermogravimetric Gravimetric Analysis (TGA) and Scanning Electron Microscopy and Energy dispersive X-Ray analysis (SEM-EDAX). Characterization reveals the particle size averaging 20-50 nm with and without modification. However, the crystallite size in all cases remained ~7.0 nm with the diffractogram matching to Fe₂O₃ crystal structure. FT-IR suggested the presence of surfactants on nanoparticles’ surface, also confirmed by SEM-EDAX where mapping of elements proved their presence. TGA indicated the weight losses in S-2 to S-4 at 300°C onwards suggesting the presence of organic moiety. Hydrophobic character of modified surfaces was confirmed with contact angle analysis, all modified nanoparticles showed super hydrophobic behaviour with average contact angles ~129° for S-2, ~139.5° for S-3 and ~151° for S-4. This indicated that surface modified particles are super hydrophobic and they are easily dispersible in non-polar media. These modified particles could be ideal candidates to be suspended in oil-based fluids, polymer matrices, etc. We are pursuing elaborate suspension/sedimentation studies of these particles in various oils to establish this conjecture.Keywords: iron nanoparticles, modification, hydrophobic, dispersion
Procedia PDF Downloads 1413947 Computational Determination of the Magneto Electronic Properties of Ce₁₋ₓCuₓO₂ (x=12.5%): Emerging Material for Spintronic Devices
Authors: Aicha Bouhlala, Sabah Chettibi
Abstract:
Doping CeO₂ with transition metals is an effective way of tuning its properties. In the present work, we have performed self-consistent ab-initio calculation using the full-potential linearized augmented plane-wave method (FP-LAPW), based on the density functional theory (DFT) as implemented in the Wien2k simulation code to study the structural, electronic, and magnetic properties of the compound Ce₁₋ₓCuₓO₂ (x=12.5%) fluorite type oxide and to explore the effects of dopant Cu in ceria. The exchange correlation potential has been treated using the Perdew-Burke-Eenzerhof revised of solid (PBEsol). In structural properties, the equilibrium lattice constant is observed for the compound, which exists within the value of 5.382 A°. In electronic properties, the spin-polarized electronic bandstructure elucidates the semiconductor nature of the material in both spin channels, with the compound was observed to have a narrow bandgap on the spin-down configuration (0.162 EV) and bandgap on the spin-up (2.067 EV). Hence, the doped atom Cu plays a vital role in increasing the magnetic moments of the supercell, and the value of the total magnetic moment is found to be 2.99438 μB. Therefore, the compound Cu-doped CeO₂ shows a strong ferromagnetic behavior. The predicted results propose the compound could be a good candidate for spintronics applications.Keywords: Cu-doped CeO₂, DFT, Wien2k, properties
Procedia PDF Downloads 2563946 Design of a Hand-Held, Clamp-on, Leakage Current Sensor for High Voltage Direct Current Insulators
Authors: Morné Roman, Robert van Zyl, Nishanth Parus, Nishal Mahatho
Abstract:
Leakage current monitoring for high voltage transmission line insulators is of interest as a performance indicator. Presently, to the best of our knowledge, there is no commercially available, clamp-on type, non-intrusive device for measuring leakage current on energised high voltage direct current (HVDC) transmission line insulators. The South African power utility, Eskom, is investigating the development of such a hand-held sensor for two important applications; first, for continuous real-time condition monitoring of HVDC line insulators and, second, for use by live line workers to determine if it is safe to work on energised insulators. In this paper, a DC leakage current sensor based on magnetic field sensing techniques is developed. The magnetic field sensor used in the prototype can also detect alternating current up to 5 MHz. The DC leakage current prototype detects the magnetic field associated with the current flowing on the surface of the insulator. Preliminary HVDC leakage current measurements are performed on glass insulators. The results show that the prototype can accurately measure leakage current in the specified current range of 1-200 mA. The influence of external fields from the HVDC line itself on the leakage current measurements is mitigated through a differential magnetometer sensing technique. Thus, the developed sensor can perform measurements on in-service HVDC insulators. The research contributes to the body of knowledge by providing a sensor to measure leakage current on energised HVDC insulators non-intrusively. This sensor can also be used by live line workers to inform them whether or not it is safe to perform maintenance on energized insulators.Keywords: direct current, insulator, leakage current, live line, magnetic field, sensor, transmission lines
Procedia PDF Downloads 1753945 Agroforestry Practices on Soil Microbial Biomass Carbon and Organic Carbon in Southern Ethiopia
Authors: Nebiyou Masebo
Abstract:
The rapid conversion of an old aged agroforestry (AF) based agricultural system to monocropping farming system in southern Ethiopia is increasing. The consequence of this, combined with climate change, has been impaired biodiversity, soil microbial biomass carbon (MBC), and soil organic carbon (SOC). The AF system could curb such problems due it is an ecologically and economically sustainable strategies. This study was aimed to investigate different agroforestry practices (AFPs) on MBC and SOC in southern Ethiopia. Soil samples were collected from homegarden based agroforestry practice (HAFP), crop land based agroforestry practice (ClAFP), woodlot based agroforestry practice (WlAFP), and trees on soil and water conservation based agroforestry practice (TSWAFP) using two depth layer (0-30 & 30-60 cm) by systematic sampling. Moreover, woody species inventorywas also collected. The chloroform fumigation extraction method was employed to determine MBC from different AFP types. In this study, the value of MBC and SOC decreased significantly with soil depth (p< 0.05). Besides, AFP type, soil depth, woody species diversity, and key soil properties also strongly influenced MBC and SOC (p< 0.05). In this study, the MBC was the highest (786 mg kg⁻¹ soil) in HAFP, followed by WlAFP (592 mg kg⁻¹ soil), TSWAFP (421 mg kg⁻¹ soil), and ClAFP (357 mg kg⁻¹ soil). The highest mean value of SOC (43.5Mg C ha⁻¹) was recorded in HAFP, followed by WlAFP (35.1Mg C ha⁻¹), TSWAFP (22.3 Mg C ha⁻¹), while the lowest (21.8 Mg C ha⁻¹) was recorded in ClAFP. The HAFP had high woody species diversity, and the lowest was recorded in ClAFP. The finding indicated that SOC and MBC were significantly affected by land management practices, and HAFP has the potential to improve MBC and SOC through good management practices of AFP.Keywords: agroforestry practices, microbial biomass carbon, soil carbon, rapid conversion
Procedia PDF Downloads 1023944 Soil Organic Carbon Pool Assessment and Chemical Evaluation of Soils in Akure North and South Local Government Area of Ondo State
Authors: B. F. Dada, B. S. Ewulo, M. A. Awodun, S. O. Ajayi
Abstract:
Aggregate soil carbon distribution and stock in the soil in the form of a carbon pool is important for soil fertility and sequestration. The amount of carbon pool and other nutrients statues of the soil are to benefit plants, animal and the environment in the long run. This study was carried out at Akure North and South Local Government; the study area is one of the 18 Local Government Areas of Ondo State in the Southwest geo-political zone of Nigeria. The sites were divided into Map Grids and geo-referenced with Global Positioning System (GPS). Horizons were designated and morphological description carried out on the field. Pedons were characterized and classified according to USDA soil taxonomy. The local government area shares boundaries with; Ikere Local Government (LG) in the North, Ise Orun LG in the northwest, Ifedore LG in the northeast Akure South LG in the East, Ose LG in the South East, and Owo LG in the South. SOC-pool at Federal College of Agriculture topsoil horizon A2 is significantly higher than all horizons, 67.83 th⁻¹. The chemical properties of the pedons have shown that the soil is very strongly acidic to neutral reaction (4.68 – 6.73). The nutrients status of the soil topsoil A1 and A2 generally indicates that the soils have a low potential for retaining plant nutrients, and therefore call for adequate soil management.Keywords: soil organic carbon (SOC), horizon, pedon, Akure
Procedia PDF Downloads 1513943 Aluminum Matrix Composites Reinforced by Glassy Carbon-Titanium Spatial Structure
Authors: B. Hekner, J. Myalski, P. Wrzesniowski
Abstract:
This study presents aluminum matrix composites reinforced by glassy carbon (GC) and titanium (Ti). In the first step, the heterophase (GC+Ti), spatial form (similar to skeleton) of reinforcement was obtained via own method. The polyurethane foam (with spatial, open-cells structure) covered by suspension of Ti particles in phenolic resin was pyrolyzed. In the second step, the prepared heterogeneous foams were infiltrated by aluminium alloy. The manufactured composites are designated to industrial application, especially as a material used in tribological field. From this point of view, the glassy carbon was applied to stabilise a coefficient of friction on the required value 0.6 and reduce wear. Furthermore, the wear can be limited due to titanium phase application, which reveals high mechanical properties. Moreover, fabrication of thin titanium layer on the carbon skeleton leads to reduce contact between aluminium alloy and carbon and thus aluminium carbide phase creation. However, the main modification involves the manufacturing of reinforcement in the form of 3D, skeleton foam. This kind on reinforcement reveals a few important advantages compared to classical form of reinforcement-particles: possibility to control homogeneity of reinforcement phase in composite material; low-advanced technique of composite manufacturing- infiltration; possibility to application the reinforcement only in required places of material; strict control of phase composition; High quality of bonding between components of material. This research is founded by NCN in the UMO-2016/23/N/ST8/00994.Keywords: metal matrix composites, MMC, glassy carbon, heterophase composites, tribological application
Procedia PDF Downloads 1183942 Carbon Dioxide Removal from Off Gases in a Self-Priming Submerged Venturi Scrubber
Authors: Manisha Bal, Amit Verma, B. C. Meikap
Abstract:
Carbon dioxide (CO₂) is the most abundant waste produced by human activities. It is estimated to be one of the major contributors of greenhouse effect and also considered as a major air pollutant formed by burning of fossil fuels. The main sources of emissions are flue gas from thermal power plants and process industries. It is also a contributor of acid rain. Its exposure through inhalation can lead to health risks. Therefore, control of CO₂ emission in the environment is very necessary. The main focus of this study is on the removal of carbon dioxide from off gases using a self-priming venturi scrubber in submerged conditions using sodium hydroxide as the scrubbing liquid. A self-priming submerged venturi scrubber is an efficient device to remove gaseous pollutants. In submerged condition, venturi scrubber remains submerged in the liquid tank and the liquid enters at the throat section of venturi scrubber due to the pressure difference which includes the hydrostatic pressure of the liquid and static pressure of the gas. The inlet polluted air stream enters through converging section which moves at very high velocity in the throat section and atomizes the liquid droplets. This leads to absorption of CO₂ from the off gases in scrubbing liquid which resulted in removal of CO₂ gas from the off gases. Detailed investigation on the scrubbing of carbon dioxide has been done in this literature. Experiments were conducted at different throat gas velocities, liquid levels in outer cylinder and CO₂ inlet concentrations to study the carbon dioxide removal efficiency. Experimental results give more than 95% removal efficiency of CO₂ in the self priming venturi scrubber which can meet the environmental emission limit of CO₂ to save the human life.Keywords: carbon dioxide, scrubbing, pollution control, self-priming venturi scrubber
Procedia PDF Downloads 2223941 Implementation of IWA-ASM1 Model for Simulating the Wastewater Treatment Plant of Beja by GPS-X 5.1
Authors: Fezzani Boubaker
Abstract:
The modified activated sludge model (ASM1 or Mantis) is a generic structured model and a common platform for dynamic simulation of varieties of aerobic processes for optimization and upgrading of existing plants and for new facilities design. In this study, the modified ASM1 included in the GPS-X software was used to simulate the wastewater treatment plant (WWTP) of Beja treating domestic sewage mixed with baker‘s yeast factory effluent. The results of daily measurements and operating records were used to calibrate the model. A sensitivity and an automatic optimization analysis were conducted to determine the most sensitive and optimal parameters. The results indicated that the ASM1 model could simulate with good accuracy: the COD concentration of effluents from the WWTP of Beja for all months of the year 2012. In addition, it prevents the disruption observed at the output of the plant by injecting the baker‘s yeast factory effluent at high concentrations varied between 20 and 80 g/l.Keywords: ASM1, activated sludge, baker’s yeast effluent, modelling, simulation, GPS-X 5.1 software
Procedia PDF Downloads 3443940 Wear Resistance of Graphene Oxide and Carbon Nanotubes Silanized Coatings
Authors: Henrique Gomes dos Santos, Manoel Henrique Alves, Jane Zoppas Ferreira, Annelise Kopp Alves
Abstract:
This work aimed to seek an environmentally sustainable surface coating alternative by researching the influence of the addition of graphene oxide (GO) and carbon nanotubes (CNT) on the silanization of coatings to increase the wear resistance in galvanized steel, using the pin-on-disk test. The results obtained were compared between different concentrations of additives and the number of coating layers, in addition to comparing with samples without coating and only with silane layers. Bis-1,2-(triethoxysilyl)ethane (BTSE) silane was used in silanizing the coatings with CNT or GO and applied to the samples through dip-coating to form one, four, or eight layers. The wear test results found that three samples stood out in relation to the objective, showing an increase in wear resistance compared to the galvanized sample only. The rolling effect and the lubricity character presented by carbon nanotubes were positive for the increase in wear resistance obtained. The reduction in wear compared to the galvanized-only sample reached 82%. Raman spectroscopy was also carried out to detect the presence of silane, GO, and CNT, in addition to roughness tests and SEM to assess the homogeneity of the coating. The carbonaceous additives, graphene oxide, and carbon nanotubes in certain amounts of layers and specific concentrations fulfilled their objective against the wear imposed on the substrate.Keywords: silane, coating, graphene oxide, carbon nanotubes, wear resistance
Procedia PDF Downloads 203939 Surface Activation of Carbon Nanotubes Generating a Chemical Interaction in Epoxy Nanocomposite
Authors: Mohamed Eldessouki, Ebraheem Shady, Yasser Gowayed
Abstract:
Carbon nanotubes (CNTs) are known for having high elastic properties with high surface area that promote them as good candidates for reinforcing polymeric matrices. In composite materials, CNTs lack chemical bonding with the surrounding matrix which decreases the possibility of better stress transfer between the components. In this work, a chemical treatment for activating the surface of the multi-wall carbon nanotubes (MWCNT) was applied and the effect of this functionalization on the elastic properties of the epoxy nanocomposites was studied. Functional amino-groups were added to the surface of the CNTs and it was evaluated to be about 34% of the total weight of the CNTs. Elastic modulus was found to increase by about 40% of the neat epoxy resin at CNTs’ weight fraction of 0.5%. The elastic modulus was found to decrease after reaching a certain concentration of CNTs which was found to be 1% wt. The scanning electron microscopic pictures showed the effect of the CNTs on the crack propagation through the sample by forming stress concentrated spots at the nanocomposite samples.Keywords: carbon nanotubes functionalization, crack propagation, elastic modulus, epoxy nanocomposites
Procedia PDF Downloads 4073938 Design of Torque Actuator in Hybrid Multi-DOF System with Taking into Account Magnetic Saturation
Authors: Hyun-Seok Hong, Tae-Chul Jeong, Huai-Cong Liu, Ju Lee
Abstract:
In this paper, proposes to replace the three-phase SPM for tilting by a single-phase torque actuator of the hybrid multi-DOF system. If a three-phase motor for tilting SPM as acting as instantaneous, low electricity use efficiency, controllability is bad disadvantages. It uses a single-phase torque actuator has a high electrical efficiency compared, good controllability. Thus this will have a great influence on the development and practical use of the system. This study designed a single phase torque actuator in consideration of the magnetic saturation. And compared the SPM and FEM analysis and validation through testing of the production model.Keywords: hybrid multi-DOF system, SPM, torque actuator, UAV, drone
Procedia PDF Downloads 6133937 Biodegradation of Phenazine-1-Carboxylic Acid by Rhodanobacter sp. PCA2 Proceeds via Decarboxylation and Cleavage of Nitrogen-Containing Ring
Authors: Miaomiao Zhang, Sabrina Beckmann, Haluk Ertan, Rocky Chau, Mike Manefield
Abstract:
Phenazines are a large class of nitrogen-containing aromatic heterocyclic compounds, which are almost exclusively produced by bacteria from diverse genera including Pseudomonas and Streptomyces. Phenazine-1-carboxylic acid (PCA) as one of 'core' phenazines are converted from chorismic acid before modified to other phenazine derivatives in different cells. Phenazines have attracted enormous interests because of their multiple roles on biocontrol, bacterial interaction, biofilm formation and fitness of their producers. However, in spite of ecological importance, degradation as a part of phenazines’ fate only have extremely limited attention now. Here, to isolate PCA-degrading bacteria, 200 mg L-1 PCA was supplied as sole carbon, nitrogen and energy source in minimal mineral medium. Quantitative PCR and Reverse-transcript PCR were employed to study abundance and activity of functional gene MFORT 16269 in PCA degradation, respectively. Intermediates and products of PCA degradation were identified with LC-MS/MS. After enrichment and isolation, a PCA-degrading strain was selected from soil and was designated as Rhodanobacter sp. PCA2 based on full 16S rRNA sequencing. As determined by HPLC, strain PCA2 consumed 200 mg L-1 (836 µM) PCA at a rate of 17.4 µM h-1, accompanying with significant cells yield from 1.92 × 105 to 3.11 × 106 cells per mL. Strain PCA2 was capable of degrading other phenazines as well, including phenazine (4.27 µM h-1), pyocyanin (2.72 µM h-1), neutral red (1.30 µM h-1) and 1-hydroxyphenazine (0.55 µM h-1). Moreover, during the incubation, transcript copies of MFORT 16269 gene increased significantly from 2.13 × 106 to 8.82 × 107 copies mL-1, which was 2.77 times faster than that of the corresponding gene copy number (2.20 × 106 to 3.32 × 107 copies mL-1), indicating that MFORT 16269 gene was activated and played roles on PCA degradation. As analyzed by LC-MS/MS, decarboxylation from the ring structure was determined as the first step of PCA degradation, followed by cleavage of nitrogen-containing ring by dioxygenase which catalyzed phenazine to nitrosobenzene. Subsequently, phenylhydroxylamine was detected after incubation for two days and was then transferred to aniline and catechol. Additionally, genomic and proteomic analyses were also carried out for strain PCA2. Overall, the findings presented here showed that a newly isolated strain Rhodanobacter sp. PCA2 was capable of degrading phenazines through decarboxylation and cleavage of nitrogen-containing ring, during which MFORT 16269 gene was activated and played important roles.Keywords: decarboxylation, MFORT16269 gene, phenazine-1-carboxylic acid degradation, Rhodanobacter sp. PCA2
Procedia PDF Downloads 2243936 Low Power Consuming Electromagnetic Actuators for Pulsed Pilot Stages
Authors: M. Honarpardaz, Z. Zhang, J. Derkx, A. Trangärd, J. Larsson
Abstract:
Pilot stages are one of the most common positioners and regulators in industry. In this paper, we present two novel concepts for pilot stages with low power consumption to regulate a pneumatic device. Pilot 1, first concept, is designed based on a conventional frame core electro-magnetic actuator and a leaf spring to control the air flow and pilot 2 has an axisymmetric actuator and spring made of non-oriented electrical steel. Concepts are simulated in a system modeling tool to study their dynamic behavior. Both concepts are prototyped and tested. Experimental results are comprehensively analyzed and compared. The most promising concept that consumes less than 8 mW is highlighted and presented.Keywords: electro-magnetic actuator, multidisciplinary system, low power consumption, pilot stage
Procedia PDF Downloads 258