Search results for: diffusion
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 1176

Search results for: diffusion

156 The Second Column of Origen’s Hexapla and the Transcription of BGDKPT Consonants: A Confrontation with Transliterated Hebrew Names in Greek Documents

Authors: Isabella Maurizio

Abstract:

This research analyses the pronunciation of Hebrew consonants 'bgdkpt' in II- III C. E. in Palestine, through the confrontation of two kinds of data: the fragments of transliteration of Old Testament in the Greek alphabet, from the second column of Origen’s synopsis, called Hexapla, and Hebrew names transliterated in Greek documents, especially epigraphs. Origen is a very important author, not only for his bgdkpt theological and exegetic works: the Hexapla, synoptic six columns for a critical edition of Septuaginta, has a relevant role in attempting to reconstruct the pronunciation of Hebrew language before Masoretic punctuation. For this reason, at the beginning, it is important to analyze the column in order to study phonetic and linguistic phenomena. Among the most problematic data, there is the evidence from bgdkpt consonants, always represented as Greek aspirated graphemes. This transcription raised the question if their pronunciation was the only spirant, and consequently, the double one, that is, the stop/spirant contrast, was introduced by Masoretes. However, the phonetic and linguistic examination of the column alone is not enough to establish a real pronunciation of language: this paper is significant because a confrontation between the second column’s transliteration and Hebrew names found in Greek documents epigraphic ones mainly, is achieved. Palestine in II - III was a bilingual country: Greek and Aramaic language lived together, the first one like the official language, the second one as the principal mean of communication between people. For this reason, Hebrew names are often found in Greek documents of the same geographical area: a deep examination of bgdkpt’s transliteration can help to understand better which the real pronunciation of these consonants was, or at least it allows to evidence a phonetic tendency. As a consequence, the research considers the contemporary documents to Origen and the previous ones: the first ones testify a specific stadium of pronunciation, the second ones reflect phonemes’ evolution. Alexandrian documents are also examined: Origen was from there, and the influence of Greek language, spoken in his native country, must be considered. The epigraphs have another implication: they are totally free from morphological criteria, probably used by Origen in his column, because of their popular origin. Thus, a confrontation between the hexaplaric transliteration and Hebrew names is absolutely required, in Hexapla’s studies: first of all, it can be the second clue of a pronunciation already noted in the column; then because, for documents’ specific nature, it has more probabilities to be real, reflecting a daily use of language. The examination of data shows a general tendency to employ the aspirated graphemes for bgdkpt consonants’ transliteration. This probably means that they were closer to Greek aspirated consonants rather than to the plosive ones. The exceptions are linked to a particular status of the name, i.e. its history and origin. In this way, this paper gives its contribution to onomastic studies, too: indeed, the research may contribute to verify the diffusion and the treatment of Jewish names in Hellenized world and in the koinè language.

Keywords: bgdkpt consonants, Greek epigraphs, Jewish names, origen's Hexapla

Procedia PDF Downloads 140
155 A Framework for Incorporating Non-Linear Degradation of Conductive Adhesive in Environmental Testing

Authors: Kedar Hardikar, Joe Varghese

Abstract:

Conductive adhesives have found wide-ranging applications in electronics industry ranging from fixing a defective conductor on printed circuit board (PCB) attaching an electronic component in an assembly to protecting electronics components by the formation of “Faraday Cage.” The reliability requirements for the conductive adhesive vary widely depending on the application and expected product lifetime. While the conductive adhesive is required to maintain the structural integrity, the electrical performance of the associated sub-assembly can be affected by the degradation of conductive adhesive. The degradation of the adhesive is dependent upon the highly varied use case. The conventional approach to assess the reliability of the sub-assembly involves subjecting it to the standard environmental test conditions such as high-temperature high humidity, thermal cycling, high-temperature exposure to name a few. In order to enable projection of test data and observed failures to predict field performance, systematic development of an acceleration factor between the test conditions and field conditions is crucial. Common acceleration factor models such as Arrhenius model are based on rate kinetics and typically rely on an assumption of linear degradation in time for a given condition and test duration. The application of interest in this work involves conductive adhesive used in an electronic circuit of a capacitive sensor. The degradation of conductive adhesive in high temperature and humidity environment is quantified by the capacitance values. Under such conditions, the use of established models such as Hallberg-Peck model or Eyring Model to predict time to failure in the field typically relies on linear degradation rate. In this particular case, it is seen that the degradation is nonlinear in time and exhibits a square root t dependence. It is also shown that for the mechanism of interest, the presence of moisture is essential, and the dominant mechanism driving the degradation is the diffusion of moisture. In this work, a framework is developed to incorporate nonlinear degradation of the conductive adhesive for the development of an acceleration factor. This method can be extended to applications where nonlinearity in degradation rate can be adequately characterized in tests. It is shown that depending on the expected product lifetime, the use of conventional linear degradation approach can overestimate or underestimate the field performance. This work provides guidelines for suitability of linear degradation approximation for such varied applications

Keywords: conductive adhesives, nonlinear degradation, physics of failure, acceleration factor model.

Procedia PDF Downloads 135
154 Sustainable Development and Modern Challenges of Higher Educational Institutions in the Regions of Georgia

Authors: Natia Tsiklashvili, Tamari Poladashvili

Abstract:

Education is one of the fundamental factors of economic prosperity in all respects. It is impossible to talk about the sustainable economic development of the country without substantial investments in human capital and investment into higher educational institutions. Education improves the standard of living of the population and expands the opportunities to receive more benefits, which will be equally important for both the individual and the society as a whole. There are growing initiatives among educated people such as entrepreneurship, technological development, etc. At the same time, the distribution of income between population groups is improving. The given paper discusses the scientific literature in the field of sustainable development through higher educational institutions. Scholars of economic theory emphasize a few major aspects that show the role of higher education in economic growth: a) Alongside education, human capital gradually increases which leads to increased competitiveness of the labor force, not only in the national but also in the international labor market (Neoclassical growth theory), b) The high level of education can increase the efficiency of the economy, investment in human capital, innovation, and knowledge are significant contributors to economic growth. Hence, it focuses on positive externalities and spillover effects of a knowledge-based economy which leads to economic development (endogenous growth theory), c) Education can facilitate the diffusion and transfer of knowledge. Hence, it supports macroeconomic sustainability and microeconomic conditions of individuals. While discussing the economic importance of education, we consider education as the spiritual development of the human that advances general skills, acquires a profession, and improves living conditions. Scholars agree that human capital is not only money but liquid assets, stocks, and competitive knowledge. The last one is the main lever in the context of increasing human competitiveness and high productivity. To address the local issues, the present article researched ten educational institutions across Georgia, including state and private HEIs. Qualitative research was done by analyzing in-depth interweaves of representatives from each institution, and respondents were rectors/vice-rectors/heads of quality assurance service at the institute. The result shows that there is a number of challenges that institution face in order to maintain sustainable development and be the strong links to education and the labor market. Mostly it’s contacted with bureaucracy, insufficient finances they receive, and local challenges that differ across the regions.

Keywords: higher education, higher educational institutions, sustainable development, regions, Georgia

Procedia PDF Downloads 85
153 Impact of Microwave and Air Velocity on Drying Kinetics and Rehydration of Potato Slices

Authors: Caiyun Liu, A. Hernandez-Manas, N. Grimi, E. Vorobiev

Abstract:

Drying is one of the most used methods for food preservation, which extend shelf life of food and makes their transportation, storage and packaging easier and more economic. The commonly dried method is hot air drying. However, its disadvantages are low energy efficiency and long drying times. Because of the high temperature during the hot air drying, the undesirable changes in pigments, vitamins and flavoring agents occur which result in degradation of the quality parameters of the product. Drying process can also cause shrinkage, case hardening, dark color, browning, loss of nutrients and others. Recently, new processes were developed in order to avoid these problems. For example, the application of pulsed electric field provokes cell membrane permeabilisation, which increases the drying kinetics and moisture diffusion coefficient. Microwave drying technology has also several advantages over conventional hot air drying, such as higher drying rates and thermal efficiency, shorter drying time, significantly improved product quality and nutritional value. Rehydration kinetics of dried product is a very important characteristic of dried products. Current research has indicated that the rehydration ratio and the coefficient of rehydration are dependent on the processing conditions of drying. The present study compares the efficiency of two processes (1: room temperature air drying, 2: microwave/air drying) in terms of drying rate, product quality and rehydration ratio. In this work, potato slices (≈2.2g) with a thickness of 2 mm and diameter of 33mm were placed in the microwave chamber and dried. Drying kinetics and drying rates of different methods were determined. The process parameters included inlet air velocity (1 m/s, 1.5 m/s, 2 m/s) and microwave power (50 W, 100 W, 200 W and 250 W) were studied. The evolution of temperature during microwave drying was measured. The drying power had a strong effect on drying rate, and the microwave-air drying resulted in 93% decrease in the drying time when the air velocity was 2 m/s and the power of microwave was 250 W. Based on Lewis model, drying rate constants (kDR) were determined. It was observed an increase from kDR=0.0002 s-1 to kDR=0.0032 s-1 of air velocity of 2 m/s and microwave/air (at 2m/s and 250W) respectively. The effective moisture diffusivity was calculated by using Fick's law. The results show an increase of effective moisture diffusivity from 7.52×10-11 to 2.64×10-9 m2.s-1 for air velocity of 2 m/s and microwave/air (at 2m/s and 250W) respectively. The temperature of the potato slices increased for higher microwaves power, but decreased for higher air velocity. The rehydration ratio, defined as the weight of the the sample after rehydration per the weight of dried sample, was determined at different water temperatures (25℃, 50℃, 75℃). The rehydration ratio increased with the water temperature and reached its maximum at the following conditions: 200 W for the microwave power, 2 m/s for the air velocity and 75°C for the water temperature. The present study shows the interest of microwave drying for the food preservation.

Keywords: drying, microwave, potato, rehydration

Procedia PDF Downloads 270
152 The Features of the Synergistic Approach in Marketing Management to Regional Level

Authors: Evgeni Baratashvili, Anzor Abralava, Rusudan Kutateladze, Nino Pailodze, Irma Makharashvili, Larisa Takalandze

Abstract:

Sinergy as a neological term is reflected in modern sciences. It can be found in the various fields of science including the humanities and technical sciences. Among them are biology and medicine, philology, economy and etc. Synergy is the received surplus of marginal high total effect of the groups, consolidated by one common idea, received through endeavored applies of their combined tools, via obtained effect of the separate independent actions of the groups. In the conditions of market economy, according the terms of new communication terminology, synergy effects on management and marketing successfully as well as on purity defense of native language. The well-known scientist’s and public figure’s Academician I. Prangishvili’s works are especially valuable in this aspect. In our opinion the entropy research is linked to his name in our country. In modern economy, the current qualitative changes shows us that the most number of factors and issues have been regrouped. They have a great influence and even define the economic development. The declining abilities of traditional recourses of economic growth have been related on the use of their physical abilities and their moving closer to the edge. Also it is related on the reduced effectiveness, which at the same time increases the expenditures. This means that the leading must be the innovative process system of products and services in the economic growth model. In our opinion the above mentioned system is distinguished with the synergistic approach. It should be noted that the main components of the innovative system are technological, scientific and scientific-technical, social-organizational, managerial and cognitive changes. All of them are reflected on scientific works and inventions in the proper dosages, in know-how and material source. At any stage they create the reproduction cycle. The innovations are different from each other by technologies, origination, design, innovation and quality, subject-content structure, by the the spread of economic processes and the impact of the level of it’s distribution. We have presented a generalized statement of an innovative approach, which is not a single act of innovation but it is also targeted system of the development, implementation, reconciling-exploitation, production, diffusion and commercialization of news. The innovative approaches should be considered as the creation of news, in-depth process of creativity as an innovative alternative to the realization of innovative and entrepreneurial efforts and measures, in order to meet the requirements of the permanent process.

Keywords: economic development, leading process, neological term, synergy

Procedia PDF Downloads 201
151 Electrodeposition of Silicon Nanoparticles Using Ionic Liquid for Energy Storage Application

Authors: Anjali Vanpariya, Priyanka Marathey, Sakshum Khanna, Roma Patel, Indrajit Mukhopadhyay

Abstract:

Silicon (Si) is a promising negative electrode material for lithium-ion batteries (LiBs) due to its low cost, non-toxicity, and a high theoretical capacity of 4200 mAhg⁻¹. The primary challenge of the application of Si-based LiBs is large volume expansion (~ 300%) during the charge-discharge process. Incorporation of graphene, carbon nanotubes (CNTs), morphological control, and nanoparticles was utilized as effective strategies to tackle volume expansion issues. However, molten salt methods can resolve the issue, but high-temperature requirement limits its application. For sustainable and practical approach, room temperature (RT) based methods are essentially required. Use of ionic liquids (ILs) for electrodeposition of Si nanostructures can possibly resolve the issue of temperature as well as greener media. In this work, electrodeposition of Si nanoparticles on gold substrate was successfully carried out in the presence of ILs media, 1-butyl-3-methylimidazolium-bis (trifluoromethyl sulfonyl) imide (BMImTf₂N) at room temperature. Cyclic voltammetry (CV) suggests the sequential reduction of Si⁴⁺ to Si²⁺ and then Si nanoparticles (SiNs). The structure and morphology of the electrodeposited SiNs were investigated by FE-SEM and observed interconnected Si nanoparticles of average particle size ⁓100-200 nm. XRD and XPS data confirm the deposition of Si on Au (111). The first discharge-charge capacity of Si anode material has been found to be 1857 and 422 mAhg⁻¹, respectively, at current density 7.8 Ag⁻¹. The irreversible capacity of the first discharge-charge process can be attributed to the solid electrolyte interface (SEI) formation via electrolyte decomposition, and trapped Li⁺ inserted into the inner pores of Si. Pulverization of SiNs results in the creation of a new active site, which facilitates the formation of new SEI in the subsequent cycles leading to fading in a specific capacity. After 20 cycles, charge-discharge profiles have been stabilized, and a reversible capacity of 150 mAhg⁻¹ is retained. Electrochemical impedance spectroscopy (EIS) data shows the decrease in Rct value from 94.7 to 47.6 kΩ after 50 cycles of charge-discharge, which demonstrates the improvements of the interfacial charge transfer kinetics. The decrease in the Warburg impedance after 50 cycles of charge-discharge measurements indicates facile diffusion in fragmented and smaller Si nanoparticles. In summary, Si nanoparticles deposited on gold substrate using ILs as media and characterized well with different analytical techniques. Synthesized material was successfully utilized for LiBs application, which is well supported by CV and EIS data.

Keywords: silicon nanoparticles, ionic liquid, electrodeposition, cyclic voltammetry, Li-ion battery

Procedia PDF Downloads 125
150 Microbiological Profile of UTI along with Their Antibiotic Sensitivity Pattern with Special Reference to Nitrofurantoin

Authors: Rupinder Bakshi, Geeta Walia, Anita Gupta

Abstract:

Introduction: Urinary tract infections (UTI) are considered to be one of the most common bacterial infections with an estimated annual global incidence of 150 million. Antimicrobial drug resistance is one of the major threats due to widespread usage of uncontrolled antibiotics. Materials and Methods: A total number of 9149 urine samples were collected from R.H Patiala and processed in the Department of Microbiology G.M.C Patiala. Urine samples were inoculated on MacConkey’s and blood agar plates by using calibrated loop delivering 0.001 ml of sample and incubated at 37 °C for 24 hrs. The organisms were identified by colony characters, gram’s staining and biochemical reactions. Antimicrobial susceptibility of the isolates was determined against various antimicrobial agents (Hi – Media Mumbai India) by Kirby-Bauer disk diffusion method on Muller Hinton agar plates. Results: Maximum patients were in the age group of 21-30 yrs followed by 31-40 yrs. Males (34%) are less prone to urinary tract infections than females (66%). Out of 9149 urine sample, the culture was positive in 25% (2290) samples. Esch. coli was the most common isolate 60.3% (n = 1378) followed by Klebsiella pneumoniae 13.5% (n = 310), Proteus spp. 9% (n = 209), Staphylococcus aureus 7.6 % (n = 173), Pseudomonas aeruginosa 3.7% (n = 84), Citrobacter spp. 3.1 % (70), Staphylococcus saprophyticus 1.8 % (n = 142), Enterococcus faecalis 0.8%(n=19) and Acinetobacter spp. 0.2%(n=5). Gram negative isolates showed higher sensitivity towards, Piperacillin +Tazobactum (67%), Amikacin (80%), Nitrofurantoin (82%), Aztreonam (100%), Imipenem (100%) and Meropenam (100%) while gram positive showed good response towards Netilmicin (69%), Nitrofurantoin (79%), Linezolid (98%), Vancomycin (100%) and Teicoplanin (100%). 465 (23%) isolates were resistant to Penicillins, 1st generation and 2nd generation Cehalosporins which were further tested by double disk approximation test and combined disk method for ESBL production. Out of 465 isolates, 375 were ESBLs consisting of n 264 (70.6%) Esch.coli and 111 (29.4%) Klebsiella pneumoniae. Susceptibility of ESBL producers to Imipenem, Nitrofurantoin and Amikacin were found to be 100%, 76%, and 75% respectively. Conclusion: Uropathogens are increasingly showing resistance to many antibiotics making empiric management of outpatients UTIs challenging. Ampicillin, Cotrimoxazole, and Ciprofloxacin should not be used in empiric treatment. Nitrofurantoin could be used in lower urinary tract infection. Knowledge of uropathogens and their antimicrobial susceptibility pattern in a geographical region will help inappropriate and judicious antibiotic usage in a health care setup.

Keywords: Urinary Tract Infection, UTI, antibiotic susceptibility pattern, ESBL

Procedia PDF Downloads 344
149 Electrochemical Corrosion and Mechanical Properties of Structural Materials for Oil and Gas Applications in Simulated Deep-Sea Well Environments

Authors: Turin Datta, Kisor K. Sahu

Abstract:

Structural materials used in today’s oil and gas exploration and drilling of both onshore and offshore oil and gas wells must possess superior tensile properties, excellent resistance to corrosive degradation that includes general, localized (pitting and crevice) and environment assisted cracking such as stress corrosion cracking and hydrogen embrittlement. The High Pressure and High Temperature (HPHT) wells are typically operated at temperature and pressure that can exceed 300-3500F and 10,000psi (69MPa) respectively which necessitates the use of exotic materials in these exotic sources of natural resources. This research investigation is focussed on the evaluation of tensile properties and corrosion behavior of AISI 4140 High-Strength Low Alloy Steel (HSLA) possessing tempered martensitic microstructure and Duplex 2205 Stainless Steel (DSS) having austenitic and ferritic phase. The selection of this two alloys are primarily based on economic considerations as 4140 HSLA is cheaper when compared to DSS 2205. Due to the harsh aggressive chemical species encountered in deep oil and gas wells like chloride ions (Cl-), carbon dioxide (CO2), hydrogen sulphide (H2S) along with other mineral organic acids, DSS 2205, having a dual-phase microstructure can mitigate the degradation resulting from the presence of both chloride ions (Cl-) and hydrogen simultaneously. Tensile properties evaluation indicates a ductile failure of DSS 2205 whereas 4140 HSLA exhibit quasi-cleavage fracture due to the phenomenon of ‘tempered martensitic embrittlement’. From the potentiodynamic polarization testing, it is observed that DSS 2205 has higher corrosion resistance than 4140 HSLA; the former exhibits passivity signifying resistance to localized corrosion while the latter exhibits active dissolution in all the environmental parameters space that was tested. From the Scanning Electron Microscopy (SEM) evaluation, it is understood that stable pits appear in DSS 2205 only when the temperature exceeds the critical pitting temperature (CPT). SEM observation of the corroded 4140 HSLA specimen tested in aqueous 3.5 wt.% NaCl solution reveals intergranular cracking which appears due to the adsorption and diffusion of hydrogen during polarization, thus, causing hydrogen-induced cracking/hydrogen embrittlement. General corrosion testing of DSS 2205 in acidic brine (pH~3.0) solution at ambient temperature using coupons indicate no weight loss even after three months whereas the corrosion rate of AISI 4140 HSLA is significantly higher after one month of testing.

Keywords: DSS 2205, polarization, pitting, SEM

Procedia PDF Downloads 265
148 Molecular Detection of Staphylococcus aureus in the Pork Chain Supply and the Potential Anti-Staphylococcal Activity of Natural Compounds

Authors: Valeria Velasco, Ana M. Bonilla, José L. Vergara, Alcides Lofa, Jorge Campos, Pedro Rojas-García

Abstract:

Staphylococcus aureus is both commensal bacterium and opportunistic pathogen that can cause different diseases in humans and can rapidly develop antimicrobial resistance. Since this bacterium has the ability to colonize the nares and skin of humans and animals, there is a risk of contamination of food in different steps of the food chain supply. Emerging strains have been detected in food-producing animals and meat, such as methicillin-resistant S. aureus (MRSA). The aim of this study was to determine the prevalence and oxacillin susceptibility of S. aureus in the pork chain supply in Chile and to suggest some natural antimicrobials for control. A total of 487 samples were collected from pigs (n=332), carcasses (n=85), and retail pork meat (n=70). Presumptive S. aureus colonies were isolated by selective enrichment and culture media. The confirmation was carried out by biochemical testing (Api® Staph) and molecular technique PCR (detection of nuc and mecA genes, associated with S. aureus and methicillin resistance, respectively). The oxacillin (β-lactam antibiotic that replaced methicillin) susceptibility was assessed by minimum inhibitory concentration (MIC) using the Epsilometer test (Etest). A preliminary assay was carried out to test thymol, carvacrol, oregano essential oil (Origanum vulgare L.), Maqui or Chilean wineberry extract (Aristotelia chilensis (Mol.) Stuntz) as anti-staphylococcal agents using the disc diffusion method at different concentrations. The overall prevalence of S. aureus in the pork chain supply reached 33.9%. A higher prevalence of S. aureus was determined in carcasses (56.5%) than in pigs (28.3%) and pork meat (32.9%) (P ≤ 0.05). The prevalence of S. aureus in pigs sampled at farms (40.6%) was higher than in pigs sampled at slaughterhouses (23.3%) (P ≤ 0.05). The contamination of no packaged meat with S. aureus (43.1%) was higher than in packaged meat (5.3%) (P ≤ 0.05). The mecA gene was not detected in S. aureus strains isolated in this study. Two S. aureus strains exhibited oxacillin resistance (MIC ≥ 4µg/mL). Anti-staphylococcal activity was detected in solutions of thymol, carvacrol, and oregano essential oil at all concentrations tested. No anti-staphylococcal activity was detected in Maqui extract. Finally, S. aureus is present in the pork chain supply in Chile. Although the mecA gene was not detected, oxacillin resistance was found in S. aureus and could be attributed to another resistance mechanism. Thymol, carvacrol, and oregano essential oil could be used as anti-staphylococcal agents at low concentrations. Research project Fondecyt No. 11140379.

Keywords: antimicrobials, mecA gen, nuc gen, oxacillin susceptibility, pork meat

Procedia PDF Downloads 229
147 Evolution and Merging of Double-Diffusive Layers in a Vertically Stable Compositional Field

Authors: Ila Thakur, Atul Srivastava, Shyamprasad Karagadde

Abstract:

The phenomenon of double-diffusive convection is driven by density gradients created by two different components (e.g., temperature and concentration) having different molecular diffusivities. The evolution of horizontal double-diffusive layers (DDLs) is one of the outcomes of double-diffusive convection occurring in a laterally/vertically cooled rectangular cavity having a pre-existing vertically stable composition field. The present work mainly focuses on different characteristics of the formation and merging of double-diffusive layers by imposing lateral/vertical thermal gradients in a vertically stable compositional field. A CFD-based twodimensional fluent model has been developed for the investigation of the aforesaid phenomena. The configuration containing vertical thermal gradients shows the evolution and merging of DDLs, where, elements from the same horizontal plane move vertically and mix with surroundings, creating a horizontal layer. In the configuration of lateral thermal gradients, a specially oriented convective roll was found inside each DDL and each roll was driven by the competing density change due to the already existing composition field and imposed thermal field. When the thermal boundary layer near the vertical wall penetrates the salinity interface, it can disrupt the compositional interface and can lead to layer merging. Different analytical scales were quantified and compared for both configurations. Various combinations of solutal and thermal Rayleigh numbers were investigated to get three different regimes, namely; stagnant regime, layered regime and unicellular regime. For a particular solutal Rayleigh number, a layered structure can originate only for a range of thermal Rayleigh numbers. Lower thermal Rayleigh numbers correspond to a diffusion-dominated stagnant regime. Very high thermal Rayleigh corresponds to a unicellular regime with high convective mixing. Different plots identifying these three regimes, number, thickness and time of existence of DDLs have been studied and plotted. For a given solutal Rayleigh number, an increase in thermal Rayleigh number increases the width but decreases both the number and time of existence of DDLs in the fluid domain. Sudden peaks in the velocity and heat transfer coefficient have also been observed and discussed at the time of merging. The present study is expected to be useful in correlating the double-diffusive convection in many large-scale applications including oceanography, metallurgy, geology, etc. The model has also been developed for three-dimensional geometry, but the results were quite similar to that of 2-D simulations.

Keywords: double diffusive layers, natural convection, Rayleigh number, thermal gradients, compositional gradients

Procedia PDF Downloads 85
146 Studies of Heavy Metal Ions Removal Efficiency in the Presence of Anionic Surfactant Using Ion Exchangers

Authors: Anna Wolowicz, Katarzyna Staszak, Zbigniew Hubicki

Abstract:

Nowadays heavy metal ions as well as surfactants are widely used throughout the world due to their useful properties. The consequence of such widespread use is their significant production. On the other hand, the increasing demand for surfactants and heavy metal ions results in production of large amounts of wastewaters which are discharged to the environment from mining, metal plating, pharmaceutical, cosmetic, fertilizer, paper, pesticide and electronic industries, pigments producing, petroleum refining and from autocatalyst, fibers, food, polymer industries etc. Heavy metal ions are non-biodegradable in the environment, cable of accumulation in living organisms and organs, toxic and carcinogenic. On the other hand, not only heavy metal ions but also surfactants affect the purity of water and soils. Some of surfactants are also toxic, harmful and dangerous because they are able to penetrate into surface waters causing foaming, blocked diffusion of oxygen from the atmosphere and act as emulsifiers of hydrophobic substances and increase solubility of many the dangerous pollutants. Among surfactants the anionic ones dominate and their share in the global production of surfactants is around 50 ÷ 60%. Due to the negative impact of heavy metals and surfactants on aquatic ecosystems and living organisms, removal and monitoring of their concentration in the environment is extremely important. Surfactants and heavy metal ions removal can be achieved by different biological and physicochemical methods. The adsorption as well as the ion-exchange methods play here a significant role. The aim of this study was heavy metal ions removal from aqueous solutions using different types of ion exchangers in the presence of anionic surfactants. Preliminary studies of copper(II), nickel(II), zinc(II) and cobalt(II) removal from acidic solutions using ion exchangers (Lewatit MonoPlus TP 220, Lewatit MonoPlus SR 7, Purolite A 400 TL, Purolite A 830, Purolite S 984, Dowex PSR 2, Dowex PSR3, Lewatit AF-5) allowed to select the most effective ones for the above mentioned sorbates and then to checking their removal efficiency in the presence of anionic surfactants. As it was found out Lewatit MonoPlus TP 220 of the chelating type, show the highest sorption capacities for copper(II) ions in comparison with the other ion exchangers under discussion, e.g. 9.98 mg/g (0.1 M HCl); 9.12 mg/g (6 M HCl). Moreover, cobalt(II) removal efficiency was the highest in 0.1 M HCl using also Lewatit MonoPlus TP 220 (6.9 mg/g) similar to zinc(II) (9.1 mg/g) and nickiel(II) (6.2 mg/g). As the anionic surfactant sodium dodecyl sulphate (SDS) was used and surfactant parameters such as viscosity (η), density (ρ) and critical micelle concentration (CMC) were obtained: η = 1.13 ± 0,01 mPa·s; ρ = 999.76 mg/cm3; CMC = 2.26 g/cm3. The studies of copper(II) removal from acidic solutions in the presence of SDS of different concentration show negligible effects on copper(II) removal efficiency. The sorption capacity of Cu(II) from 0.1 M acidic solution of 500 mg/L initial concentration was equal to 46.8 mg/g whereas in the presence of SDS 45.3 mg/g (0.1 mg SDS/L), 47.1 mg/g (0.5 mg SDS/L), 46.6 mg/g (1 mg SDS/L).

Keywords: anionic surfactant, heavy metal ions, ion exchanger, removal

Procedia PDF Downloads 143
145 Understanding the Common Antibiotic and Heavy Metal Resistant-Bacterial Load in the Textile Industrial Effluents

Authors: Afroza Parvin, Md. Mahmudul Hasan, Md. Rokunozzaman, Papon Debnath

Abstract:

The effluents of textile industries have considerable amounts of heavy metals, causing potential microbial metal loads if discharged into the environment without treatment. Aim: In this present study, both lactose and non-lactose fermenting bacterial isolates were isolated from textile industrial effluents of a specific region of Bangladesh, named Savar, to compare and understand the load of heavy metals in these microorganisms determining the effects of heavy metal resistance properties on antibiotic resistance. Methods: Five different textile industrial canals of Savar were selected, and effluent samples were collected in 2016 between June to August. Total bacterial colony (TBC) was counted for day 1 to day 5 for 10-6 dilution of samples to 10-10 dilution. All the isolates were isolated and selected using 4 differential media, and tested for the determination of minimum inhibitory concentration (MIC) of heavy metals and antibiotic susceptibility test with plate assay method and modified Kirby-Bauer disc diffusion method, respectively. To detect the combined effect of heavy metals and antibiotics, a binary exposure experiment was performed, and to understand the plasmid profiling plasmid DNA was extracted by alkaline lysis method of some selective isolates. Results: Most of the cases, the colony forming units (CFU) per plate for 50 ul diluted sample were uncountable at 10-6 dilution, however, countable for 10-10 dilution and it didn’t vary much from canal to canal. A total of 50 Shigella, 50 Salmonella, and 100 E.coli (Escherichia coli) like bacterial isolates were selected for this study where the MIC was less than or equal to 0.6 mM for 100% Shigella and Salmonella like isolates, however, only 3% E. coli like isolates had the same MIC for nickel (Ni). The MIC for chromium (Cr) was less than or equal to 2.0 mM for 16% Shigella, 20% Salmonella, and 17% E. coli like isolates. Around 60% of both Shigella and Salmonella, but only 20% of E.coli like isolates had a MIC of less than or equal to 1.2 mM for lead (Pb). The most prevalent resistant pattern for azithromycin (AZM) for Shigella and Salmonella like isolates was found 38% and 48%, respectively; however, for E.coli like isolates, the highest pattern (36%) was found for sulfamethoxazole-trimethoprim (SXT). In the binary exposure experiment, antibiotic zone of inhibition was mostly increased in the presence of heavy metals for all types of isolates. The highest sized plasmid was found 21 Kb and 14 Kb for lactose and non-lactose fermenting isolates, respectively. Conclusion: Microbial resistance to antibiotics and metal ions, has potential health hazards because these traits are generally associated with transmissible plasmids. Microorganisms resistant to antibiotics and tolerant to metals appear as a result of exposure to metal-contaminated environments.

Keywords: antibiotics, effluents, heavy metals, minimum inhibitory concentration, resistance

Procedia PDF Downloads 316
144 Development and Characterization of Novel Topical Formulation Containing Niacinamide

Authors: Sevdenur Onger, Ali Asram Sagiroglu

Abstract:

Hyperpigmentation is a cosmetically unappealing skin problem caused by an overabundance of melanin in the skin. Its pathophysiology is caused by melanocytes being exposed to paracrine melanogenic stimuli, which can upregulate melanogenesis-related enzymes (such as tyrosinase) and cause melanosome formation. Tyrosinase is linked to the development of melanosomes biochemically, and it is the main target of hyperpigmentation treatment. therefore, decreasing tyrosinase activity to reduce melanosomes has become the main target of hyperpigmentation treatment. Niacinamide (NA) is a natural chemical found in a variety of plants that is used as a skin-whitening ingredient in cosmetic formulations. NA decreases melanogenesis in the skin by inhibiting melanosome transfer from melanocytes to covering keratinocytes. Furthermore, NA protects the skin from reactive oxygen species and acts as a main barrier with the skin, reducing moisture loss by increasing ceramide and fatty acid synthesis. However, it is very difficult for hydrophilic compounds such as NA to penetrate deep into the skin. Furthermore, because of the nicotinic acid in NA, it is an irritant. As a result, we've concentrated on strategies to increase NA skin permeability while avoiding its irritating impacts. Since nanotechnology can affect drug penetration behavior by controlling the release and increasing the period of permanence on the skin, it can be a useful technique in the development of whitening formulations. Liposomes have become increasingly popular in the cosmetics industry in recent years due to benefits such as their lack of toxicity, high penetration ability in living skin layers, ability to increase skin moisture by forming a thin layer on the skin surface, and suitability for large-scale production. Therefore, liposomes containing NA were developed for this study. Different formulations were prepared by varying the amount of phospholipid and cholesterol and examined in terms of particle sizes, polydispersity index (PDI) and pH values. The pH values of the produced formulations were determined to be suitable with the pH value of the skin. Particle sizes were determined to be smaller than 250 nm and the particles were found to be of homogeneous size in the formulation (pdi<0.30). Despite the important advantages of liposomal systems, they have low viscosity and stability for topical use. For these reasons, in this study, liposomal cream formulations have been prepared for easy topical application of liposomal systems. As a result, liposomal cream formulations containing NA have been successfully prepared and characterized. Following the in-vitro release and ex-vivo diffusion studies to be conducted in the continuation of the study, it is planned to test the formulation that gives the most appropriate result on the volunteers after obtaining the approval of the ethics committee.

Keywords: delivery systems, hyperpigmentation, liposome, niacinamide

Procedia PDF Downloads 112
143 Exploratory Tests of Crude Bacteriocins from Autochthonous Lactic Acid Bacteria against Food-Borne Pathogens and Spoilage Bacteria

Authors: M. Naimi, M. B. Khaled

Abstract:

The aim of the present work was to test in vitro inhibition of food pathogens and spoilage bacteria by crude bacteriocins from autochthonous lactic acid bacteria. Thirty autochthonous lactic acid bacteria isolated previously, belonging to the genera: Lactobacillus, Carnobacterium, Lactococcus, Vagococcus, Streptococcus, and Pediococcus, have been screened by an agar spot test and a well diffusion assay against Gram-positive and Gram-negative harmful bacteria: Bacillus cereus, Bacillus subtilis ATCC 6633, Escherichia coli ATCC 8739, Salmonella typhimurium ATCC 14028, Staphylococcus aureus ATCC 6538, and Pseudomonas aeruginosa under conditions means to reduce lactic acid and hydrogen peroxide effect to select bacteria with high bacteriocinogenic potential. Furthermore, crude bacteriocins semiquantification and heat sensitivity to different temperatures (80, 95, 110°C, and 121°C) were performed. Another exploratory test concerning the response of St. aureus ATCC 6538 to the presence of crude bacteriocins was realized. It has been observed by the agar spot test that fifteen candidates were active toward Gram-positive targets strains. The secondary screening demonstrated an antagonistic activity oriented only against St. aureus ATCC 6538, leading to the selection of five isolates: Lm14, Lm21, Lm23, Lm24, and Lm25 with a larger inhibition zone compared to the others. The ANOVA statistical analysis reveals a small variation of repeatability: Lm21: 0.56%, Lm23: 0%, Lm25: 1.67%, Lm14: 1.88%, Lm24: 2.14%. Conversely, slight variation was reported in terms of inhibition diameters: 9.58± 0.40, 9.83± 0.46, and 10.16± 0.24 8.5 ± 0.40 10 mm for, Lm21, Lm23, Lm25, Lm14and Lm24, indicating that the observed potential showed a heterogeneous distribution (BMS = 0.383, WMS = 0.117). The repeatability coefficient calculated displayed 7.35%. As for the bacteriocins semiquantification, the five samples exhibited production amounts about 4.16 for Lm21, Lm23, Lm25 and 2.08 AU/ml for Lm14, Lm24. Concerning the sensitivity the crude bacteriocins were fully insensitive to heat inactivation, until 121°C, they preserved the same inhibition diameter. As to, kinetic of growth , the µmax showed reductions in pathogens load for Lm21, Lm23, Lm25, Lm14, Lm24 of about 42.92%, 84.12%, 88.55%, 54.95%, 29.97% in the second trails. Inversely, this pathogen growth after five hours displayed differences of 79.45%, 12.64%, 11.82%, 87.88%, 85.66% in the second trails, compared to the control. This study showed potential inhibition to the growth of this food pathogen, suggesting the possibility to improve the hygienic food quality.

Keywords: exploratory test, lactic acid bacteria, crude bacteriocins, spoilage, pathogens

Procedia PDF Downloads 213
142 Combining Nitrocarburisation and Dry Lubrication for Improving Component Lifetime

Authors: Kaushik Vaideeswaran, Jean Gobet, Patrick Margraf, Olha Sereda

Abstract:

Nitrocarburisation is a surface hardening technique often applied to improve the wear resistance of steel surfaces. It is considered to be a promising solution in comparison with other processes such as flame spraying, owing to the formation of a diffusion layer which provides mechanical integrity, as well as its cost-effectiveness. To improve other tribological properties of the surface such as the coefficient of friction (COF), dry lubricants are utilized. Currently, the lifetime of steel components in many applications using either of these techniques individually are faced with the limitations of the two: high COF for nitrocarburized surfaces and low wear resistance of dry lubricant coatings. To this end, the current study involves the creation of a hybrid surface using the impregnation of a dry lubricant on to a nitrocarburized surface. The mechanical strength and hardness of Gerster SA’s nitrocarburized surfaces accompanied by the impregnation of the porous outermost layer with a solid lubricant will create a hybrid surface possessing both outstanding wear resistance and a low friction coefficient and with high adherence to the substrate. Gerster SA has the state-of-the-art technology for the surface hardening of various steels. Through their expertise in the field, the nitrocarburizing process parameters (atmosphere, temperature, dwelling time) were optimized to obtain samples that have a distinct porous structure (in terms of size, shape, and density) as observed by metallographic and microscopic analyses. The porosity thus obtained is suitable for the impregnation of a dry lubricant. A commercially available dry lubricant with a thermoplastic matrix was employed for the impregnation process, which was optimized to obtain a void-free interface with the surface of the nitrocarburized layer (henceforth called hybrid surface). In parallel, metallic samples without nitrocarburisation were also impregnated with the same dry lubricant as a reference (henceforth called reference surface). The reference and the nitrocarburized surfaces, with and without the dry lubricant were tested for their tribological behavior by sliding against a quenched steel ball using a nanotribometer. Without any lubricant, the nitrocarburized surface showed a wear rate 5x lower than the reference metal. In the presence of a thin film of dry lubricant ( < 2 micrometers) and under the application of high loads (500 mN or ~800 MPa), while the COF for the reference surface increased from ~0.1 to > 0.3 within 120 m, the hybrid surface retained a COF < 0.2 for over 400m of sliding. In addition, while the steel ball sliding against the reference surface showed heavy wear, the corresponding ball sliding against the hybrid surface showed very limited wear. Observations of the sliding tracks in the hybrid surface using Electron Microscopy show the presence of the nitrocarburized nodules as well as the lubricant, whereas no traces of the lubricant were found in the sliding track on the reference surface. In this manner, the clear advantage of combining nitrocarburisation with the impregnation of a dry lubricant towards forming a hybrid surface has been demonstrated.

Keywords: dry lubrication, hybrid surfaces, improved wear resistance, nitrocarburisation, steels

Procedia PDF Downloads 122
141 Synthesis and Characterization of High-Aspect-Ratio Hematite Nanostructures for Solar Water Splitting

Authors: Paula Quiterio, Arlete Apolinario, Celia T. Sousa, Joao Azevedo, Paula Dias, Adelio Mendes, Joao P. Araujo

Abstract:

Nowadays one of the mankind's greatest challenges has been the supply of low-cost and environmentally friendly energy sources as an alternative to non-renewable fossil fuels. Hydrogen has been considered a promising solution, representing a clean and low-cost fuel. It can be produced directly from clean and abundant resources, such as sunlight and water, using photoelectrochemical cells (PECs), in a process that mimics the nature´s photosynthesis. Hematite (alpha-Fe2O3) has attracted considerable attention as a promising photoanode for solar water splitting, due to its high chemical stability, nontoxicity, availability and low band gap (2.2 eV), which allows reaching a high thermodynamic solar-to-hydrogen efficiency of 16.8 %. However, the main drawbacks of hematite such as the short hole diffusion length and the poor conductivity that lead to high electron-hole recombination result in significant PEC efficiency losses. One strategy to overcome these limitations and to increase the PEC efficiency is to use 1D nanostructures, such as nanotubes (NTs) and nanowires (NWs), which present high aspect ratios and large surface areas providing direct pathways for electron transport up to the charge collector and minimizing the recombination losses. In particular, due to the ultrathin walls of the NTs, the holes can reach the surface faster than in other nanostructures, representing a key factor for the NTs photoresponse. In this work, we prepared hematite NWs and NTs, respectively by hydrothermal process and electrochemical anodization. For hematite NWs growing, we studied the effect of variable hydrothermal conditions, different annealing temperatures and time, and the use of Ti and Sn dopants on the morphology and PEC performance. The crystalline phase characterization by X-ray diffraction was crucial to distinguish the formation of hematite and other iron oxide phases, alongside its effect on the photoanodes conductivity and consequent PEC efficiency. The conductivity of the as-prepared NWs is very low, in the order of 10-5 S cm-1, but after doping and annealing optimization it increased by a factor of 105. A high photocurrent density of 1.02 mA cm-2 at 1.45 VRHE was obtained under simulated sunlight, which is a very promising value for this kind of hematite nanostructures. The stability of the photoelectrodes was also tested, presenting good stability after several J-V measurements over time. The NTs, synthesized by fast anodizations with potentials ranging from 20-100 V, presented a linear growth of the NTs pore walls, with very low thicknesses from 10 - 18 nm. These preliminary results are also very promising for the use of hematite photoelectrodes on PEC hydrogen applications.

Keywords: hematite, nanotubes, nanowires, photoelectrochemical cells

Procedia PDF Downloads 230
140 Performance Analysis of Double Gate FinFET at Sub-10NM Node

Authors: Suruchi Saini, Hitender Kumar Tyagi

Abstract:

With the rapid progress of the nanotechnology industry, it is becoming increasingly important to have compact semiconductor devices to function and offer the best results at various technology nodes. While performing the scaling of the device, several short-channel effects occur. To minimize these scaling limitations, some device architectures have been developed in the semiconductor industry. FinFET is one of the most promising structures. Also, the double-gate 2D Fin field effect transistor has the benefit of suppressing short channel effects (SCE) and functioning well for less than 14 nm technology nodes. In the present research, the MuGFET simulation tool is used to analyze and explain the electrical behaviour of a double-gate 2D Fin field effect transistor. The drift-diffusion and Poisson equations are solved self-consistently. Various models, such as Fermi-Dirac distribution, bandgap narrowing, carrier scattering, and concentration-dependent mobility models, are used for device simulation. The transfer and output characteristics of the double-gate 2D Fin field effect transistor are determined at 10 nm technology node. The performance parameters are extracted in terms of threshold voltage, trans-conductance, leakage current and current on-off ratio. In this paper, the device performance is analyzed at different structure parameters. The utilization of the Id-Vg curve is a robust technique that holds significant importance in the modeling of transistors, circuit design, optimization of performance, and quality control in electronic devices and integrated circuits for comprehending field-effect transistors. The FinFET structure is optimized to increase the current on-off ratio and transconductance. Through this analysis, the impact of different channel widths, source and drain lengths on the Id-Vg and transconductance is examined. Device performance was affected by the difficulty of maintaining effective gate control over the channel at decreasing feature sizes. For every set of simulations, the device's features are simulated at two different drain voltages, 50 mV and 0.7 V. In low-power and precision applications, the off-state current is a significant factor to consider. Therefore, it is crucial to minimize the off-state current to maximize circuit performance and efficiency. The findings demonstrate that the performance of the current on-off ratio is maximum with the channel width of 3 nm for a gate length of 10 nm, but there is no significant effect of source and drain length on the current on-off ratio. The transconductance value plays a pivotal role in various electronic applications and should be considered carefully. In this research, it is also concluded that the transconductance value of 340 S/m is achieved with the fin width of 3 nm at a gate length of 10 nm and 2380 S/m for the source and drain extension length of 5 nm, respectively.

Keywords: current on-off ratio, FinFET, short-channel effects, transconductance

Procedia PDF Downloads 61
139 Revealing the Nitrogen Reaction Pathway for the Catalytic Oxidative Denitrification of Fuels

Authors: Michael Huber, Maximilian J. Poller, Jens Tochtermann, Wolfgang Korth, Andreas Jess, Jakob Albert

Abstract:

Aside from the desulfurisation, the denitrogenation of fuels is of great importance to minimize the environmental impact of transport emissions. The oxidative reaction pathway of organic nitrogen in the catalytic oxidative denitrogenation could be successfully elucidated. This is the first time such a pathway could be traced in detail in non-microbial systems. It was found that the organic nitrogen is first oxidized to nitrate, which is subsequently reduced to molecular nitrogen via nitrous oxide. Hereby, the organic substrate serves as a reducing agent. The discovery of this pathway is an important milestone for the further development of fuel denitrogenation technologies. The United Nations aims to counteract global warming with Net Zero Emissions (NZE) commitments; however, it is not yet foreseeable when crude oil-based fuels will become obsolete. In 2021, more than 50 million barrels per day (mb/d) were consumed for the transport sector alone. Above all, heteroatoms such as sulfur or nitrogen produce SO₂ and NOx during combustion in the engines, which is not only harmful to the climate but also to health. Therefore, in refineries, these heteroatoms are removed by hy-drotreating to produce clean fuels. However, this catalytic reaction is inhibited by the basic, nitrogenous reactants (e.g., quinoline) as well as by NH3. The ion pair of the nitrogen atom forms strong pi-bonds to the active sites of the hydrotreating catalyst, which dimin-ishes its activity. To maximize the desulfurization and denitrogenation effectiveness in comparison to just extraction and adsorption, selective oxidation is typically combined with either extraction or selective adsorption. The selective oxidation produces more polar compounds that can be removed from the non-polar oil in a separate step. The extraction step can also be carried out in parallel to the oxidation reaction, as a result of in situ separation of the oxidation products (ECODS; extractive catalytic oxidative desulfurization). In this process, H8PV5Mo7O40 (HPA-5) is employed as a homogeneous polyoxometalate (POM) catalyst in an aqueous phase, whereas the sulfur containing fuel components are oxidized after diffusion from the organic fuel phase into the aqueous catalyst phase, to form highly polar products such as H₂SO₄ and carboxylic acids, which are thereby extracted from the organic fuel phase and accumulate in the aqueous phase. In contrast to the inhibiting properties of the basic nitrogen compounds in hydrotreating, the oxidative desulfurization improves with simultaneous denitrification in this system (ECODN; extractive catalytic oxidative denitrogenation). The reaction pathway of ECODS has already been well studied. In contrast, the oxidation of nitrogen compounds in ECODN is not yet well understood and requires more detailed investigations.

Keywords: oxidative reaction pathway, denitrogenation of fuels, molecular catalysis, polyoxometalate

Procedia PDF Downloads 181
138 Developing of Ecological Internal Insulation Composite Boards for Innovative Retrofitting of Heritage Buildings

Authors: J. N. Nackler, K. Saleh Pascha, W. Winter

Abstract:

WHISCERS™ (Whole House In-Situ Carbon and Energy Reduction Solution) is an innovative process for Internal Wall Insulation (IWI) for energy-efficient retrofitting of heritage building, which uses laser measuring to determine the dimensions of a room, off-site insulation board cutting and rapid installation to complete the process. As part of a multinational investigation consortium the Austrian part adapted the WHISCERS system to local conditions of Vienna where most historical buildings have valuable stucco facades, precluding the application of an external insulation. The Austrian project contribution addresses the replacement of commonly used extruded polystyrene foam (XPS) with renewable materials such as wood and wood products to develop a more sustainable IWI system. As the timber industry is a major industry in Austria, a new innovative and more sustainable IWI solution could also open up new markets. The first approach of investigation was the Life Cycle Assessment (LCA) to define the performance of wood fibre board as insulation material in comparison to normally used XPS-boards. As one of the results the global-warming potential (GWP) of wood-fibre-board is 15 times less the equivalent to carbon dioxide while in the case of XPS it´s 72 times more. The hygrothermal simulation program WUFI was used to evaluate and simulate heat and moisture transport in multi-layer building components of the developed IWI solution. The results of the simulations prove in examined boundary conditions of selected representative brickwork constructions to be functional and usable without risk regarding vapour diffusion and liquid transport in proposed IWI. In a further stage three different solutions were developed and tested (1 - glued/mortared, 2 - with soft board, connected to wall with gypsum board as top layer, 3 - with soft board and clay board as top layer). All three solutions presents a flexible insulation layer out of wood fibre towards the existing wall, thus compensating irregularities of the wall surface. From first considerations at the beginning of the development phase, three different systems had been developed and optimized according to assembly technology and tested as small specimen in real object conditions. The built prototypes are monitored to detect performance and building physics problems and to validate the results of the computer simulation model. This paper illustrates the development and application of the Internal Wall Insulation system.

Keywords: internal insulation, wood fibre, hygrothermal simulations, monitoring, clay, condensate

Procedia PDF Downloads 219
137 Antibiotic Susceptibility Pattern of the Pathogens Isolated from Hospital Acquired Acute Bacterial Meningitis in a Tertiary Health Care Centre in North India

Authors: M. S. Raza, A. Kapil, Sonu Tyagi, H. Gautam, S. Mohapatra, R. Chaudhry, S. Sood, V. Goyal, R. Lodha, V. Sreenivas, B. K. Das

Abstract:

Background: Acute bacterial meningitis remains the major cause of mortality and morbidity. More than half of the survivors develop the significant lifelong neurological abnormalities. Diagnosis of the hospital acquired acute bacterial meningitis (HAABM) is challenging as it appears either in the post operative patients or patients acquire the organisms from the hospital environment. In both the situations, pathogens are exposed to high dose of antibiotics. Chances of getting multidrug resistance organism are very high. We have performed this experiment to find out the etiological agents of HAABM and its antibiotics susceptibility pattern. Methodology: A perspective study was conducted at the Department of Microbiology, All India Institute of Medical Sciences, New Delhi. From March 2015 to April 2018 total 400 Cerebro spinal fluid samples were collected aseptically. Samples were processed for cell count, Gram staining, and culture. Culture plates were incubated at 37°C for 18-24 hours. Organism grown on blood and MacConkey agar were identified by MALDI-TOF Vitek MS (BioMerieux, France) and antibiotic susceptibility tests were performed by Kirby Bauer disc diffusion method as per CLSI 2015 guideline. Results: Of the 400 CSF samples processed, 43 (10.75%) were culture positive for different bacteria. Out of 43 isolates, the most prevalent Gram-positive organisms were S. aureus 4 (9.30%) followed by E. faecium 3 (6.97%) & CONS 2 (4.65%). Similarly, E. coli 13 (30.23%) was the commonest Gram-negative isolates followed by A. baumannii 12 (27.90%), K. pneumonia 5 (11.62%) and P. aeruginosa 4(9.30%). Most of the antibiotics tested against the Gram-negative isolates were resistance to them. Colistin was most effective followed by Meropenem and Imepenim for all Gram-negative HAABM isolates. Similarly, most of antibiotics tested were susceptible to S. aureus and CONS. However, E. faecium (100%) were only susceptible to vancomycin and teicoplanin. Conclusion: Hospital acquired acute bacterial meningitis (HAABM) is becoming the emerging challenge as most of isolates are showing resistance to commonly used antibiotics. Gram-negative organisms are emerging as the major player of HAABM. Great care needs to be taken especially in tertiary care hospitals. Similarly, antibiotic stewardship should be followed and antibiotic susceptibility test (AST) should be performed regularly to update the antibiotic patter and to prevent from the emergence of resistance. Updated information of the AST will be helpful for the better management of the meningitis patient.

Keywords: CSF, MALDI-TOF, hospital acquired acute bacterial meningitis, AST

Procedia PDF Downloads 163
136 The Antimicrobial Activity of Marjoram Essential Oil Against Some Antibiotic Resistant Microbes Isolated from Hospitals

Authors: R. A. Abdel Rahman, A. E. Abdel Wahab, E. A. Goghneimy, H. F. Mohamed, E. M. Salama

Abstract:

Infectious diseases are a major cause of death worldwide. The treatment of infections continues to be problematic in modern time because of the severe side effects of some drugs and the growing resistance to antimicrobial agents. Hence, the search for newer, safer and more potent antimicrobials is a pressing need. Herbal medicines have received much attention as a source of new antibacterial drugs since they are considered time-tested and comparatively safe both for human use and the environment. In the present study, the antimicrobial activity of marjoram (Origanum majorana L.) essential oil on some gram positive and gram negative reference bacteria, as well as some hospital resistant microbes, was tested. Marjoram oil was extracted and the oil chemical constituents were identified using GC/MS analysis. Staphylococcus aureas ATCC 6923, Pseudomonus auregonosa ATCC 9027, Bacillus subtilis ATCC 6633, E. coli ATCC 8736 and two hospital resistant microbes isolates 16 and 21 were used. The two isolates were identified by biochemical tests and 16s rRNA as proteus spp. and Enterococcus facielus. The effect of different concentrations of essential oils on bacterial growth was tested using agar disk diffusion assay method to determine the minimum inhibitory concentrations and using micro dilution method to determine the minimum bactericidal concentrations. Marjoram oil was found to be effective against both reference and hospital resistance strains. Hospital strains were more resistant to marjoram oil than reference strains. P. auregonosa growth was completely inhibited at a low concentration of oil (4µl/ml). The other reference strains showed sensitivity to marjoram oil at concentrations ranged from 5 to 7µl/ml. The two hospital strains showed sensitivity at media containing 10 and 15µl/ml oil. The major components of oil were terpineol, cis-beta (23.5%), 1,6 – octadien –3-ol,3,7-dimethyl, 2 aminobenzoate (10.9%), alpha terpieol (8.6%) and linalool (6.3%). Scanning electron microscope (SEM) and transmission electron microscope (TEM) analysis were used to determine the difference between treated and untreated hospital strains. SEM results showed that treated cells were smaller in size than control cells. TEM data showed that cell lysis has occurred to treated cells. Treated cells have ruptured cell wall and appeared empty of cytoplasm compared to control cells which shown to be intact with normal volume of cytoplasm. The results indicated that marjoram oil has a positive antimicrobial effect on hospital resistance microbes. Natural crude extracts can be perfect resources for new antimicrobial drugs.

Keywords: antimicrobial activity, essential oil, hospital resistance microbes, marjoram

Procedia PDF Downloads 447
135 Bacteriological Spectrum and Resistance Patterns of Common Clinical Isolates from Infections in Cancer Patients

Authors: Vivek Bhat, Rohini Kelkar, Sanjay Biswas

Abstract:

Introduction: Cancer patients are at increased risk of bacterial infections. This may due to the disease process itself, the effect of chemotherapeutic drugs or invasive procedures such as catheterization. A wide variety of bacteria including some emerging pathogens are increasingly being reported from these patients. The incidence of multidrug-resistant organisms particularly in the Gram negative group is also increasing, with higher resistance rates seen to cephalosporins, β-lactam/β-lactam inhibitor combinations, and the carbapenems. This study documents the bacteriological spectrum of infections and their resistance patterns in cancer patients. Methods: This study includes all bacterial isolates recovered from infections cancer patients over a period of 18 months. Samples included Blood cultures, Pus/wound swabs, urine, tissue biopsies, body fluids, catheter tips and respiratory specimens such as sputum and bronchoalveolar lavage (BAL). All samples were processed in the microbiology laboratory as per standard laboratory protocols. Organisms were identified to species level and antimicrobial susceptibility testing was performed manually by the disc diffusion technique or in the Vitek-2 (Biomereux, France) instrument. Interpretations were as per Clinical laboratory Standards Institute (CLSI) guidelines. Results: A total of 1150 bacterial isolates were cultured from 884 test samples during the study period. Of these 227 were Gram-positive and 923 were Gram-negative organisms. Staphylococcus aureus (99 isolates) was the commonest Gram-positive isolate followed by Enterococcus (79) and Gr A Streptococcus (30). Among the Gram negatives, E. coli (304), Pseudomonas aeruginosa (201) and Klebsiella pneumoniae (190) were the most common. Of the Staphylococcus aureus isolates 27.2% were methicillin resistant. Only 5.06% enterococci were vancomycin resistant. High rates of resistance to cefotaxime and ciprofloxacin were seen amongst E. coli (84.8% & 83.55%) and Klebsiella pneumoniae (71 & 62.1%) respectively. Resistance to carbapenems (meropenem) was high at 70% in Acinetobacter spp.; however all isolates were sensitive to colistin. Among the aminoglycosides, amikacin retained good efficacy against Escherichia coli (82.9%) and Pseudomonas aeruginosa (78.1%). Occasional isolates of emerging pathogens such as Chryseobacterium indologens, Roseomonas, and Achromobacter xyloxidans were also recovered. Conclusion: The common infections in cancer patients include respiratory, wound, tract infections and sepsis. The commonest isolates include Staphylococcus aureus, Enterococci, Escherichia coli, Klebsiella pneumoniae and Pseudomonas aeruginosa. There is a high level of resistance to the commonly used antibiotics among Gram-negative organisms.

Keywords: bacteria, resistance, infection, cancer

Procedia PDF Downloads 300
134 Prevalence of Antibiotic Resistant Enterococci in Treated Wastewater Effluent in Durban, South Africa and Characterization of Vancomycin and High-Level Gentamicin-Resistant Strains

Authors: S. H. Gasa, L. Singh, B. Pillay, A. O. Olaniran

Abstract:

Wastewater treatment plants (WWTPs) have been implicated as the leading reservoir for antibiotic resistant bacteria (ARB), including Enterococci spp. and antibiotic resistance genes (ARGs), worldwide. Enterococci are a group of clinically significant bacteria that have gained much attention as a result of their antibiotic resistance. They play a significant role as the principal cause of nosocomial infections and dissemination of antimicrobial resistance genes in the environment. The main objective of this study was to ascertain the role of WWTPs in Durban, South Africa as potential reservoirs for antibiotic resistant Enterococci (ARE) and their related ARGs. Furthermore, the antibiogram and resistance gene profile of Enterococci species recovered from treated wastewater effluent and receiving surface water in Durban were also investigated. Using membrane filtration technique, Enterococcus selective agar and selected antibiotics, ARE were enumerated in samples (influent, activated sludge, before chlorination and final effluent) collected from two WWTPs, as well as from upstream and downstream of the receiving surface water. Two hundred Enterococcus isolates recovered from the treated effluent and receiving surface water were identified by biochemical and PCR-based methods, and their antibiotic resistance profiles determined by the Kirby-Bauer disc diffusion assay, while PCR-based assays were used to detect the presence of resistance and virulence genes. High prevalence of ARE was obtained at both WWTPs, with values reaching a maximum of 40%. The influent and activated sludge samples contained the greatest prevalence of ARE with lower values observed in the before and after chlorination samples. Of the 44 vancomycin and high-level gentamicin-resistant isolates, 11 were identified as E. faecium, 18 as E. faecalis, 4 as E. hirae while 11 are classified as “other” Enterococci species. High-level aminoglycoside resistance for gentamicin (39%) and vancomycin (61%) was recorded in species tested. The most commonly detected virulence gene was the gelE (44%), followed by asa1 (40%), while cylA and esp were detected in only 2% of the isolates. The most prevalent aminoglycoside resistance genes were aac(6')-Ie-aph(2''), aph(3')-IIIa, and ant(6')-Ia detected in 43%, 45% and 41% of the isolates, respectively. Positive correlation was observed between resistant phenotypes to high levels of aminoglycosides and presence of all aminoglycoside resistance genes. Resistance genes for glycopeptide: vanB (37%) and vanC-1 (25%), and macrolide: ermB (11%) and ermC (54%) were detected in the isolates. These results show the need for more efficient wastewater treatment and disposal in order to prevent the release of virulent and antibiotic resistant Enterococci species and safeguard public health.

Keywords: antibiogram, enterococci, gentamicin, vancomycin, virulence signatures

Procedia PDF Downloads 220
133 Stable Time Reversed Integration of the Navier-Stokes Equation Using an Adjoint Gradient Method

Authors: Jurriaan Gillissen

Abstract:

This work is concerned with stabilizing the numerical integration of the Navier-Stokes equation (NSE), backwards in time. Applications involve the detection of sources of, e.g., sound, heat, and pollutants. Stable reverse numerical integration of parabolic differential equations is also relevant for image de-blurring. While the literature addresses the reverse integration problem of the advection-diffusion equation, the problem of numerical reverse integration of the NSE has, to our knowledge, not yet been addressed. Owing to the presence of viscosity, the NSE is irreversible, i.e., when going backwards in time, the fluid behaves, as if it had a negative viscosity. As an effect, perturbations from the perfect solution, due to round off errors or discretization errors, grow exponentially in time, and reverse integration of the NSE is inherently unstable, regardless of using an implicit time integration scheme. Consequently, some sort of filtering is required, in order to achieve a stable, numerical, reversed integration. The challenge is to find a filter with a minimal adverse affect on the accuracy of the reversed integration. In the present work, we explore an adjoint gradient method (AGM) to achieve this goal, and we apply this technique to two-dimensional (2D), decaying turbulence. The AGM solves for the initial velocity field u0 at t = 0, that, when integrated forward in time, produces a final velocity field u1 at t = 1, that is as close as is feasibly possible to some specified target field v1. The initial field u0 defines a minimum of a cost-functional J, that measures the distance between u1 and v1. In the minimization procedure, the u0 is updated iteratively along the gradient of J w.r.t. u0, where the gradient is obtained by transporting J backwards in time from t = 1 to t = 0, using the adjoint NSE. The AGM thus effectively replaces the backward integration by multiple forward and backward adjoint integrations. Since the viscosity is negative in the adjoint NSE, each step of the AGM is numerically stable. Nevertheless, when applied to turbulence, the AGM develops instabilities, which limit the backward integration to small times. This is due to the exponential divergence of phase space trajectories in turbulent flow, which produces a multitude of local minima in J, when the integration time is large. As an effect, the AGM may select unphysical, noisy initial conditions. In order to improve this situation, we propose two remedies. First, we replace the integration by a sequence of smaller integrations, i.e., we divide the integration time into segments, where in each segment the target field v1 is taken as the initial field u0 from the previous segment. Second, we add an additional term (regularizer) to J, which is proportional to a high-order Laplacian of u0, and which dampens the gradients of u0. We show that suitable values for the segment size and for the regularizer, allow a stable reverse integration of 2D decaying turbulence, with accurate results for more then O(10) turbulent, integral time scales.

Keywords: time reversed integration, parabolic differential equations, adjoint gradient method, two dimensional turbulence

Procedia PDF Downloads 224
132 Computational Code for Solving the Navier-Stokes Equations on Unstructured Meshes Applied to the Leading Edge of the Brazilian Hypersonic Scramjet 14-X

Authors: Jayme R. T. Silva, Paulo G. P. Toro, Angelo Passaro, Giannino P. Camillo, Antonio C. Oliveira

Abstract:

An in-house C++ code has been developed, at the Prof. Henry T. Nagamatsu Laboratory of Aerothermodynamics and Hypersonics from the Institute of Advanced Studies (Brazil), to estimate the aerothermodynamic properties around the Hypersonic Vehicle Integrated to the Scramjet. In the future, this code will be applied to the design of the Brazilian Scramjet Technological Demonstrator 14-X B. The first step towards accomplishing this objective, is to apply the in-house C++ code at the leading edge of a flat plate, simulating the leading edge of the 14-X Hypersonic Vehicle, making possible the wave phenomena of oblique shock and boundary layer to be analyzed. The development of modern hypersonic space vehicles requires knowledge regarding the characteristics of hypersonic flows in the vicinity of a leading edge of lifting surfaces. The strong interaction between a shock wave and a boundary layer, in a high supersonic Mach number 4 viscous flow, close to the leading edge of the plate, considering no slip condition, is numerically investigated. The small slip region is neglecting. The study consists of solving the fluid flow equations for unstructured meshes applying the SIMPLE algorithm for Finite Volume Method. Unstructured meshes are generated by the in-house software ‘Modeler’ that was developed at Virtual’s Engineering Laboratory from the Institute of Advanced Studies, initially developed for Finite Element problems and, in this work, adapted to the resolution of the Navier-Stokes equations based on the SIMPLE pressure-correction scheme for all-speed flows, Finite Volume Method based. The in-house C++ code is based on the two-dimensional Navier-Stokes equations considering non-steady flow, with nobody forces, no volumetric heating, and no mass diffusion. Air is considered as calorically perfect gas, with constant Prandtl number and Sutherland's law for the viscosity. Solutions of the flat plate problem for Mach number 4 include pressure, temperature, density and velocity profiles as well as 2-D contours. Also, the boundary layer thickness, boundary conditions, and mesh configurations are presented. The same problem has been solved by the academic license of the software Ansys Fluent and for another C++ in-house code, which solves the fluid flow equations in structured meshes, applying the MacCormack method for Finite Difference Method, and the results will be compared.

Keywords: boundary-layer, scramjet, simple algorithm, shock wave

Procedia PDF Downloads 493
131 Air–Water Two-Phase Flow Patterns in PEMFC Microchannels

Authors: Ibrahim Rassoul, A. Serir, E-K. Si Ahmed, J. Legrand

Abstract:

The acronym PEM refers to Proton Exchange Membrane or alternatively Polymer Electrolyte Membrane. Due to its high efficiency, low operating temperature (30–80 °C), and rapid evolution over the past decade, PEMFCs are increasingly emerging as a viable alternative clean power source for automobile and stationary applications. Before PEMFCs can be employed to power automobiles and homes, several key technical challenges must be properly addressed. One technical challenge is elucidating the mechanisms underlying water transport in and removal from PEMFCs. On one hand, sufficient water is needed in the polymer electrolyte membrane or PEM to maintain sufficiently high proton conductivity. On the other hand, too much liquid water present in the cathode can cause “flooding” (that is, pore space is filled with excessive liquid water) and hinder the transport of the oxygen reactant from the gas flow channel (GFC) to the three-phase reaction sites. The experimental transparent fuel cell used in this work was designed to represent actual full scale of fuel cell geometry. According to the operating conditions, a number of flow regimes may appear in the microchannel: droplet flow, blockage water liquid bridge /plug (concave and convex forms), slug/plug flow and film flow. Some of flow patterns are new, while others have been already observed in PEMFC microchannels. An algorithm in MATLAB was developed to automatically determine the flow structure (e.g. slug, droplet, plug, and film) of detected liquid water in the test microchannels and yield information pertaining to the distribution of water among the different flow structures. A video processing algorithm was developed to automatically detect dynamic and static liquid water present in the gas channels and generate relevant quantitative information. The potential benefit of this software allows the user to obtain a more precise and systematic way to obtain measurements from images of small objects. The void fractions are also determined based on images analysis. The aim of this work is to provide a comprehensive characterization of two-phase flow in an operating fuel cell which can be used towards the optimization of water management and informs design guidelines for gas delivery microchannels for fuel cells and its essential in the design and control of diverse applications. The approach will combine numerical modeling with experimental visualization and measurements.

Keywords: polymer electrolyte fuel cell, air-water two phase flow, gas diffusion layer, microchannels, advancing contact angle, receding contact angle, void fraction, surface tension, image processing

Procedia PDF Downloads 313
130 Loss of the Skin Barrier after Dermal Application of the Low Molecular Methyl Siloxanes: Volatile Methyl Siloxanes, VMS Silicones

Authors: D. Glamowska, K. Szymkowska, K. Mojsiewicz- Pieńkowska, K. Cal, Z. Jankowski

Abstract:

Introduction: The integrity of the outermost layer of skin (stratum corneum) is vital to the penetration of various compounds, including toxic substances. Barrier function of skin depends of its structure. The barrier function of the stratum corneum is provided by patterned lipid lamellae (binlayer). However, a lot of substances, including the low molecular methyl siloxanes (volatile methyl siloxanes, VMS) have an impact on alteration the skin barrier due to damage of stratum corneum structure. VMS belong to silicones. They are widely used in the pharmaceutical as well as cosmetic industry. Silicones fulfill the role of ingredient or excipient in medicinal products and the excipient in personal care products. Due to the significant human exposure to this group of compounds, an important aspect is toxicology of the compounds and safety assessment of products. Silicones in general opinion are considered as a non-toxic substances, but there are some data about their negative effect on living organisms through the inhaled or oral application. However, the transdermal route has not been described in the literature as a possible alternative route of penetration. The aim of the study was to verify the possibility of penetration of the stratum corneum, further permeation into the deeper layers of the skin (epidermis and dermis) as well as to the fluid acceptor by VMS. Methods: Research methodology was developed based on the OECD and WHO guidelines. In ex-vivo study, the fluorescence microscope and ATR FT-IR spectroscopy was used. The Franz- type diffusion cells were used to application of the VMS on the sample of human skin (A=0.65 cm) for 24h. The stratum corneum at the application site was tape-stripped. After separation of epidermis, relevant dyes: fluorescein, sulforhodamine B, rhodamine B hexyl ester were put on and observations were carried in the microscope. To confirm the penetration and permeation of the cyclic or linear VMS and thus the presence of silicone in the individual layers of the skin, spectra ATR FT-IR of the sample after application of silicone and H2O (control sample) were recorded. The research included comparison of the intesity of bands in characteristic positions for silicones (1263 cm-1, 1052 cm-1 and 800 cm-1). Results: and Conclusions The results present that cyclic and linear VMS are able to overcome the barrier of the skin. Influence of them on damage of corneocytes of the stratum corneum was observed. This phenomenon was due to distinct disturbances in the lipid structure of the stratum corneum. The presence of cyclic and linear VMS were identified in the stratum corneum, epidermis as well as in the dermis by both fluorescence microscope and ATR FT-IR spectroscopy. This confirms that the cyclic and linear VMS can penetrate to stratum corneum and permeate through the human skin layers. Apart from this they cause changes in the structure of the skin. Results show to possible absorption into the blood and lymphathic vessels by the VMS with linear and cyclic structure.

Keywords: low molecular methyl siloxanes, volatile methyl siloxanes, linear and cyclic siloxanes, skin penetration, skin permeation

Procedia PDF Downloads 345
129 Evolution of Microstructure through Phase Separation via Spinodal Decomposition in Spinel Ferrite Thin Films

Authors: Nipa Debnath, Harinarayan Das, Takahiko Kawaguchi, Naonori Sakamoto, Kazuo Shinozaki, Hisao Suzuki, Naoki Wakiya

Abstract:

Nowadays spinel ferrite magnetic thin films have drawn considerable attention due to their interesting magnetic and electrical properties with enhanced chemical and thermal stability. Spinel ferrite magnetic films can be implemented in magnetic data storage, sensors, and spin filters or microwave devices. It is well established that the structural, magnetic and transport properties of the magnetic thin films are dependent on microstructure. Spinodal decomposition (SD) is a phase separation process, whereby a material system is spontaneously separated into two phases with distinct compositions. The periodic microstructure is the characteristic feature of SD. Thus, SD can be exploited to control the microstructure at the nanoscale level. In bulk spinel ferrites having general formula, MₓFe₃₋ₓ O₄ (M= Co, Mn, Ni, Zn), phase separation via SD has been reported only for cobalt ferrite (CFO); however, long time post-annealing is required to occur the spinodal decomposition. We have found that SD occurs in CoF thin film without using any post-deposition annealing process if we apply magnetic field during thin film growth. Dynamic Aurora pulsed laser deposition (PLD) is a specially designed PLD system through which in-situ magnetic field (up to 2000 G) can be applied during thin film growth. The in-situ magnetic field suppresses the recombination of ions in the plume. In addition, the peak’s intensity of the ions in the spectra of the plume also increases when magnetic field is applied to the plume. As a result, ions with high kinetic energy strike into the substrate. Thus, ion-impingement occurred under magnetic field during thin film growth. The driving force of SD is the ion-impingement towards the substrates that is induced by in-situ magnetic field. In this study, we report about the occurrence of phase separation through SD and evolution of microstructure after phase separation in spinel ferrite thin films. The surface morphology of the phase separated films show checkerboard like domain structure. The cross-sectional microstructure of the phase separated films reveal columnar type phase separation. Herein, the decomposition wave propagates in lateral direction which has been confirmed from the lateral composition modulations in spinodally decomposed films. Large magnetic anisotropy has been found in spinodally decomposed nickel ferrite (NFO) thin films. This approach approves that magnetic field is also an important thermodynamic parameter to induce phase separation by the enhancement of up-hill diffusion in thin films. This thin film deposition technique could be a more efficient alternative for the fabrication of self-organized phase separated thin films and employed in controlling of the microstructure at nanoscale level.

Keywords: Dynamic Aurora PLD, magnetic anisotropy, spinodal decomposition, spinel ferrite thin film

Procedia PDF Downloads 367
128 Pathogenic Escherichia Coli Strains and Their Antibiotic Susceptibility Profiles in Cases of Child Diarrhea at Addis Ababa University, College of Health Sciences, Tikur Anbessa Specialized Hospital, Addis Ababa, Ethiopia

Authors: Benyam Zenebe, Tesfaye Sisay, Gurja Belay, Workabeba Abebe

Abstract:

Background: The prevalence and antibiogram of pathogenic E. coli strains, which cause diarrhea vary from region to region, and even within countries in the same geographical area. In Ethiopia, diagnostic approaches to E. coli induced diarrhea in children less than five years of age are not standardized. The aim of this study was to determine the involvement of pathogenic E. coli strains in child diarrhea and determine the antibiograms of the isolates in children less than 5 years of age with diarrhea at Addis Ababa University College of Health Sciences TikurAnbessa Specialized Hospital, Addis Ababa, Ethiopia. Methods: A purposive study that included 98 diarrheic children less than five years of age was conducted at Addis Ababa University College of Health Sciences, TikurAnbessa Specialized Hospital, Addis Ababa, Ethiopia to detect pathogenic E. coli biotypes. Stool culture was used to identify presumptive E. coliisolates. Presumptive isolates were confirmed by biochemical tests, and antimicrobial susceptibility tests were performed on confirmed E. coli isolates by the disk diffusion method. DNA was extracted from confirmed isolates by a heating method and subjected to Polymerase Chain Reaction or the presence of virulence genes. Amplified PCR products were analyzed by agarose gel electrophoresis. Data were collected on child demographics and clinical conditions using administered questionnaires. The prevalence of E. coli strains from the total diarrheic children, and the prevalence of pathogenic strains from total E. coli isolates along with their susceptibility profiles; the distribution of pathogenic E.coli biotypes among different age groups and between the sexes were determined by using descriptive statistics. Result: Out of 98 stool specimens collected from diarrheic children less than 5 years of age, 75 presumptive E. coli isolates were identified by culture; further confirmation by biochemical tests showed that only 56 of the isolates were E. coli; 29 of the isolates were found in male children and 27 of them in female children. Out of the 58 isolates of E. coli, 25 pathotypes belonging to different classes of pathogenic strains: STEC, EPEC, EHEC, EAEC were detected by using the PCR technique. Pathogenic E. coli exhibited high rates of antibiotic resistance to many of the antibiotics tested. Moreover, they exhibited multiple drug resistance. Conclusion: This study found that the isolation rate of E. coli and the involvement of antibiotic-resistant pathogenic E. coli in diarrheic children is prominent, and hence focus should be given on the diagnosis and antimicrobial sensitivity testing of pathogenic E. coli at Addis Ababa University College of Health Sciences TikurAnbessa Specialized Hospital. Among antibiotics tested, Cefotitan could be a drug of choice to treat E. coli.

Keywords: antibiotic susceptibility profile, children, diarrhea, E. coli, pathogenic

Procedia PDF Downloads 234
127 Spectrum of Bacteria Causing Oral and Maxillofacial Infections and Their Antibiotic Susceptibility among Patients Attending Muhimbili National Hospital

Authors: Sima E. Rugarabamu, Mecky I. Matee, Elison N. M. Simon

Abstract:

Background: In Tanzania bacteriological studies of etiological agents of oro-facial infections are very limited, and very few have investigated anaerobes. The aim of this study was to determine the spectrum of bacterial agents involved in oral and maxillofacial infections in patients attending Muhimbili National Hospital, Dar-es-salaam, Tanzania. Method: This was a hospital based descriptive cross-sectional study that was conducted in the Department of Oral and Maxillofacial Surgery of the Muhimbili National Hospital in Dar es Salaam, Tanzania from 1st January 2014 to 31st August 2014. Seventy (70) patients with various forms of oral and maxillofacial infections who were recruited for the study. The study participants were interviewed using a prepared questionnaire after getting their consent. Pus aspirate was cultured on Blood agar, Chocolate Agar, MacConkey agar and incubated aerobically at 37°C. Imported blood agar was used for anaerobic culture whereby they were incubated at 37°Cin anaerobic jars in an atmosphere of generated using commercial gas-generating kits in accordance with manufacturer’s instructions. Plates were incubated at 37°C for 24 hours (For aerobic culture and 48 hours for anaerobic cultures). Gram negative rods were identified using API 20E while all other isolates were identified by conventional biochemical tests. Antibiotic sensitivity testing for isolated aerobic and anaerobic bacteria was detected by the disk diffusion, agar dilution and E-test using routine and commercially available antibiotics used to treat oral facial infections. Results: This study comprised of 41 (58.5%) males and 29 (41.5%) females with a mean age of 32 years SD +/-15.1 and a range of 19 to 70 years. A total of 161 bacteria strains were isolated from specimens obtained from 70 patients which were an average of 2.3 isolates per patient. Of these 103 were aerobic organism and 58 were strict anaerobes. A complex mix of strict anaerobes and facultative anaerobes accounted for 87% of all infections.The most frequent aerobes isolated was streptococcus spp 70 (70%) followed by Staphylococcus spp 18 (18%). Other organisms such as Klebsiella spp 4 (4%), Proteus spp 5 (5%) and Pseudomonas spp 2 (2%) were also seen. The anaerobic group was dominated by Prevotella spp 25 (43%) followed by Peptostreptococcus spp 18 (31%); other isolates were Pseudomonas spp 2 (1%), black pigmented Pophyromonas spp 4 (5%), Fusobacterium spp 3 (3%) and Bacteroides spp 5 (8%). Majority of these organisms were sensitive to Amoxicillin (98%), Gentamycin (89%), and Ciprofloxacin (100%). A 40% resistance to metronidazole was observed in Bacteroides spp otherwise this drug and others displayed good activity against anaerobes. Conclusions: Oral and maxillofacial facial infections at Muhimbili National Hospital are mostly caused by streptococcus spp and Prevotella spp. Strict anaerobes accounted for 36% of all isolates. The profile of isolates should assist in selecting empiric therapy for infections of the oral and maxillofacial region. Inclusion of antimicrobial agents against anaerobic bacteria is highly recommended.

Keywords: bacteria, oral and maxillofacial infections, antibiotic susceptibility, Tanzania

Procedia PDF Downloads 331