Search results for: industrial pollution
3838 Branding Capability Developed from Country-Specific and Firm-Specific Resources for Internationalizing Small and Medium Enterprises
Authors: Hsing-Hua Stella Chang, Mong-Ching Lin, Cher-Min Fong
Abstract:
There has recently been a notable rise in the number of emerging-market industrial small and medium-sized enterprises (SMEs) that have managed to upgrade their operations. Evolving from original equipment manufacturing (OEM) into value-added original or own brand manufacturing (OBM) in such firms represents a specific process of internationalization. The OEM-OBM upgrade requires development of a firm’s own brand. In this respect, the extant literature points out that emerging-market industrial marketers (latecomers) have developed some marketing capabilities, of which branding has been identified as one of the most important. In specific, an industrial non-brand marketer (OEM) marks the division of labor between manufacturing and branding (as part of marketing). In light of this discussion, this research argues that branding capability plays a critical role in supporting the evolution of manufacture upgrade. This is because a smooth transformation from OEM to OBM entails the establishment of strong brands through which branding capability is developed. Accordingly, branding capability can be exemplified as a series of processes and practices in relation to mobilizing branding resources and orchestrating branding activities, which will result in the establishment of business relationships, greater acceptance of business partners (channels, suppliers), and increased industrial brand equity in the firm as key resource advantages). For the study purpose, Taiwan was chosen as the research context, representing a typical case that exemplifies the industrial development path of more-established emerging markets, namely, transformation from OEM to OBM. This research adopted a two-phase research design comprising exploratory (a qualitative study) and confirmatory approaches (a survey study) The findings show that: Country-specific advantage is positively related to branding capability for internationalizing SMEs. Firm-specific advantage is positively related to branding capability for internationalizing SMEs. Hsing-Hua Stella Chang is Assistant Professor with National Taichung University of Education, International Master of Business Administration, (Yingcai Campus) No.227, Minsheng Rd., West Dist., Taichung City 40359, Taiwan, R.O.C. (phone: 886-22183612; e-mail: [email protected]). Mong-Ching Lin is PhD candidate with National Sun Yat-Sen University, Department of Business Management, 70 Lien-hai Rd., Kaohsiung 804, Taiwan, R.O.C. (e-mail: [email protected]). Cher-Min Fong is Full Professor with National Sun Yat-Sen University, Department of Business Management, 70 Lien-hai Rd., Kaohsiung 804, Taiwan, R.O.C. (e-mail: [email protected]). Branding capability is positively related to international performance for internationalizing SMEs. This study presents a pioneering effort to distinguish industrial brand marketers from non-brand marketers in exploring the role of branding capability in the internationalizing small and medium-sized industrial brand marketers from emerging markets. Specifically, when industrial non-brand marketers (OEMs) enter into a more advanced stage of internationalization (i.e., OBM), they must overcome disadvantages (liabilities of smallness, foreignness, outsidership) that do not apply in the case of incumbent developed-country MNEs with leading brands. Such critical differences mark the urgency and significance of distinguishing industrial brand marketers from non-brand marketers on issues relating to their value-adding branding and marketing practices in international markets. This research thus makes important contributions to the international marketing, industrial branding, and SME internationalization literature.Keywords: brand marketers, branding capability, emerging markets, SME internationalization
Procedia PDF Downloads 843837 Scaling-Down an Agricultural Waste Biogas Plant Fermenter
Authors: Matheus Pessoa, Matthias Kraume
Abstract:
Scale-Down rules in process engineering help us to improve and develop Industrial scale parameters into lab scale. Several scale-down rules available in the literature like Impeller Power Number, Agitation device Power Input, Substrate Tip Speed, Reynolds Number and Cavern Development were investigated in order to stipulate the rotational speed to operate an 11 L working volume lab-scale bioreactor within industrial process parameters. Herein, xanthan gum was used as a fluid with a representative viscosity of a hypothetical biogas plant, with H/D = 1 and central agitation, fermentation broth using sewage sludge and sugar beet pulp as substrate. The results showed that the cavern development strategy was the best method for establishing a rotational speed for the bioreactor operation, while the other rules presented values out of reality for this article proposes.Keywords: anaerobic digestion, cavern development, scale down rules, xanthan gum
Procedia PDF Downloads 4963836 Comparative Assessment of Microplastic Pollution in Surface Water and Sediment of the Gomati and Saryu Rivers, India
Authors: Amit K. Mishra, Jaswant Singh
Abstract:
The menace of plastic, which significantly pollutes the aquatic environment, has emerged as a global problem. There is an emerging concern about microplastics (MPs) accumulation in aquatic ecosystems. It is familiar to everyone that the ultimate end for most of the plastic debris is the ocean. Rivers are the efficient carriers for transferring MPs from terrestrial to aquatic, further from upstream to downstream areas, and ultimately to oceans. The root cause study can provide an effective solution to a problem; hence, tracing of MPs in the riverine system can illustrate the long-term microplastic pollution. This study aimed to investigate the occurrence and distribution of microplastic contamination in surface water and sediment of the two major river systems of Uttar Pradesh, India. One is the Gomti River, Lucknow, a tributary of the Ganga, and the second is the Saryu River, the lower part of the Ghagra River, which flows through the city of Ayodhya. In this study, the distribution and abundance of MPs in surface water and sediments of two rivers were compared. Samples of water and sediment were collected from different (four from each river) sampling stations in the river catchment of two rivers. Plastic particles were classified according to type, shape, and color. In this study, 1523 (average abundance 254) and 143 (average abundance 26) microplastics were identified in all studied sites in the Gomati River and Saryu River, respectively. Observations on samples of water showed that the average MPs concentration was 392 (±69.6) and 63 ((±18.9) particles per 50l of water, whereas the sediment sample showed that the average MPs concentration was 116 (±42.9) and 46 (±12.5) particles per 250gm of dry sediment in the Gomati River and Saryu River, respectively. The high concentration of microplastics in the Lucknow area can be attributed to human activities, population density, and the entry of various effluents into the river. Microplastics with fibrous shapes were dominated, followed by fragment shapes in all the samples. The present study is a pioneering effort to count MPs in the Gomati and Saryu River systems.Keywords: freshwater, Gomati, microplastics, Saryu, sediment
Procedia PDF Downloads 863835 Mixing Students: an Educational Experience with Future Industrial Designers and Mechanical Engineers
Authors: J. Lino Alves, L. Lopes
Abstract:
It is not new that industrial design projects are a result of cooperative work from different areas of knowledge. However, in the academic teaching of Industrial Design and Mechanical Engineering courses, it is not recurrent that those competences are mixed before the professional life arrives. This abstract intends to describe two semester experiences carried out by two professors - a mechanical engineer and an industrial designer - in the last two academic years, for which they created mixed teams of Industrial Design and Mechanical Engineering (UPorto University). The two experiences differ in several factors; the main one is related to the challenges of online education, a constraint that affected the second experience. In the first year, even before foreseeing the effects that the pandemic would reconfigure the education system, a partnership with the Education Service of Águas do Porto was established. The purpose of the exercise was the project development of a game that could be an interaction element oriented to potentiate a positive experience and as an educational contribution to the children. In the second year, already foreseeing that the teaching experience would be carried out online, it was decided to design an open briefing, which allowed the groups to choose among three themes: a hand scale game using additive manufacturing; a modular system for ventilated facade using a parametric design basis; or, a modular system for vertical gardens. In methodological terms, besides the weekly follow-up, with the simultaneous support of the two professors, a group self-evaluation was requested; and a form to be filled individually to evaluate other groups. One of the first conclusions is related to the briefing format. Industrial Design students seem comfortable working on an open briefing that allows them to draw the project on a conceptual basis created for that purpose; on the other hand, Mechanical Engineering students were uncomfortable and insecure in the initial phase due to the absence of concrete, closed "order." In other words, it is not recurrent for Mechanical Engineering students that the creative component is stimulated, seemingly leaving them reserved to the technical solution and execution, depriving them of the co-creation phase during the conceptual construction of the project's own brief. Another fact that was registered is related to the leadership positions in the groups, which alternated according to the state of development of the project: design students took the lead during the ideation/concept phase, while mechanical engineering ones took a greater lead during the intermediate development process, namely in the definition of constructive solutions, mass/volume calculations, manufacturing, and material resistance. Designers' competences were again more evident and assumed in the final phase, especially in communication skills, as well as in simulations in the context of use. However, at some moments, it was visible the capacity for quite balanced leadership between engineering and design, in a constant debate centered on the human factor of the project - evidenced in the final solution, in the compromise and balance between technical constraints, functionality, usability, and aesthetics.Keywords: education, industrial design, mechanical engineering, teaching ethodologies
Procedia PDF Downloads 1773834 Studying the Photodegradation Behavior of Microplastics Released from Agricultural Plastic Products to the Farmland
Authors: Maryam Salehi, Gholamreza Bonyadinejad
Abstract:
The application of agricultural plastic products like mulch, greenhouse covers, and silage films is increasing due to their economic benefits in providing an early and better-quality harvest. In 2015, the 4 million tons (valued a 10.6 million USD) global market for agricultural plastic films was estimated to grow by 5.6% per year through 2030. Despite the short-term benefits provided by plastic products, their long-term sustainability issues and negative impacts on soil health are not well understood. After their removal from the field, some plastic residuals remain in the soil. Plastic residuals in farmlands may fragment to small particles called microplastics (d<5mm). The microplastics' exposure to solar radiation could alter their surface chemistry and make them susceptible to fragmentation. Thus, this study examined the photodegradation of low density polyethylene as the model microplastics that are released to the agriculture farmland. The variation of plastic’s surface chemistry, morphology, and bulk characteristics were studied after accelerated UV-A radiation experiments and sampling from an agricultural field. The Attenuated Total Reflectance Fourier Transform Spectroscopy (ATR-FTIR) and X-ray Photoelectron Spectroscopy (XPS) demonstrated the formation of oxidized surface functional groups onto the microplastics surface due to the photodegradation. The Differential Scanning Calorimetry (DSC) analysis revealed an increased crystallinity for the photodegraded microplastics compared to the new samples. The gel permeation chromatography (GPC) demonstrated the reduced molecular weight for the polymer due to the photodegradation. This study provides an important opportunity to advance understanding of soil pollution. Understanding the plastic residuals’ variations as they are left in the soil is providing a critical piece of information to better estimate the microplastics' impacts on environmental biodiversity, ecosystem sustainability, and food safety.Keywords: soil health, plastic pollution, sustainability, photodegradation
Procedia PDF Downloads 2253833 Corporate Fund Mobilization for Listed Companies and Economic Development: Case of Mongolian Stock Exchange
Authors: Ernest Nweke, Enkhtuya Bavuudorj
Abstract:
The Mongolia Stock Exchange (MSE) serves as a vehicle for executing the privatization policy of Mongolian Government as it transitioned from socialist to free market economy. It was also the intention of the Government to develop the investment and securities market through its establishment and to further boost the ailing Mongolian economy. This paper focuses on the contributions of the Mongolian Stock Exchange (MSE) to the industrial and economic development of Mongolia via Corporate fund mobilization for listed companies in Mongolia. A study of this nature is imperative as economic development in Mongolia has been accelerated by corporate investments. The key purpose of the research was to critically analyze the operations of the MSE to ascertain the extent to which the objectives for which it was established have been accomplished and to assess its contributions to industrial and economic development of Mongolia. In achieving this, secondary data on the activities of the MSE; its market capitalization over the years were collected and analyzed vis-à-vis the figures for Mongolia’s macro-economic data for the same time period to determine whether the progressive increase in market capitalization of the MSE has positively impacted on Mongolia’s economic growth. Regression analysis package was utilized in dissecting the data. It was proven that the Mongolian Stock Exchange has contributed positively and significantly to Mongolia’s economic development though not yet to the desired level. Against the findings of this research, recommendations were made to address, the problems facing the MSE and to enhance its performance and ultimately its contributions to industrial and economic development of the Mongolian nation.Keywords: Corporate Fund Mobilization, Gross Domestic Product (GDP), market capitalization, purchasing power, stock exchange
Procedia PDF Downloads 2573832 Using the Ecological Analysis Method to Justify the Environmental Feasibility of Biohydrogen Production from Cassava Wastewater Biogas
Authors: Jonni Guiller Madeira, Angel Sanchez Delgado, Ronney Mancebo Boloy
Abstract:
The use bioenergy, in recent years, has become a good alternative to reduce the emission of polluting gases. Several Brazilian and foreign companies are doing studies related to waste management as an essential tool in the search for energy efficiency, taking into consideration, also, the ecological aspect. Brazil is one of the largest cassava producers in the world; the cassava sub-products are the food base of millions of Brazilians. The repertoire of results about the ecological impact of the production, by steam reforming, of biohydrogen from cassava wastewater biogas is very limited because, in general, this commodity is more common in underdeveloped countries. This hydrogen, produced from cassava wastewater, appears as an alternative fuel to fossil fuels since this is a low-cost carbon source. This paper evaluates the environmental impact of biohydrogen production, by steam reforming, from cassava wastewater biogas. The ecological efficiency methodology developed by Cardu and Baica was used as a benchmark in this study. The methodology mainly assesses the emissions of equivalent carbon dioxide (CO₂, SOₓ, CH₄ and particulate matter). As a result, some environmental parameters, such as equivalent carbon dioxide emissions, pollutant indicator, and ecological efficiency are evaluated due to the fact that they are important to energy production. The average values of the environmental parameters among different biogas compositions (different concentrations of methane) were calculated, the average pollution indicator was 10.11 kgCO₂e/kgH₂ with an average ecological efficiency of 93.37%. As a conclusion, bioenergy production using biohydrogen from cassava wastewater treatment plant is a good option from the environmental feasibility point of view. This fact can be justified by the determination of environmental parameters and comparison of the environmental parameters of hydrogen production via steam reforming from different types of fuels.Keywords: biohydrogen, ecological efficiency, cassava, pollution indicator
Procedia PDF Downloads 2013831 Mathematical Modeling for the Break-Even Point Problem in a Non-homogeneous System
Authors: Filipe Cardoso de Oliveira, Lino Marcos da Silva, Ademar Nogueira do Nascimento, Cristiano Hora de Oliveira Fontes
Abstract:
This article presents a mathematical formulation for the production Break-Even Point problem in a non-homogeneous system. The optimization problem aims to obtain the composition of the best product mix in a non-homogeneous industrial plant, with the lowest cost until the breakeven point is reached. The problem constraints represent real limitations of a generic non-homogeneous industrial plant for n different products. The proposed model is able to solve the equilibrium point problem simultaneously for all products, unlike the existing approaches that propose a resolution in a sequential way, considering each product in isolation and providing a sub-optimal solution to the problem. The results indicate that the product mix found through the proposed model has economical advantages over the traditional approach used.Keywords: branch and bound, break-even point, non-homogeneous production system, integer linear programming, management accounting
Procedia PDF Downloads 2153830 Optimization for Autonomous Robotic Construction by Visual Guidance through Machine Learning
Authors: Yangzhi Li
Abstract:
Network transfer of information and performance customization is now a viable method of digital industrial production in the era of Industry 4.0. Robot platforms and network platforms have grown more important in digital design and construction. The pressing need for novel building techniques is driven by the growing labor scarcity problem and increased awareness of construction safety. Robotic approaches in construction research are regarded as an extension of operational and production tools. Several technological theories related to robot autonomous recognition, which include high-performance computing, physical system modeling, extensive sensor coordination, and dataset deep learning, have not been explored using intelligent construction. Relevant transdisciplinary theory and practice research still has specific gaps. Optimizing high-performance computing and autonomous recognition visual guidance technologies improves the robot's grasp of the scene and capacity for autonomous operation. Intelligent vision guidance technology for industrial robots has a serious issue with camera calibration, and the use of intelligent visual guiding and identification technologies for industrial robots in industrial production has strict accuracy requirements. It can be considered that visual recognition systems have challenges with precision issues. In such a situation, it will directly impact the effectiveness and standard of industrial production, necessitating a strengthening of the visual guiding study on positioning precision in recognition technology. To best facilitate the handling of complicated components, an approach for the visual recognition of parts utilizing machine learning algorithms is proposed. This study will identify the position of target components by detecting the information at the boundary and corner of a dense point cloud and determining the aspect ratio in accordance with the guidelines for the modularization of building components. To collect and use components, operational processing systems assign them to the same coordinate system based on their locations and postures. The RGB image's inclination detection and the depth image's verification will be used to determine the component's present posture. Finally, a virtual environment model for the robot's obstacle-avoidance route will be constructed using the point cloud information.Keywords: robotic construction, robotic assembly, visual guidance, machine learning
Procedia PDF Downloads 913829 Kaolinite-Assisted Microencapsulation of Octodecane for Thermal Energy Storage
Authors: Ting Pan, Jiacheng Wang, Pengcheng Lin, Ying Chen, Songping Mo
Abstract:
Phase change materials (PCMs) are widely used in latent heat thermal energy storage because of their good properties such as high energy storage density and constant heat-storage/release temperature. Microencapsulation techniques can prevent PCMs from leaking during the liquid-solid phase transition and enhance thermal properties. This technique has been widely applied in architectural materials, thermo-regulated textiles, aerospace fields, etc. One of the most important processes during the synthesis of microcapsules is to form a stable emulsion of the PCM core and reactant solution for the formation of the shell of the microcapsules. The use of surfactants is usually necessary for the formation of a stable emulsion system because of the difference in hydrophilia/lipophilicity of the PCM and the solvent. Unfortunately, the use of surfactants may cause pollution to the environment. In this study, modified kaolinite was used as an emulsion stabilizer for the microencapsulation of octodecane as PCM. Microcapsules were synthesized by phase inversion emulsification method, and the shell of polymethyl methacrylate (PMMA) was formed through free radical polymerization. The morphologies, crystalloid phase, and crystallization properties of microcapsules were investigated using scanning electron microscopy (SEM), X-ray diffractometer (XRD), and Fourier transforms infrared spectrometer (FTIR). The thermal properties and thermal stability were investigated by a differential scanning calorimeter (DSC) and a thermogravimetric analyzer (TG). The FT-IR, XRD results showed that the octodecane was well encapsulated in the PMMA shell. The SEM results showed that the microcapsules were spheres with an average size of about 50-100nm. The DSC results indicated that the latent heat of the microcapsules was 152.64kJ/kg and 164.23kJ/kg. The TG results confirmed that the microcapsules had good thermal stability due to the PMMA shell. Based on the results, it can be concluded that the modified kaolinite can be used as an emulsifier for the synthesis of PCM microcapsules, which is valid for reducing part of the possible pollution caused by the utilization of surfactants.Keywords: kaolinite, microencapsulation, PCM, thermal energy storage
Procedia PDF Downloads 1353828 Effect of Acid Activation of Vermiculite on Its Carbon Dioxide Adsorption Behaviors
Authors: Katarzyna Wal, Wojciech Stawiński, Piotr Rutkowski
Abstract:
The scientific community is paying more and more attention to the problem of air pollution. Carbon dioxide is classified as one of the most harmful gases. Its emissions are generated during fossil fuel burning, waste management, and combustion and are responsible for global warming. Clay minerals constitute a group of promising materials for the role of adsorbents. They are composed of two types of phyllosilicate sheets: tetrahedral and octahedral, which form 1:1 or 2:1 structures. Vermiculite is one of their best-known representative, which can be used as an adsorbent from water and gaseous phase. The aim of the presented work was carbon dioxide adsorption on vermiculite. Acid-activated samples (W_NO3_x) were prepared by acid treatment with different concentrations of nitric acid (1, 2, 3, 4 mol L⁻¹). Vermiculite was subjected to modification in order to increase its porosity and adsorption properties. The prepared adsorbents were characterized using the BET-specific surface area analysis, thermogravimetry (TG), attenuated total reflectance-Fourier transform infrared (ATR-FTIR) spectroscopy, X-ray diffraction (XRD) and scanning electron microscopy (SEM). Applied modifications significantly increase the specific surface area from 78,21 m² g⁻¹ for the unmodified sample (W_REF) to 536 m² g-1 for W_NO3_4. Obtained results showed that acid treatment tunes the material’s functional properties by increasing the contact surface and generating more active sites in its structure. The adsorption performance in terms carbon dioxide adsorption capacities follows the order of W_REF (25.91 mg g⁻¹) < W_NO3_1 (38.54 mg g⁻¹) < W_NO3_2 (44.03 mg g⁻¹) W_NO3_4 (67.51 mg g⁻¹) < W_NO3_3 (70.48 mg g⁻¹). Acid activation significantly improved the carbon dioxide adsorption properties of modified samples compared to raw material. These results demonstrate that vermiculite-based samples have the potential to be used as effective CO₂ adsorbents. Furthermore, acid treatment is a promising technique for improving the adsorption properties of clay minerals.Keywords: adsorption, adsorbent, clay minerals, air pollution, environment
Procedia PDF Downloads 1513827 The Impact of Reducing Road Traffic Speed in London on Noise Levels: A Comparative Study of Field Measurement and Theoretical Calculation
Authors: Jessica Cecchinelli, Amer Ali
Abstract:
The continuing growth in road traffic and the resultant impact on the level of pollution and safety especially in urban areas have led local and national authorities to reduce traffic speed and flow in major towns and cities. Various boroughs of London have recently reduced the in-city speed limit from 30mph to 20mph mainly to calm traffic, improve safety and reduce noise and vibration. This paper reports the detailed field measurements using noise sensor and analyser and the corresponding theoretical calculations and analysis of the noise levels on a number of roads in the central London Borough of Camden where speed limit was reduced from 30mph to 20mph in all roads except the major routes of the ‘Transport for London (TfL)’. The measurements, which included the key noise levels and scales at residential streets and main roads, were conducted during weekdays and weekends normal and rush hours. The theoretical calculations were done according to the UK procedure ‘Calculation of Road Traffic Noise 1988’ and with conversion to the European L-day, L-evening, L-night, and L-den and other important levels. The current study also includes comparable data and analysis from previously measured noise in the Borough of Camden and other boroughs of central London. Classified traffic flow and speed on the roads concerned were observed and used in the calculation part of the study. Relevant data and description of the weather condition are reported. The paper also reports a field survey in the form of face-to-face interview questionnaires, which was carried out in parallel with the field measurement of noise, in order to ascertain the opinions and views of local residents and workers in the reduced speed zones of 20mph. The main findings are that the reduction in speed had reduced the noise pollution on the studied zones and that the measured and calculated noise levels for each speed zone are closely matched. Among the other findings was that of the field survey of the opinions and views of the local residents and workers in the reduced speed 20mph zones who supported the scheme and felt that it had improved the quality of life in their areas giving a sense of calmness and safety particularly for families with children, the elderly, and encouraged pedestrians and cyclists. The key conclusions are that lowering the speed limit in built-up areas would not just reduce the number of serious accidents but it would also reduce the noise pollution and promote clean modes of transport particularly walking and cycling. The details of the site observations and the corresponding calculations together with critical comparative analysis and relevant conclusions will be reported in the full version of the paper.Keywords: noise calculation, noise field measurement, road traffic noise, speed limit in london, survey of people satisfaction
Procedia PDF Downloads 4253826 Review of Microstructure, Mechanical and Corrosion Behavior of Aluminum Matrix Composite Reinforced with Agro/Industrial Waste Fabricated by Stir Casting Process
Authors: Mehari Kahsay, Krishna Murthy Kyathegowda, Temesgen Berhanu
Abstract:
Aluminum matrix composites have gained focus on research and industrial use, especially those not requiring extreme loading or thermal conditions, for the last few decades. Their relatively low cost, simple processing and attractive properties are the reasons for the widespread use of aluminum matrix composites in the manufacturing of automobiles, aircraft, military, and sports goods. In this article, the microstructure, mechanical, and corrosion behaviors of the aluminum metal matrix were reviewed, focusing on the stir casting fabrication process and usage of agro/industrial waste reinforcement particles. The results portrayed that mechanical properties like tensile strength, ultimate tensile strength, hardness, percentage of elongation, impact, and fracture toughness are highly dependent on the amount, kind, and size of reinforcing particles. Additionally, uniform distribution, wettability of reinforcement particles, and the porosity level of the resulting composite also affect the mechanical and corrosion behaviors of aluminum matrix composites. The two-step stir-casting process resulted in better wetting characteristics, a lower porosity level, and a uniform distribution of particles with proper handling of process parameters. On the other hand, the inconsistent and contradicting results on corrosion behavior regarding monolithic and hybrid aluminum matrix composites need further study.Keywords: microstructure, mechanical behavior, corrosion, aluminum matrix composite
Procedia PDF Downloads 773825 Evaluation of Health Risk Degree Arising from Heavy Metals Present in Drinking Water
Authors: Alma Shehu, Majlinda Vasjari, Sonila Duka, Loreta Vallja, Nevila Broli
Abstract:
Humans consume drinking water from several sources, including tap water, bottled water, natural springs, filtered tap water, etc. The quality of drinking water is crucial for human survival given the fact that the consumption of contaminated drinking water is related to many diseases and deaths all over the world. This study represents the investigation of the quality and health risks of different types of drinking waters being consumed by the population in Albania, arising from heavy metals content. Investigated water included industrialized water, tap water, and spring water. In total, 20 samples were analyzed for the content of Pb, Cd, Cr, Ni, Cu, Fe, Zn, Al, and Mn. Determination of each metal concentration in selected samples was conducted by atomic absorption spectroscopy method with electrothermal atomization, GFAAS. Water quality was evaluated by comparing the obtained metals concentrations with the recommended maximum limits, according to the European Directive (98/83/EC) and Guidelines for Drinking Water Quality (WHO, 2017). Metal Index (MI) was used to assess the overall water quality due to heavy metals content. Health risk assessment was conducted based on the recommendations of the USEPA (1996), human health risk assessment, via ingestion. Results of this investigation showed that Al, Ni, Fe, and Cu were the metals found in higher concentrations while Cd exhibited the lowest concentration. Among the analyzed metals, Al (one sample) and Ni (in five samples) exceeded the maximum allowed limit. Based on the pollution metal index, it was concluded that the overall quality of Glina bottled water can be considered as toxic to humans, while the quality of bottled water (Trebeshina) was classified as moderately toxic. Values of health risk quotient (HQ) varied between 1x10⁻⁶-1.3x10⁻¹, following the order Ni > Cd > Pb > Cu > Al > Fe > Zn > Mn. All the values were lower than 1, which suggests that the analyzed samples exhibit no health risk for humans.Keywords: drinking water, health risk assessment, heavy metals, pollution index
Procedia PDF Downloads 1353824 Industrial Wastewater Sludge Treatment in Chongqing, China
Authors: Victor Emery David Jr., Jiang Wenchao, Yasinta John, Md. Sahadat Hossain
Abstract:
Sludge originates from the process of treatment of wastewater. It is the byproduct of wastewater treatment containing concentrated heavy metals and poorly biodegradable trace organic compounds, as well as potentially pathogenic organisms (viruses, bacteria, etc.) which are usually difficult to treat or dispose of. China, like other countries, is no stranger to the challenges posed by an increase of wastewater. Treatment and disposal of sludge have been a problem for most cities in China. However, this problem has been exacerbated by other issues such as lack of technology, funding, and other factors. Suitable methods for such climatic conditions are still unavailable for modern cities in China. Against this background, this paper seeks to describe the methods used for treatment and disposal of sludge from industries and suggest a suitable method for treatment and disposal in Chongqing/China. From the research conducted, it was discovered that the highest treatment rate of sludge in Chongqing was 10.08%. The industrial waste piping system is not separated from the domestic system. Considering the proliferation of industry and urbanization, there is a likelihood that the production of sludge in Chongqing will increase. If the sludge produced is not properly managed, this may lead to adverse health and environmental effects. Disposal costs and methods for Chongqing were also included in this paper’s analysis. Research showed that incineration is the most expensive method of sludge disposal in China/Chongqing. Subsequent research, therefore, considered optional alternatives such as composting. Composting represents a relatively cheap waste disposal method considering the vast population, current technology and economic conditions of Chongqing, as well as China at large.Keywords: Chongqing/China, disposal, industrial, sludge, treatment
Procedia PDF Downloads 3243823 Environmental Problems (with Examples from Georgia)
Authors: Ana Asratashvili
Abstract:
One of the main issues of state’s economic policy is the environmental problems. The development of society is implementing by the connection with nature. A human being needs different material resources which must be got by the influence on the nature. This relationship between nature and society is complicated and controversial and it was changing from time to time according to human’s evolution. The imprudent and unreasonable usage of natural resources, scientific-technological revolution and the hard pollution of nature related to it caused the disruption of environmental balance between nature and society which has been made for ages and destructively acted on society and environment. Environmental protection is one of the major issues of the European Union all over the world. The aim of EU environmental policy is to improve ecological conditions. Besides, it aims encouraging of careful and rational usage of natural resources. At the same time, the union tries to raise problems related to environmental protection at the international level. After that when scientists concluded anthropogenic impact of human on the nature causes climate changes, the special attention was paid to the environmental protection by developed countries. Global warming will cause floods, storms, draughts and desertification and to solve these results presumably will cost 20% of World GDP by 2050 for developed countries, if, of course, it does not make strict environmental policy. EU member countries have pretty strict environmental standards. Their defense is observed by different state institutions. According to impacts on nature throughout the world the most polluted fumes are made by electricity facilities (44%), transport (20%), industry (18%), domestic and service sector (17%). The special concern to the issues related to the importance of environment by environmentalists is caused by low self-esteem of population about the problems of environment. According to their mind, population is engaged with daily difficulties so that they don’t react much on environmental problems. Correspondingly, the main task for environmental organizations is to inform population and raise self-esteem about environmental issues.Keywords: economic policy, environment, technological revolution, pollution, environmental, standards, self-esteem
Procedia PDF Downloads 3003822 A Systematic Review of Business Strategies Which Can Make District Heating a Platform for Sustainable Development of Other Sectors
Authors: Louise Ödlund, Danica Djuric Ilic
Abstract:
Sustainable development includes many challenges related to energy use, such as (1) developing flexibility on the demand side of the electricity systems due to an increased share of intermittent electricity sources (e.g., wind and solar power), (2) overcoming economic challenges related to an increased share of renewable energy in the transport sector, (3) increasing efficiency of the biomass use, (4) increasing utilization of industrial excess heat (e.g., approximately two thirds of the energy currently used in EU is lost in the form of excess and waste heat). The European Commission has been recognized DH technology as of essential importance to reach sustainability. Flexibility in the fuel mix, and possibilities of industrial waste heat utilization, combined heat, and power (CHP) production and energy recovery through waste incineration, are only some of the benefits which characterize DH technology. The aim of this study is to provide an overview of the possible business strategies which would enable DH to have an important role in future sustainable energy systems. The methodology used in this study is a systematic literature review. The study includes a systematic approach where DH is seen as a part of an integrated system that consists of transport , industrial-, and electricity sectors as well. The DH technology can play a decisive role in overcoming the sustainability challenges related to our energy use. The introduction of biofuels in the transport sector can be facilitated by integrating biofuel and DH production in local DH systems. This would enable the development of local biofuel supply chains and reduce biofuel production costs. In this way, DH can also promote the development of biofuel production technologies that are not yet developed. Converting energy for running the industrial processes from fossil fuels and electricity to DH (above all biomass and waste-based DH) and delivering excess heat from industrial processes to the local DH systems would make the industry less dependent on fossil fuels and fossil fuel-based electricity, as well as the increasing energy efficiency of the industrial sector and reduce production costs. The electricity sector would also benefit from these measures. Reducing the electricity use in the industry sector while at the same time increasing the CHP production in the local DH systems would (1) replace fossil-based electricity production with electricity in biomass- or waste-fueled CHP plants and reduce the capacity requirements from the national electricity grid (i.e., it would reduce the pressure on the bottlenecks in the grid). Furthermore, by operating their central controlled heat pumps and CHP plants depending on the intermittent electricity production variation, the DH companies may enable an increased share of intermittent electricity production in the national electricity grid.Keywords: energy system, district heating, sustainable business strategies, sustainable development
Procedia PDF Downloads 1733821 Time, Uncertainty, and Technological Innovation
Authors: Xavier Everaert
Abstract:
Ever since the publication of “The Problem of Social” cost, Coasean insights on externalities, transaction costs, and the reciprocal nature of harms, have been widely debated. What has been largely neglected however, is the role of technological innovation in the mitigation of negative externalities or transaction costs. Incorporating future uncertainty about negligence standards or expected restitution costs and the profit opportunities these uncertainties reveal to entrepreneurs, allow us to frame problems regarding social costs within the reality of rapid technological evolution.Keywords: environmental law and economics, entrepreneurship, commons, pollution, wildlife
Procedia PDF Downloads 4243820 Reimagine and Redesign: Augmented Reality Digital Technologies and 21st Century Education
Authors: Jasmin Cowin
Abstract:
Augmented reality digital technologies, big data, and the need for a teacher workforce able to meet the demands of a knowledge-based society are poised to lead to major changes in the field of education. This paper explores applications and educational use cases of augmented reality digital technologies for educational organizations during the Fourth Industrial Revolution. The Fourth Industrial Revolution requires vision, flexibility, and innovative educational conduits by governments and educational institutions to remain competitive in a global economy. Educational organizations will need to focus on teaching in and for a digital age to continue offering academic knowledge relevant to 21st-century markets and changing labor force needs. Implementation of contemporary disciplines will need to be embodied through learners’ active knowledge-making experiences while embracing ubiquitous accessibility. The power of distributed ledger technology promises major streamlining for educational record-keeping, degree conferrals, and authenticity guarantees. Augmented reality digital technologies hold the potential to restructure educational philosophies and their underpinning pedagogies thereby transforming modes of delivery. Structural changes in education and governmental planning are already increasing through intelligent systems and big data. Reimagining and redesigning education on a broad scale is required to plan and implement governmental and institutional changes to harness innovative technologies while moving away from the big schooling machine.Keywords: fourth industrial revolution, artificial intelligence, big data, education, augmented reality digital technologies, distributed ledger technology
Procedia PDF Downloads 2823819 The Use of Haar Wavelet Mother Signal Tool for Performance Analysis Response of Distillation Column (Application to Moroccan Case Study)
Authors: Mahacine Amrani
Abstract:
This paper aims at reviewing some Moroccan industrial applications of wavelet especially in the dynamic identification of a process model using Haar wavelet mother response. Two recent Moroccan study cases are described using dynamic data originated by a distillation column and an industrial polyethylene process plant. The purpose of the wavelet scheme is to build on-line dynamic models. In both case studies, a comparison is carried out between the Haar wavelet mother response model and a linear difference equation model. Finally it concludes, on the base of the comparison of the process performances and the best responses, which may be useful to create an estimated on-line internal model control and its application towards model-predictive controllers (MPC). All calculations were implemented using AutoSignal Software.Keywords: process performance, model, wavelets, Haar, Moroccan
Procedia PDF Downloads 3203818 Quantification of Uncertainties Related to the Implementation of Reverse Logistics Process
Authors: Dnaya Soukaina
Abstract:
It’s over six decades that Reverse logistics had appeared as a research area, and it is emerging again and again in the scientific fields. As reverse logistics presents real potential for value recovery and environmental impacts decrease, it’s still necessary to extend this concept more in the industrial and commercial field especially in developing countries. The process of reverse logistics is a progression of steps beginning with the customer and finishing with the organization or even the customer, however the issue is that this cycle must be adjustable to the organization concerned, in addition of legislative, operational, financial and social obstacles. Literature had demonstrated that there are many other uncertainties while the implementation of this process that vary in function of the sector concerned and the kind of activity. Besides, even if literature is developing this topic over the last years, reseraches about uncertainties quantification in reverse logistics process still being few. the paper has the objective to fill this gap, and carry out a study to identify sustainable strategies that can be adapted to different industrial or commercial sectors to facilitate the implementation of reverse logistics.Keywords: reverse logistics, implementation, unceratinties quantification, mathematical model
Procedia PDF Downloads 263817 The Dead Alexandrian Historic Vein: The Revitalization of Mahmoudiyah Canal 'The Forgotten Environmental Asset'
Authors: Sara S. Fouad, Omneya Messallam
Abstract:
In 1818, a seventy-five kilometer long canal was dug (called the Mahmoudiyah canal) connecting between Alexandria city in Egypt and the western branch of the Nile. It was a productive resource and vital to its environment, context, transportation, and recreation. It played a significant role in people’s lives and Alexandria city’s shape. The canal, which was the main vein of goods’ transporting from Alexandria’s seaport to the different parts of Egypt, was still in use today as a major source of clear water in the city. But nowadays, Mahmoudiyah canal is converting into ‘dead waterway’. The canal became sources of pollution as a result of solid and industrial waste thus causing many diseases, destroying communities and biodiversity, with urban invasion, the loss of community aesthetic value and healthy environment. Therefore, this paper aims to propose an urban strategy, as a solution to revive the forgotten canal, through recreating a cultural promenade on its shore. The main aim of this research is to formulate decent quality of life, unpolluted space, an area gathering the city space for nature, tourism and investments. As a case study, this paper investigates Mahmoudiyah canal through urban and ecological analyses, aiming to design an urban strategy for reviving it by creating a cultural promenade enriched with public spaces and green areas, which can most probably enhance the quality of life, city re-living and development. Community participation is also considered as vital and intrinsic implementation stage. The empirical research involved using several data assembly methods such as interviews, mental mapping, structural observations and questionnaires. The paper ends with a set of conclusions leading to proposals for the Mahmoudiyah canal revitalization considering the complex challenges and processes of sustainable regeneration focusing on city’s rehabilitation and lost identity.Keywords: Mahmoudiyah canal, community aesthetic value, city re-living, cultural promenade
Procedia PDF Downloads 1333816 Monitoring Peri-Urban Growth and Land Use Dynamics with GIS and Remote Sensing Techniques: A Case Study of Burdwan City, India
Authors: Mohammad Arif, Soumen Chatterjee, Krishnendu Gupta
Abstract:
The peri-urban interface is an area of transition where the urban and rural areas meet and interact. So the peri-urban areas, which is characterized by strong urban influence, easy access to markets, services and other inputs, are ready supplies of labour but distant from the land paucity and pollution related to urban growth. Hence, the present study is primarily aimed at quantifying the spatio-temporal pattern of land use/land cover change during the last three decades (i.e., 1987 to 2016) in the peri-urban area of Burdwan city. In the recent past, the morphology of the study region has rapid change due to high growth of population and establishment of industries. The change has predominantly taken place along the State and National Highway 2 (NH-2) and around the Burdwan Municipality for meeting both residential and commercial purposes. To ascertain the degree of change in land use and land cover, over the specified time, satellite imageries and topographical sheets are employed. The data is processed through appropriate software packages to arrive at a deduction that most of the land use changes have occurred by obliterating agricultural land & water bodies and substituting them by built area and industrial spaces. Geospatial analysis of study area showed that this area has experienced a steep increase (30%) of built-up areas and excessive decrease (15%) in croplands between 1987 and 2016. Increase in built-up areas is attributed to the increase of out-migration during this period from the core city. This study also examined social, economic and institutional factors that lead to this rapid land use change in peri-urban areas of the Burdwan city by carrying out a field survey of 250 households in peri-urban areas. The research concludes with an urgency for regulating land subdivisions in peri-urban areas to prevent haphazard land use development. It is expected that the findings of the study would go a long way in facilitating better policy making.Keywords: growth, land use land cover, morphology, peri-urban, policy making
Procedia PDF Downloads 1763815 The Relationship between Personal, Psycho-Social and Occupational Risk Factors with Low Back Pain Severity in Industrial Workers
Authors: Omid Giahi, Ebrahim Darvishi, Mahdi Akbarzadeh
Abstract:
Introduction: Occupational low back pain (LBP) is one of the most prevalent work-related musculoskeletal disorders in which a lot of risk factors are involved that. The present study focuses on the relation between personal, psycho-social and occupational risk factors and LBP severity in industrial workers. Materials and Methods: This research was a case-control study which was conducted in Kurdistan province. 100 workers (Mean Age ± SD of 39.9 ± 10.45) with LBP were selected as the case group, and 100 workers (Mean Age ± SD of 37.2 ± 8.5) without LBP were assigned into the control group. All participants were selected from various industrial units, and they had similar occupational conditions. The required data including demographic information (BMI, smoking, alcohol, and family history), occupational (posture, mental workload (MWL), force, vibration and repetition), and psychosocial factors (stress, occupational satisfaction and security) of the participants were collected via consultation with occupational medicine specialists, interview, and the related questionnaires and also the NASA-TLX software and REBA worksheet. Chi-square test, logistic regression and structural equation modeling (SEM) were used to analyze the data. For analysis of data, IBM Statistics SPSS 24 and Mplus6 software have been used. Results: 114 (77%) of the individuals were male and 86 were (23%) female. Mean Career length of the Case Group and Control Group were 10.90 ± 5.92, 9.22 ± 4.24, respectively. The statistical analysis of the data revealed that there was a significant correlation between the Posture, Smoking, Stress, Satisfaction, and MWL with occupational LBP. The odds ratios (95% confidence intervals) derived from a logistic regression model were 2.7 (1.27-2.24) and 2.5 (2.26-5.17) and 3.22 (2.47-3.24) for Stress, MWL, and Posture, respectively. Also, the SEM analysis of the personal, psycho-social and occupational factors with LBP revealed that there was a significant correlation. Conclusion: All three broad categories of risk factors simultaneously increase the risk of occupational LBP in the workplace. But, the risks of Posture, Stress, and MWL have a major role in LBP severity. Therefore, prevention strategies for persons in jobs with high risks for LBP are required to decrease the risk of occupational LBP.Keywords: industrial workers occupational, low back pain, occupational risk factors, psychosocial factors
Procedia PDF Downloads 2593814 Comparison of Fuel Cell Installation Methods at Large Commercial and Industrial Sites
Authors: Masood Sattari
Abstract:
Using fuel cell technology to generate electricity for large commercial and industrial sites is a growing segment in the fuel cell industry. The installation of these systems involves design, permitting, procurement of long-lead electrical equipment, and construction involving multiple utilities. The installation of each fuel cell system requires the same amount of coordination as the construction of a new structure requiring a foundation, gas, water, and electricity. Each of these components provide variables that can delay and possibly eliminate a new project. As the manufacturing process and efficiency of fuel cell systems improves, so must the installation methods to prevent a ‘bottle-neck’ in the installation phase of the deployment. Installation methodologies to install the systems vary among companies and this paper will examine the methodologies, describe the benefits and drawbacks for each, and provide guideline for the industry to improve overall installation efficiency.Keywords: construction, installation, methodology, procurement
Procedia PDF Downloads 2003813 Application of Multivariate Statistics and Hydro-Chemical Approach for Groundwater Quality Assessment: A Study on Birbhum District, West Bengal, India
Authors: N. C. Ghosh, Niladri Das, Prolay Mondal, Ranajit Ghosh
Abstract:
Groundwater quality deterioration due to human activities has become a prime factor of modern life. The major concern of the study is to access spatial variation of groundwater quality and to identify the sources of groundwater chemicals and its impact on human health of the concerned area. Multivariate statistical techniques, cluster, principal component analysis, and hydrochemical fancies are been applied to measure groundwater quality data on 14 parameters from 107 sites distributed randomly throughout the Birbhum district. Five factors have been extracted using Varimax rotation with Kaiser Normalization. The first factor explains 27.61% of the total variance where high positive loading have been concentrated in TH, Ca, Mg, Cl and F (Fluoride). In the studied region, due to the presence of basaltic Rajmahal trap fluoride contamination is highly concentrated and that has an adverse impact on human health such as fluorosis. The second factor explains 24.41% of the total variance which includes Na, HCO₃, EC, and SO₄. The last factor or the fifth factor explains 8.85% of the total variance, and it includes pH which maintains the acidic and alkaline character of the groundwater. Hierarchical cluster analysis (HCA) grouped the 107 sampling station into two clusters. One cluster having high pollution and another cluster having less pollution. Moreover hydromorphological facies viz. Wilcox diagram, Doneen’s chart, and USSL diagram reveal the quality of the groundwater like the suitability of the groundwater for irrigation or water used for drinking purpose like permeability index of the groundwater, quality assessment of groundwater for irrigation. Gibb’s diagram depicts that the major portion of the groundwater of this region is rock dominated origin, as the western part of the region characterized by the Jharkhand plateau fringe comprises basalt, gneiss, granite rocks.Keywords: correlation, factor analysis, hydrological facies, hydrochemistry
Procedia PDF Downloads 2173812 Chemical Life Cycle Alternative Assessment as a Green Chemical Substitution Framework: A Feasibility Study
Authors: Sami Ayad, Mengshan Lee
Abstract:
The Sustainable Development Goals (SDGs) were designed to be the best possible blueprint to achieve peace, prosperity, and overall, a better and more sustainable future for the Earth and all its people, and such a blueprint is needed more than ever. The SDGs face many hurdles that will prevent them from becoming a reality, one of such hurdles, arguably, is the chemical pollution and unintended chemical impacts generated through the production of various goods and resources that we consume. Chemical Alternatives Assessment has proven to be a viable solution for chemical pollution management in terms of filtering out hazardous chemicals for a greener alternative. However, the current substitution practice lacks crucial quantitative datasets (exposures and life cycle impacts) to ensure no unintended trade-offs occur in the substitution process. A Chemical Life Cycle Alternative Assessment (CLiCAA) framework is proposed as a reliable and replicable alternative to Life Cycle Based Alternative Assessment (LCAA) as it integrates chemical molecular structure analysis and Chemical Life Cycle Collaborative (CLiCC) web-based tool to fill in data gaps that the former frameworks suffer from. The CLiCAA framework consists of a four filtering layers, the first two being mandatory, with the final two being optional assessment and data extrapolation steps. Each layer includes relevant impact categories of each chemical, ranging from human to environmental impacts, that will be assessed and aggregated into unique scores for overall comparable results, with little to no data. A feasibility study will demonstrate the efficiency and accuracy of CLiCAA whilst bridging both cancer potency and exposure limit data, hoping to provide the necessary categorical impact information for every firm possible, especially those disadvantaged in terms of research and resource management.Keywords: chemical alternative assessment, LCA, LCAA, CLiCC, CLiCAA, chemical substitution framework, cancer potency data, chemical molecular structure analysis
Procedia PDF Downloads 973811 Faults Diagnosis by Thresholding and Decision tree with Neuro-Fuzzy System
Authors: Y. Kourd, D. Lefebvre
Abstract:
The monitoring of industrial processes is required to ensure operating conditions of industrial systems through automatic detection and isolation of faults. This paper proposes a method of fault diagnosis based on a neuro-fuzzy hybrid structure. This hybrid structure combines the selection of threshold and decision tree. The validation of this method is obtained with the DAMADICS benchmark. In the first phase of the method, a model will be constructed that represents the normal state of the system to fault detection. Signatures of the faults are obtained with residuals analysis and selection of appropriate thresholds. These signatures provide groups of non-separable faults. In the second phase, we build faulty models to see the flaws in the system that cannot be isolated in the first phase. In the latest phase we construct the tree that isolates these faults.Keywords: decision tree, residuals analysis, ANFIS, fault diagnosis
Procedia PDF Downloads 6303810 A Business-to-Business Collaboration System That Promotes Data Utilization While Encrypting Information on the Blockchain
Authors: Hiroaki Nasu, Ryota Miyamoto, Yuta Kodera, Yasuyuki Nogami
Abstract:
To promote Industry 4.0 and Society 5.0 and so on, it is important to connect and share data so that every member can trust it. Blockchain (BC) technology is currently attracting attention as the most advanced tool and has been used in the financial field and so on. However, the data collaboration using BC has not progressed sufficiently among companies on the supply chain of manufacturing industry that handle sensitive data such as product quality, manufacturing conditions, etc. There are two main reasons why data utilization is not sufficiently advanced in the industrial supply chain. The first reason is that manufacturing information is top secret and a source for companies to generate profits. It is difficult to disclose data even between companies with transactions in the supply chain. In the blockchain mechanism such as Bitcoin using PKI (Public Key Infrastructure), in order to confirm the identity of the company that has sent the data, the plaintext must be shared between the companies. Another reason is that the merits (scenarios) of collaboration data between companies are not specifically specified in the industrial supply chain. For these problems this paper proposes a Business to Business (B2B) collaboration system using homomorphic encryption and BC technique. Using the proposed system, each company on the supply chain can exchange confidential information on encrypted data and utilize the data for their own business. In addition, this paper considers a scenario focusing on quality data, which was difficult to collaborate because it is a top secret. In this scenario, we show a implementation scheme and a benefit of concrete data collaboration by proposing a comparison protocol that can grasp the change in quality while hiding the numerical value of quality data.Keywords: business to business data collaboration, industrial supply chain, blockchain, homomorphic encryption
Procedia PDF Downloads 1413809 La₀.₈Ba₀.₂FeO₃ Perovskite as an Additive in the Three-Way Catalyst (TWCs) for Reduction of PGMs Loading
Authors: Mahshid Davoodpoor, Zahra Shamohammadi Ghahsareh, Saeid Razfar, Alaleh Dabbaghi
Abstract:
Nowadays, air pollution has become a topic of great concern all over the world. One of the main sources of air pollution is automobile exhaust gas, which introduces a large number of toxic gases, including CO, unburned hydrocarbons (HCs), NOx, and non-methane hydrocarbons (NMHCs), into the air. The application of three-way catalysts (TWCs) is still the most effective strategy to mitigate the emission of these pollutants. Due to the stringent environmental regulations which continuously become stricter, studies on the TWCs are ongoing despite several years of research and development. This arises from the washcoat complexity and the several numbers of parameters involved in the redox reactions. The main objectives of these studies are the optimization of washcoat formulation and the investigation of different coating modes. Perovskite (ABO₃), as a promising class of materials, has unique features that make it versatile to use as an alternative to commonly mixed oxides in washcoats. High catalytic activity for oxidation reactions and its relatively high oxygen storage capacity are important properties of perovskites in catalytic applications. Herein, La₀.₈Ba₀.₂FeO₃ perovskite material was synthesized using the co-precipitation method and characterized by XRD, ICP, and BET analysis. The effect of synthesis conditions, including B site metal (Fe and Co), metal precursor concentration, and dopant (Ba), were examined on the phase purity of the products. The selected perovskite sample was used as one of the components in the TWC formulation to evaluate its catalytic performance through Light-off, oxygen storage capacity, and emission analysis. Results showed a remarkable increment in oxygen storage capacity and also revealed that T50 and emission of CO, HC, and NOx reduced in the presence of perovskite structure which approves the enhancement of catalytic performance for the new washcoat formulation. This study shows the brilliant future of advanced oxide structures in the TWCs.Keywords: Perovskite, three-way catalyst, PGMs, PGMs reduction
Procedia PDF Downloads 69