Search results for: autonomic nervous function
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 5206

Search results for: autonomic nervous function

4186 Kinesio Taping in Treatment Patients with Intermittent Claudication

Authors: Izabela Zielinska

Abstract:

Kinesio Taping is classified as physiotherapy method supporting rehabilitation and modulating some physiological processes. It is commonly used in sports medicine and orthopedics. This sensory method has influence on muscle function, pain sensation, intensifies lymphatic system as well as improves microcirculation. The aim of this study was to assess the effect of Kinesio Taping in patients with ongoing treatment of peripheral artery disease (PAD). The study group comprised 60 patients (stadium II B at Fontain's scale). All patients were divided into two groups (30 person/each), where 12 weeks long treadmill training was administrated. In the second group, the Kinesio Taping was applied to support the function of the gastrocnemius muscle. The measurements of distance and time until claudication pain, blood flow of arteries in lower limbs and ankle brachial index were taken under evaluation. Examination performed after Kinesio Taping therapy showed statistically significant increase in gait parameters and muscle strength in patients with intermittent claudication. The Kinesio Taping method has clinically significant effects on enhancement of pain-free distance and time until claudication pain in patients with peripheral artery disease. Kinesio Taping application can be used to support non-invasive treatment in patients with intermittent claudication. Kinesio Taping can be employed as an alternative way of therapy for patients with orthopedic or cardiac contraindications to be treated with treadmill training.

Keywords: intermittent claudication, kinesiotaping, peripheral artery disease, treadmill training

Procedia PDF Downloads 206
4185 An Improved Multiple Scattering Reflectance Model Based on Specular V-Cavity

Authors: Hongbin Yang, Mingxue Liao, Changwen Zheng, Mengyao Kong, Chaohui Liu

Abstract:

Microfacet-based reflection models are widely used to model light reflections for rough surfaces. Microfacet models have become the standard surface material building block for describing specular components with varying roughness; and yet, while they possess many desirable properties as well as produce convincing results, their design ignores important sources of scattering, which can cause a significant loss of energy. Specifically, they only simulate the single scattering on the microfacets and ignore the subsequent interactions. As the roughness increases, the interaction will become more and more important. So a multiple-scattering microfacet model based on specular V-cavity is presented for this important open problem. However, it spends much unnecessary rendering time because of setting the same number of scatterings for different roughness surfaces. In this paper, we design a geometric attenuation term G to compute the BRDF (Bidirectional reflection distribution function) of multiple scattering of rough surfaces. Moreover, we consider determining the number of scattering by deterministic heuristics for different roughness surfaces. As a result, our model produces a similar appearance of the objects with the state of the art model with significantly improved rendering efficiency. Finally, we derive a multiple scattering BRDF based on the original microfacet framework.

Keywords: bidirectional reflection distribution function, BRDF, geometric attenuation term, multiple scattering, V-cavity model

Procedia PDF Downloads 116
4184 Opacity Synthesis with Orwellian Observers

Authors: Moez Yeddes

Abstract:

The property of opacity is widely used in the formal verification of security in computer systems and protocols. Opacity is a general language-theoretic scheme of many security properties of systems. Opacity is parametrized with framework in which several security properties of a system can be expressed. A secret behaviour of a system is opaque if a passive attacker can never deduce its occurrence from the system observation. Instead of considering the case of static observability where the set of observable events is fixed off-line or dynamic observability where the set of observable events changes over time depending on the history of the trace, we introduce Orwellian partial observability where unobservable events are not revealed provided that downgrading events never occurs in the future of the trace. Orwellian partial observability is needed to model intransitive information flow. This Orwellian observability is knwon as ipurge function. We show in previous work how to verify opacity for regular secret is opaque for a regular language L w.r.t. an Orwellian projection is PSPACE-complete while it has been proved undecidable even for a regular language L w.r.t. a general Orwellian observation function. In this paper, we address two problems of opacification of a regular secret ϕ for a regular language L w.r.t. an Orwellian projection: Given L and a secret ϕ ∈ L, the first problem consist to compute some minimal regular super-language M of L, if it exists, such that ϕ is opaque for M and the second consists to compute the supremal sub-language M′ of L such that ϕ is opaque for M′. We derive both language-theoretic characterizations and algorithms to solve these two dual problems.

Keywords: security policies, opacity, formal verification, orwellian observation

Procedia PDF Downloads 226
4183 Selective Solvent Extraction of Co from Ni and Mn through Outer-Sphere Interactions

Authors: Korban Oosthuizen, Robert C. Luckay

Abstract:

Due to the growing popularity of electric vehicles and the importance of cobalt as part of the cathode material for lithium-ion batteries, demand for this metal is on the rise. Recycling of the cathode materials by means of solvent extraction is an attractive means of recovering cobalt and easing the pressure on limited natural resources. In this study, a series of straight chain and macrocyclic diamine ligands were developed for the selective recovery of cobalt from the solution containing nickel and manganese by means of solvent extraction. This combination of metals is the major cathode material used in electric vehicle batteries. The ligands can be protonated and function as ion-pairing ligands targeting the anionic [CoCl₄]²⁻, a species which is not observed for Ni or Mn. Selectivity for Co was found to be good at very high chloride concentrations and low pH. Longer chains or larger macrocycles were found to enhance selectivity, and linear chains on the amide side groups also resulted in greater selectivity over the branched groups. The cation of the chloride salt used for adjusting chloride concentrations seems to play a major role in extraction through salting-out effects. The ligands developed in this study show good selectivity for Co over Ni and Mn but require very high chloride concentrations to function. This research does, however, open the door for further investigations into using diamines as solvent extraction ligands for the recovery of cobalt from spent lithium-ion batteries.

Keywords: hydrometallurgy, solvent extraction, cobalt, lithium-ion batteries

Procedia PDF Downloads 78
4182 Arginase Activity and Nitric Oxide Levels in Patients Undergoing Open Heart Surgery with Cardiopulmonary Bypass

Authors: Mehmet Ali Kisaçam, P. Sema Temizer Ozan, Ayşe Doğan, Gonca Ozan, F. Sarper Türker

Abstract:

Cardiovascular disease which is one of the most common health problems worldwide has crucial importance because of its’ morbidity and mortality rates. Nitric oxide synthase and arginase use L-arginine as a substrate and produce nitric oxide (NO), citrulline and urea, ornithine respectively. Endothelial dysfunction is characterized by reduced bioavailability of vasodilator and anti-inflammatory molecule NO. The purpose of the study to assess endothelial function via arginase activity and NO levels in patients undergoing coronary artery bypass grafting (CABG) surgery. The study was conducted on 26 patients (14 male, 12 female) undergoing CABG surgery. Blood samples were collected from the subjects before surgery, after the termination and after 24 hours of the surgery. Arginase activity and NO levels measured in collected samples spectrophotometrically. Arginase activity decreased significantly in subjects after the termination of the surgery compared to before surgery data. 24 hours after the surgery there wasn’t any significance in arginase activity as it compared to before surgery and after the termination of the surgery. On the other hand, NO levels increased significantly in the subject after the termination of the surgery. However there was no significant increase in NO levels after 24 hours of the surgery, but there was an insignificant increase compared to before surgery data. The results indicate that after the termination of the surgery vascular and endothelial function improved and after 24 hours of the surgery arginase activity and NO levels returned to normal.

Keywords: arginase, bypass, cordiopulmonary, nitric oxide

Procedia PDF Downloads 207
4181 An Analysis of the Impact of Immunosuppression upon the Prevalence and Risk of Cancer

Authors: Aruha Khan, Brynn E. Kankel, Paraskevi Papadopoulou

Abstract:

In recent years, extensive research upon ‘stress’ has provided insight into its two distinct guises, namely the short–term (fight–or–flight) response versus the long–term (chronic) response. Specifically, the long–term or chronic response is associated with the suppression or dysregulation of immune function. It is also widely noted that the occurrence of cancer is greatly correlated to the suppression of the immune system. It is thus necessary to explore the impact of long–term or chronic stress upon the prevalence and risk of cancer. To what extent can the dysregulation of immune function caused by long–term exposure to stress be controlled or minimized? This study focuses explicitly upon immunosuppression due to its ability to increase disease susceptibility, including cancer itself. Based upon an analysis of the literature relating to the fundamental structure of the immune system alongside the prospective linkage of chronic stress and the development of cancer, immunosuppression may not necessarily correlate directly to the acquisition of cancer—although it remains a contributing factor. A cross-sectional analysis of the survey data from the University of Tennessee Medical Center (UTMC) and Harvard Medical School (HMS) will provide additional supporting evidence (or otherwise) for the hypothesis of the study about whether immunosuppression (caused by the chronic stress response) notably impacts the prevalence of cancer. Finally, a multidimensional framework related to education on chronic stress and its effects is proposed.

Keywords: immune system, immunosuppression, long–term (chronic) stress, risk of cancer

Procedia PDF Downloads 134
4180 Numerical Simulation of Two-Dimensional Flow over a Stationary Circular Cylinder Using Feedback Forcing Scheme Based Immersed Boundary Finite Volume Method

Authors: Ranjith Maniyeri, Ahamed C. Saleel

Abstract:

Two-dimensional fluid flow over a stationary circular cylinder is one of the bench mark problem in the field of fluid-structure interaction in computational fluid dynamics (CFD). Motivated by this, in the present work, a two-dimensional computational model is developed using an improved version of immersed boundary method which combines the feedback forcing scheme of the virtual boundary method with Peskin’s regularized delta function approach. Lagrangian coordinates are used to represent the cylinder and Eulerian coordinates are used to describe the fluid flow. A two-dimensional Dirac delta function is used to transfer the quantities between the sold to fluid domain. Further, continuity and momentum equations governing the fluid flow are solved using fractional step based finite volume method on a staggered Cartesian grid system. The developed code is validated by comparing the values of drag coefficient obtained for different Reynolds numbers with that of other researcher’s results. Also, through numerical simulations for different Reynolds numbers flow behavior is well captured. The stability analysis of the improved version of immersed boundary method is tested for different values of feedback forcing coefficients.

Keywords: Feedback Forcing Scheme, Finite Volume Method, Immersed Boundary Method, Navier-Stokes Equations

Procedia PDF Downloads 305
4179 Nanoparaquat Effects on Oxidative Stress Status and Liver Function in Male Rats

Authors: Zahra Azizi, Ashkan Karbasi, Farzin Firouzian, Sara Soleimani Asl, Akram Ranjbar

Abstract:

Background: One of the most often used herbicides in agriculture is paraquat (PQ), which is very harmful to both people and animals. Chitosan is a well-known, non-toxic polymer commonly used in preparing particles via ionotropic gelation facilitated by negatively charged agents such as sodium alginate. This study aimed to compare the effects of PQ and nanoparaquat (PQNPs) on liver function in male rats. Materials & Methods: Rats were exposed to PQ & PQNPs (4 mg/kg/day, intraperitoneally) for seven days. Then, rats were anesthetized, and serum and liver samples were collected. Later, enzymatic activities such as alanine transaminase (ALT), aspartate transaminase (AST), and alkaline phosphatase (ALP) in serum and oxidative stress biomarkers such as lipid peroxidation (LPO), total antioxidant capacity (TAC) and total thiol groups (TTG) levels in liver tissue were measured by colorimetric methods. Also, histological changes in the liver were evaluated. Results: PQ altered the levels of ALT, AST, and ALP while inducing oxidative stress in the liver. Additionally, liver homogenates with PQ exposure had challenged LPO, TAC, and TTG levels. The severe liver damage is indicated by a significant increase in the enzyme activity of AST, ALT, and ALP in serum. According to the results of the current study, PQNPs, as compared to PQ and the control group, lowered ALT, AST, ALP, and LPO levels while increasing TAC and TTG levels. Conclusion: According to biochemical and histological investigations, PQ loaded in chitosan-alginate particles is more efficient than free PQ at reducing liver toxicity.

Keywords: paraquat, paraquat nanoparticles, liver, oxidative stress

Procedia PDF Downloads 71
4178 Over Expression of Mapk8ip3 Patient Variants in Zebrafish to Establish a Spectrum of Phenotypes in a Rare-Neurodevelopmental Disorder

Authors: Kinnsley Travis, Camerron M. Crowder

Abstract:

Mapk8ip3 (Mitogen-Activated Protein Kinase 8 Interacting Protein 3) is a gene that codes for the JIP3 protein, which is a part of the JIP scaffolding protein family. This protein is involved in axonal vesicle transport, elongation and regeneration. Variants in the Mapk8ip3 gene are associated with a rare-genetic condition that results in a neurodevelopmental disorder that can cause a range of phenotypes including global developmental delay and intellectual disability. Currently, there are 18 known individuals diagnosed to have sequenced confirmed Mapk8ip3 genetic disorders. This project focuses on examining the impact of a subset of missense patient variants on the Jip3 protein function by overexpressing the mRNA of these variants in a zebrafish knockout model for Jip3. Plasmids containing cDNA with individual missense variants were reverse transcribed, purified, and injected into single-cell zebrafish embryos (Wild Type, Jip3 -/+, and Jip3 -/-). At 6-days post mRNA microinjection, morphological, behavioral, and microscopic phenotypes were examined in zebrafish larvae. Morphologically, we compared the size and shape of the zebrafish during their development over a 5-day period. Total locomotive activity was assessed using the Microtracker assay and patterns of movement over time were examined using the DanioVision assay. Lastly, we used confocal microscopy to examine sensory axons for swelling and shortened length, which are phenotypes observed in the loss-of-function knockout Jip3 zebrafish model. Using these assays during embryonic development, we determined the impact of various missense variants on Jip3 protein function, compared to knockout and wild-type zebrafish embryo models. Variants in the gene Mapk8ip3 cause rare-neurodevelopmental disorders due to an essential role in axonal vesicle transport, elongation and regeneration. A subset of missense variants was examined by overexpressing the mRNA of these variants in a Jip3 knock-out zebrafish. Morphological, behavioral, and microscopic phenotypes were examined in zebrafish larvae. Using these assays, the spectrum of disorders can be phenotypically determined and the impact of variant location can be compared to knockout and wild-type zebrafish embryo models.

Keywords: rare disease, neurodevelopmental disorders, mrna overexpression, zebrafish research

Procedia PDF Downloads 116
4177 U.S. Trade and Trade Balance with China: Testing for Marshall-Lerner Condition and the J-Curve Hypothesis

Authors: Anisul Islam

Abstract:

The U.S. has a very strong trade relationship with China but with a large and persistent trade deficit. Some has argued that the undervalued Chinese Yuan is to be blamed for the persistent trade deficit. The empirical results are mixed at best. This paper empirically estimates the U.S. export function along with the U.S. import function with its trade with China with the purpose of testing for the existence of the Marshall-Lerner (ML) condition as well for the possible existence of the J-curve hypothesis. Annual export and import data will be utilized for as long as the time series data exists. The export and import functions will be estimated using advanced econometric techniques, along with appropriate diagnostic tests performed to examine the validity and reliability of the estimated results. The annual time-series data covers from 1975 to 2022 with a sample size of 48 years, the longest period ever utilized before in any previous study. The data is collected from several sources, such as the World Bank’s World Development Indicators, IMF Financial Statistics, IMF Direction of Trade Statistics, and several other sources. The paper is expected to shed important light on the ongoing debate regarding the persistent U.S. trade deficit with China and the policies that may be useful to reduce such deficits over time. As such, the paper will be of great interest for the academics, researchers, think tanks, global organizations, and policy makers in both China and the U.S.

Keywords: exports, imports, marshall-lerner condition, j-curve hypothesis, united states, china

Procedia PDF Downloads 65
4176 Workflow Based Inspection of Geometrical Adaptability from 3D CAD Models Considering Production Requirements

Authors: Tobias Huwer, Thomas Bobek, Gunter Spöcker

Abstract:

Driving forces for enhancements in production are trends like digitalization and individualized production. Currently, such developments are restricted to assembly parts. Thus, complex freeform surfaces are not addressed in this context. The need for efficient use of resources and near-net-shape production will require individualized production of complex shaped workpieces. Due to variations between nominal model and actual geometry, this can lead to changes in operations in Computer-aided process planning (CAPP) to make CAPP manageable for an adaptive serial production. In this context, 3D CAD data can be a key to realizing that objective. Along with developments in the geometrical adaptation, a preceding inspection method based on CAD data is required to support the process planner by finding objective criteria to make decisions about the adaptive manufacturability of workpieces. Nowadays, this kind of decisions is depending on the experience-based knowledge of humans (e.g. process planners) and results in subjective decisions – leading to a variability of workpiece quality and potential failure in production. In this paper, we present an automatic part inspection method, based on design and measurement data, which evaluates actual geometries of single workpiece preforms. The aim is to automatically determine the suitability of the current shape for further machining, and to provide a basis for an objective decision about subsequent adaptive manufacturability. The proposed method is realized by a workflow-based approach, keeping in mind the requirements of industrial applications. Workflows are a well-known design method of standardized processes. Especially in applications like aerospace industry standardization and certification of processes are an important aspect. Function blocks, providing a standardized, event-driven abstraction to algorithms and data exchange, will be used for modeling and execution of inspection workflows. Each analysis step of the inspection, such as positioning of measurement data or checking of geometrical criteria, will be carried out by function blocks. One advantage of this approach is its flexibility to design workflows and to adapt algorithms specific to the application domain. In general, within the specified tolerance range it will be checked if a geometrical adaption is possible. The development of particular function blocks is predicated on workpiece specific information e.g. design data. Furthermore, for different product lifecycle phases, appropriate logics and decision criteria have to be considered. For example, tolerances for geometric deviations are different in type and size for new-part production compared to repair processes. In addition to function blocks, appropriate referencing systems are important. They need to support exact determination of position and orientation of the actual geometries to provide a basis for precise analysis. The presented approach provides an inspection methodology for adaptive and part-individual process chains. The analysis of each workpiece results in an inspection protocol and an objective decision about further manufacturability. A representative application domain is the product lifecycle of turbine blades containing a new-part production and a maintenance process. In both cases, a geometrical adaptation is required to calculate individual production data. In contrast to existing approaches, the proposed initial inspection method provides information to decide between different potential adaptive machining processes.

Keywords: adaptive, CAx, function blocks, turbomachinery

Procedia PDF Downloads 298
4175 The Impact of Board Director Characteristics on the Quality of Information Disclosure

Authors: Guo Jinhong

Abstract:

The purpose of this study is to explore the association between board member functions and information disclosure levels. Based on the literature variables, such as the characteristics of the board of directors in the past, a single comprehensive indicator is established as a substitute variable for board functions, and the information disclosure evaluation results published by the Securities and Foundation are used to measure the information disclosure level of the company. This study focuses on companies listed on the Taiwan Stock Exchange from 2006 to 2010 and uses descriptive statistical analysis, univariate analysis, correlation analysis and ordered normal probability (Ordered Probit) regression for empirical analysis. The empirical results show that there is a significant positive correlation between the function of board members and the level of information disclosure. This study also conducts a sensitivity test and draws similar conclusions, showing that boards with better board member functions have higher levels of information disclosure. In addition, this study also found that higher board independence, lower director shareholding pledge ratio, higher director shareholding ratio, and directors with rich professional knowledge and practical experience can help improve the level of information disclosure. The empirical results of this study provide strong support for the "relative regulations to improve the level of information disclosure" formulated by the competent authorities in recent years.

Keywords: function of board members, information disclosure, securities, foundation

Procedia PDF Downloads 97
4174 Carbon Fiber Manufacturing Conditions to Improve Interfacial Adhesion

Authors: Filip Stojcevski, Tim Hilditch, Luke Henderson

Abstract:

Although carbon fibre composites are becoming ever more prominent in the engineering industry, interfacial failure still remains one of the most common limitations to material performance. Carbon fiber surface treatments have played a major role in advancing composite properties however research into the influence of manufacturing variables on a fiber manufacturing line is lacking. This project investigates the impact of altering carbon fiber manufacturing conditions on a production line (specifically electrochemical oxidization and sizing variables) to assess fiber-matrix adhesion. Pristine virgin fibers were manufactured and interfacial adhesion systematically assessed from a microscale (single fiber) to a mesoscale (12k tow), and ultimately a macroscale (laminate). Correlations between interfacial shear strength (IFSS) at each level is explored as a function of known interfacial bonding mechanisms; namely mechanical interlocking, chemical adhesion and fiber wetting. Impact of these bonding mechanisms is assessed through extensive mechanical, topological and chemical characterisation. They are correlated to performance as a function of IFSS. Ultimately this study provides a bottoms up approach to improving composite laminates. By understanding the scaling effects from a singular fiber to a composite laminate and linking this knowledge to specific bonding mechanisms, material scientists can make an informed decision on the manufacturing conditions most beneficial for interfacial adhesion.

Keywords: carbon fibers, interfacial adhesion, surface treatment, sizing

Procedia PDF Downloads 265
4173 Hybrid Wind Solar Gas Reliability Optimization Using Harmony Search under Performance and Budget Constraints

Authors: Meziane Rachid, Boufala Seddik, Hamzi Amar, Amara Mohamed

Abstract:

Today’s energy industry seeks maximum benefit with maximum reliability. In order to achieve this goal, design engineers depend on reliability optimization techniques. This work uses a harmony search algorithm (HS) meta-heuristic optimization method to solve the problem of wind-Solar-Gas power systems design optimization. We consider the case where redundant electrical components are chosen to achieve a desirable level of reliability. The electrical power components of the system are characterized by their cost, capacity and reliability. The reliability is considered in this work as the ability to satisfy the consumer demand which is represented as a piecewise cumulative load curve. This definition of the reliability index is widely used for power systems. The proposed meta-heuristic seeks for the optimal design of series-parallel power systems in which a multiple choice of wind generators, transformers and lines are allowed from a list of product available in the market. Our approach has the advantage to allow electrical power components with different parameters to be allocated in electrical power systems. To allow fast reliability estimation, a universal moment generating function (UMGF) method is applied. A computer program has been developed to implement the UMGF and the HS algorithm. An illustrative example is presented.

Keywords: reliability optimization, harmony search optimization (HSA), universal generating function (UMGF)

Procedia PDF Downloads 576
4172 An Exploration of Cyberspace Security, Strategy for a New Era

Authors: Laxmi R. Kasaraneni

Abstract:

The Internet connects all the networks, including the nation’s critical infrastructure that are used extensively by not only a nation’s government and military to protect sensitive information and execute missions, but also the primary infrastructure that provides services that enable modern conveniences such as education, potable water, electricity, natural gas, and financial transactions. It has become the central nervous system for the government, the citizens, and the industries. When it is attacked, the effects can ripple far and wide impacts not only to citizens’ well-being but nation’s economy, civil infrastructure, and national security. As such, these critical services may be targeted by malicious hackers during cyber warfare, it is imperative to not only protect them and mitigate any immediate or potential threats, but to also understand the current or potential impacts beyond the IT networks or the organization. The Nation’s IT infrastructure which is now vital for communication, commerce, and control of our physical infrastructure, is highly vulnerable to attack. While existing technologies can address some vulnerabilities, fundamentally new architectures and technologies are needed to address the larger structural insecurities of an infrastructure developed in a more trusting time when mass cyber attacks were not foreseen. This research is intended to improve the core functions of the Internet and critical-sector information systems by providing a clear path to create a safe, secure, and resilient cyber environment that help stakeholders at all levels of government, and the private sector work together to develop the cybersecurity capabilities that are key to our economy, national security, and public health and safety. This research paper also emphasizes the present and future cyber security threats, the capabilities and goals of cyber attackers, a strategic concept and steps to implement cybersecurity for maximum effectiveness, enabling technologies, some strategic assumptions and critical challenges, and the future of cyberspace.

Keywords: critical challenges, critical infrastructure, cyber security, enabling technologies, national security

Procedia PDF Downloads 297
4171 Review and Analysis of Parkinson's Tremor Genesis Using Mathematical Model

Authors: Pawan Kumar Gupta, Sumana Ghosh

Abstract:

Parkinson's Disease (PD) is a long-term neurodegenerative movement disorder of the central nervous system with vast symptoms related to the motor system. The common symptoms of PD are tremor, rigidity, bradykinesia/akinesia, and postural instability, but the clinical symptom includes other motor and non‐motor issues. The motor symptoms of the disease are consequence of death of the neurons in a region of the midbrain known as substantia nigra pars compacta, leading to decreased level of a neurotransmitter known as dopamine. The cause of this neuron death is not clearly known but involves formation of Lewy bodies, an abnormal aggregation or clumping of the protein alpha-synuclein in the neurons. Unfortunately, there is no cure for PD, and the management of this disease is challenging. Therefore, it is critical for a patient to be diagnosed at early stages. A limited choice of drugs is available to improve the symptoms, but those become less and less effective over time. Apart from that, with rapid growth in the field of science and technology, other methods such as multi-area brain stimulation are used to treat patients. In order to develop advanced techniques and to support drug development for treating PD patients, an accurate mathematical model is needed to explain the underlying relationship of dopamine secretion in the brain with the hand tremors. There has been a lot of effort in the past few decades on modeling PD tremors and treatment effects from a computational point of view. These models can effectively save time as well as the cost of drug development for the pharmaceutical industry and be helpful for selecting appropriate treatment mechanisms among all possible options. In this review paper, an effort is made to investigate studies on PD modeling and analysis and to highlight some of the key advances in the field over the past centuries with discussion on the current challenges.

Keywords: Parkinson's disease, deep brain stimulation, tremor, modeling

Procedia PDF Downloads 140
4170 Rational Bureaucracy and E-Government: A Philosophical Study of Universality of E-Government

Authors: Akbar Jamali

Abstract:

Hegel is the first great political philosopher who specifically contemplates on bureaucracy. For Hegel bureaucracy is the function of the state. Since state, essentially is a rational organization, its function; namely, bureaucracy must be rational. Since, what is rational is universal; Hegel had to explain how the bureaucracy could be understood as universal. Hegel discusses bureaucracy in his treatment of ‘executive power’. He analyses modern bureaucracy as a form of political organization, its constituent members, and its relation to the social environment. Therefore, the essence of bureaucracy in Hegel’s philosophy is the implementation of law and rules. Hegel argues that unlike the other social classes that are particular because they look for their own private interest, bureaucracy as a class is a ‘universal’ because their orientation is the interest of the state. State for Hegel is essentially rational and universal. It is the actualization of ‘objective Spirit’. Marx criticizes Hegel’s argument on the universality of state and bureaucracy. For Marx state is equal to bureaucracy, it constitutes a social class that based on the interest of bourgeois class that dominates the society and exploits proletarian class. Therefore, the main disagreement between these political philosophers is: whether the state (bureaucracy) is universal or particular. Growing e-government in modern state as an important aspect of development leads us to contemplate on the particularity and universality of e-government. In this article, we will argue that e-government essentially is universal. E-government, in itself, is impartial; therefore, it cannot be particular. The development of e-government eliminates many side effects of the private, personal or particular interest of the individuals who work as bureaucracy. Finally, we will argue that more a state is developed more it is universal. Therefore, development of e-government makes the state a more universal and affects the modern philosophical debate on the particularity or universality of bureaucracy and state.

Keywords: particularity, universality, rational bureaucracy, impartiality

Procedia PDF Downloads 251
4169 Optimization of Air Pollution Control Model for Mining

Authors: Zunaira Asif, Zhi Chen

Abstract:

The sustainable measures on air quality management are recognized as one of the most serious environmental concerns in the mining region. The mining operations emit various types of pollutants which have significant impacts on the environment. This study presents a stochastic control strategy by developing the air pollution control model to achieve a cost-effective solution. The optimization method is formulated to predict the cost of treatment using linear programming with an objective function and multi-constraints. The constraints mainly focus on two factors which are: production of metal should not exceed the available resources, and air quality should meet the standard criteria of the pollutant. The applicability of this model is explored through a case study of an open pit metal mine, Utah, USA. This method simultaneously uses meteorological data as a dispersion transfer function to support the practical local conditions. The probabilistic analysis and the uncertainties in the meteorological conditions are accomplished by Monte Carlo simulation. Reasonable results have been obtained to select the optimized treatment technology for PM2.5, PM10, NOx, and SO2. Additional comparison analysis shows that baghouse is the least cost option as compared to electrostatic precipitator and wet scrubbers for particulate matter, whereas non-selective catalytical reduction and dry-flue gas desulfurization are suitable for NOx and SO2 reduction respectively. Thus, this model can aid planners to reduce these pollutants at a marginal cost by suggesting control pollution devices, while accounting for dynamic meteorological conditions and mining activities.

Keywords: air pollution, linear programming, mining, optimization, treatment technologies

Procedia PDF Downloads 208
4168 A Study on Computational Fluid Dynamics (CFD)-Based Design Optimization Techniques Using Multi-Objective Evolutionary Algorithms (MOEA)

Authors: Ahmed E. Hodaib, Mohamed A. Hashem

Abstract:

In engineering applications, a design has to be as fully perfect as possible in some defined case. The designer has to overcome many challenges in order to reach the optimal solution to a specific problem. This process is called optimization. Generally, there is always a function called “objective function” that is required to be maximized or minimized by choosing input parameters called “degrees of freedom” within an allowed domain called “search space” and computing the values of the objective function for these input values. It becomes more complex when we have more than one objective for our design. As an example for Multi-Objective Optimization Problem (MOP): A structural design that aims to minimize weight and maximize strength. In such case, the Pareto Optimal Frontier (POF) is used, which is a curve plotting two objective functions for the best cases. At this point, a designer should make a decision to choose the point on the curve. Engineers use algorithms or iterative methods for optimization. In this paper, we will discuss the Evolutionary Algorithms (EA) which are widely used with Multi-objective Optimization Problems due to their robustness, simplicity, suitability to be coupled and to be parallelized. Evolutionary algorithms are developed to guarantee the convergence to an optimal solution. An EA uses mechanisms inspired by Darwinian evolution principles. Technically, they belong to the family of trial and error problem solvers and can be considered global optimization methods with a stochastic optimization character. The optimization is initialized by picking random solutions from the search space and then the solution progresses towards the optimal point by using operators such as Selection, Combination, Cross-over and/or Mutation. These operators are applied to the old solutions “parents” so that new sets of design variables called “children” appear. The process is repeated until the optimal solution to the problem is reached. Reliable and robust computational fluid dynamics solvers are nowadays commonly utilized in the design and analyses of various engineering systems, such as aircraft, turbo-machinery, and auto-motives. Coupling of Computational Fluid Dynamics “CFD” and Multi-Objective Evolutionary Algorithms “MOEA” has become substantial in aerospace engineering applications, such as in aerodynamic shape optimization and advanced turbo-machinery design.

Keywords: mathematical optimization, multi-objective evolutionary algorithms "MOEA", computational fluid dynamics "CFD", aerodynamic shape optimization

Procedia PDF Downloads 257
4167 The Effect of Particulate Matter on Cardiomyocyte Apoptosis Through Mitochondrial Fission

Authors: Tsai-chun Lai, Szu-ju Fu, Tzu-lin Lee, Yuh-Lien Chen

Abstract:

There is much evidence that exposure to fine particulate matter (PM) from air pollution increases the risk of cardiovascular morbidity and mortality. According to previous reports, PM in the air enters the respiratory tract, contacts the alveoli, and enters the blood circulation, leading to the progression of cardiovascular disease. PM pollution may also lead to cardiometabolic disturbances, increasing the risk of cardiovascular disease. The effects of PM on cardiac function and mitochondrial damage are currently unknown. We used mice and rat cardiomyocytes (H9c2) as animal and in vitro cell models, respectively, to simulate an air pollution environment using PM. These results indicate that the apoptosis-related factor PUMA, a regulator of apoptosis upregulated by p53, is increased in mice treated with PM. Apoptosis was aggravated in cardiomyocytes treated with PM, as measured by TUNEL assay and Annexin V/PI. Western blot results showed that CASPASE3 was significantly increased and BCL2 (B-cell lymphoid 2) was significantly decreased under PM treatment. Concurrent exposure to PM increases mitochondrial reactive oxygen species (ROS) production by MitoSOX Red staining. Furthermore, using Mitotracker staining, PM treatment significantly shortened mitochondrial length, indicating mitochondrial fission. The expression of mitochondrial fission-related proteins p-DRP1 (phosphodynamics-related protein 1) and FIS1 (mitochondrial fission 1 protein) was significantly increased. Based on these results, the exposure to PM worsens mitochondrial function and leads to cardiomyocyte apoptosis.

Keywords: particulate matter, cardiomyocyte, apoptosis, mitochondria

Procedia PDF Downloads 105
4166 Computational Fluid Dynamic Modeling of Mixing Enhancement by Stimulation of Ferrofluid under Magnetic Field

Authors: Neda Azimi, Masoud Rahimi, Faezeh Mohammadi

Abstract:

Computational fluid dynamics (CFD) simulation was performed to investigate the effect of ferrofluid stimulation on hydrodynamic and mass transfer characteristics of two immiscible liquid phases in a Y-micromixer. The main purpose of this work was to develop a numerical model that is able to simulate hydrodynamic of the ferrofluid flow under magnetic field and determine its effect on mass transfer characteristics. A uniform external magnetic field was applied perpendicular to the flow direction. The volume of fluid (VOF) approach was used for simulating the multiphase flow of ferrofluid and two-immiscible liquid flows. The geometric reconstruction scheme (Geo-Reconstruct) based on piecewise linear interpolation (PLIC) was used for reconstruction of the interface in the VOF approach. The mass transfer rate was defined via an equation as a function of mass concentration gradient of the transported species and added into the phase interaction panel using the user-defined function (UDF). The magnetic field was solved numerically by Fluent MHD module based on solving the magnetic induction equation method. CFD results were validated by experimental data and good agreements have been achieved, which maximum relative error for extraction efficiency was about 7.52 %. It was showed that ferrofluid actuation by a magnetic field can be considered as an efficient mixing agent for liquid-liquid two-phase mass transfer in microdevices.

Keywords: CFD modeling, hydrodynamic, micromixer, ferrofluid, mixing

Procedia PDF Downloads 197
4165 Constructions of Linear and Robust Codes Based on Wavelet Decompositions

Authors: Alla Levina, Sergey Taranov

Abstract:

The classical approach to the providing noise immunity and integrity of information that process in computing devices and communication channels is to use linear codes. Linear codes have fast and efficient algorithms of encoding and decoding information, but this codes concentrate their detect and correct abilities in certain error configurations. To protect against any configuration of errors at predetermined probability can robust codes. This is accomplished by the use of perfect nonlinear and almost perfect nonlinear functions to calculate the code redundancy. The paper presents the error-correcting coding scheme using biorthogonal wavelet transform. Wavelet transform applied in various fields of science. Some of the wavelet applications are cleaning of signal from noise, data compression, spectral analysis of the signal components. The article suggests methods for constructing linear codes based on wavelet decomposition. For developed constructions we build generator and check matrix that contain the scaling function coefficients of wavelet. Based on linear wavelet codes we develop robust codes that provide uniform protection against all errors. In article we propose two constructions of robust code. The first class of robust code is based on multiplicative inverse in finite field. In the second robust code construction the redundancy part is a cube of information part. Also, this paper investigates the characteristics of proposed robust and linear codes.

Keywords: robust code, linear code, wavelet decomposition, scaling function, error masking probability

Procedia PDF Downloads 491
4164 The Classification Accuracy of Finance Data through Holder Functions

Authors: Yeliz Karaca, Carlo Cattani

Abstract:

This study focuses on the local Holder exponent as a measure of the function regularity for time series related to finance data. In this study, the attributes of the finance dataset belonging to 13 countries (India, China, Japan, Sweden, France, Germany, Italy, Australia, Mexico, United Kingdom, Argentina, Brazil, USA) located in 5 different continents (Asia, Europe, Australia, North America and South America) have been examined.These countries are the ones mostly affected by the attributes with regard to financial development, covering a period from 2012 to 2017. Our study is concerned with the most important attributes that have impact on the development of finance for the countries identified. Our method is comprised of the following stages: (a) among the multi fractal methods and Brownian motion Holder regularity functions (polynomial, exponential), significant and self-similar attributes have been identified (b) The significant and self-similar attributes have been applied to the Artificial Neuronal Network (ANN) algorithms (Feed Forward Back Propagation (FFBP) and Cascade Forward Back Propagation (CFBP)) (c) the outcomes of classification accuracy have been compared concerning the attributes that have impact on the attributes which affect the countries’ financial development. This study has enabled to reveal, through the application of ANN algorithms, how the most significant attributes are identified within the relevant dataset via the Holder functions (polynomial and exponential function).

Keywords: artificial neural networks, finance data, Holder regularity, multifractals

Procedia PDF Downloads 247
4163 Assessment of Psychological Needs and Characteristics of Elderly Population for Developing Information and Communication Technology Services

Authors: Seung Ah Lee, Sunghyun Cho, Kyong Mee Chung

Abstract:

Rapid population aging became a worldwide demographic phenomenon due to rising life expectancy and declining fertility rates. Considering the current increasing rate of population aging, it is assumed that Korean society enters into a ‘super-aged’ society in 10 years, in which people aged 65 years or older account for more than 20% of entire population. In line with this trend, ICT services aimed to help elderly people to improve the quality of life have been suggested. However, existing ICT services mainly focus on supporting health or nursing care and are somewhat limited to meet a variety of specialized needs and challenges of this population. It is pointed out that the majority of services have been driven by technology-push policies. Given that the usage of ICT services greatly vary on individuals’ socio-economic status (SES), physical and psychosocial needs, this study systematically categorized elderly population into sub-groups and identified their needs and characteristics related to ICT usage in detail. First, three assessment criteria (demographic variables including SES, cognitive functioning level, and emotional functioning level) were identified based on previous literature, experts’ opinions, and focus group interview. Second, survey questions for needs assessment were developed based on the criteria and administered to 600 respondents from a national probability sample. The questionnaire consisted of 67 items concerning demographic information, experience on ICT services and information technology (IT) devices, quality of life and cognitive functioning, etc. As the result of survey, age (60s, 70s, 80s), education level (college graduates or more, middle and high school, less than primary school) and cognitive functioning level (above the cut-off, below the cut-off) were considered the most relevant factors for categorization and 18 sub-groups were identified. Finally, 18 sub-groups were clustered into 3 groups according to following similarities; computer usage rate, difficulties in using ICT, and familiarity with current or previous job. Group 1 (‘active users’) included those who with high cognitive function and educational level in their 60s and 70s. They showed favorable and familiar attitudes toward ICT services and used the services for ‘joyful life’, ‘intelligent living’ and ‘relationship management’. Group 2 (‘potential users’), ranged from age of 60s to 80s with high level of cognitive function and mostly middle to high school graduates, reported some difficulties in using ICT and their expectations were lower than in group 1 despite they were similar to group 1 in areas of needs. Group 3 (‘limited users’) consisted of people with the lowest education level or cognitive function, and 90% of group reported difficulties in using ICT. However, group 3 did not differ from group 2 regarding the level of expectation for ICT services and their main purpose of using ICT was ‘safe living’. This study developed a systematic needs assessment tool and identified three sub-groups of elderly ICT users based on multi-criteria. It is implied that current cognitive function plays an important role in using ICT and determining needs among the elderly population. Implications and limitations were further discussed.

Keywords: elderly population, ICT, needs assessment, population aging

Procedia PDF Downloads 143
4162 Identifying Dynamic Structural Parameters of Soil-Structure System Based on Data Recorded during Strong Earthquakes

Authors: Vahidreza Mahmoudabadi, Omid Bahar, Mohammad Kazem Jafari

Abstract:

In many applied engineering problems, structural analysis is usually conducted by assuming a rigid bed, while imposing the effect of structure bed flexibility can affect significantly on the structure response. This article focuses on investigation and evaluation of the effects arising from considering a soil-structure system in evaluation of dynamic characteristics of a steel structure with respect to elastic and inelastic behaviors. The recorded structure acceleration during Taiwan’s strong Chi-Chi earthquake on different floors of the structure was our evaluation criteria. The respective structure is an eight-story steel bending frame structure designed using a displacement-based direct method assuring weak beam - strong column function. The results indicated that different identification methods i.e. reverse Fourier transform or transfer functions, is capable to determine some of the dynamic parameters of the structure precisely, rather than evaluating all of them at once (mode frequencies, mode shapes, structure damping, structure rigidity, etc.). Response evaluation based on the input and output data elucidated that the structure first mode is not significantly affected, even considering the soil-structure interaction effect, but the upper modes have been changed. Also, it was found that the response transfer function of the different stories, in which plastic hinges have occurred in the structure components, provides similar results.

Keywords: bending steel frame structure, dynamic characteristics, displacement-based design, soil-structure system, system identification

Procedia PDF Downloads 505
4161 Economic Analysis of Cowpea (Unguiculata spp) Production in Northern Nigeria: A Case Study of Kano Katsina and Jigawa States

Authors: Yakubu Suleiman, S. A. Musa

Abstract:

Nigeria is the largest cowpea producer in the world, accounting for about 45%, followed by Brazil with about 17%. Cowpea is grown in Kano, Bauchi, Katsina, Borno in the north, Oyo in the west, and to the lesser extent in Enugu in the east. This study was conducted to determine the input–output relationship of Cowpea production in Kano, Katsina, and Jigawa states of Nigeria. The data were collected with the aid of 1000 structured questionnaires that were randomly distributed to Cowpea farmers in the three states mentioned above of the study area. The data collected were analyzed using regression analysis (Cobb–Douglass production function model). The result of the regression analysis revealed the coefficient of multiple determinations, R2, to be 72.5% and the F ration to be 106.20 and was found to be significant (P < 0.01). The regression coefficient of constant is 0.5382 and is significant (P < 0.01). The regression coefficient with respect to labor and seeds were 0.65554 and 0.4336, respectively, and they are highly significant (P < 0.01). The regression coefficient with respect to fertilizer is 0.26341 which is significant (P < 0.05). This implies that a unit increase of any one of the variable inputs used while holding all other variables inputs constants, will significantly increase the total Cowpea output by their corresponding coefficient. This indicated that farmers in the study area are operating in stage II of the production function. The result revealed that Cowpea farmer in Kano, Jigawa and Katsina States realized a profit of N15,997, N34,016 and N19,788 per hectare respectively. It is hereby recommended that more attention should be given to Cowpea production by government and research institutions.

Keywords: coefficient, constant, inputs, regression

Procedia PDF Downloads 410
4160 A Study on Legal Regimes Alternatives from the Aspect of Shenzhen Global Ocean Central City Construction

Authors: Jinsong Zhao, Lin Zhao

Abstract:

Shenzhen, one of the fastest growing cities in the world, has been building a global ocean central city since 2017, facing many challenges, especially how to innovate new legal regimes to meet the future demands of the development of global shipping. First, the current legal regime of bills of lading as a document of title was established by English law in the 18th century but limited to the period of marine transportation from port of loading to port of discharge (namely, port to port). The e-commerce era is asking for such a function to be extended from port to port to door to door. Secondly, the function of the port has also been upgraded from the traditional loading and unloading of goods to a much wider area, such as being custody of warehousing goods for its mortgage bank, and therefore its legal status is changing, so it is necessary to amend the law of ports and harbours and innovate the rights and responsibilities of the port under its new role as the custody. Thirdly, the development of new marine energy has made more and more offshore floating wind power and floating photovoltaic devices face new legal issues such as legal status, nationality and ownership registration, mortgage, maritime lien, and possessory lien. Fourthly, the jurisdiction of the above issues, as well as conflicts of law and the applicable law, are also questions pending answers. This paper will discuss these issues of private international law, especially the innovation of new legal regimes with an aim to solve the above problems.

Keywords: maritime law, bills of lading, e-commerce, port law, marine clean energy

Procedia PDF Downloads 42
4159 Deciphering the Gut Microbiome's Role in Early-Life Immune Development

Authors: Xia Huo

Abstract:

Children are more vulnerable to environmental toxicants compared to adults, and their developing immune system is among the most sensitive targets regarding toxicity of environmental toxicants. Studies have found that exposure to environmental toxicants is associated with impaired immune function in children, but only a few studies have focused on the relationship between environmental toxicant exposure and vaccine antibody potency and immunoglobulin (Ig) levels in children. These studies investigated the associations of exposure to polychlorinated biphenyls (PCBs), perfluorinated compounds (PFCs), heavy metals (Pb, Cd, As, Hg) and PM2.5 with the serum-specific antibody concentrations and Ig levels against different vaccines, such as anti-Hib, tetanus, diphtheria toxoid, and analyze the possible mechanisms underlying exposure-related alterations of antibody titers and Ig levels against different vaccines. Results suggest that exposure to these toxicants is generally associated with decreased potency of antibodies produced from childhood immunizations and an overall deficiency in the protection the vaccines provide. Toxicant exposure is associated with vaccination failure and decreased antibody titers, and increased risk of immune-related diseases in children by altering specific immunoglobulin levels. Age, sex, nutritional status, and co-exposure may influence the effects of toxicants on the immune function in children. Epidemiological evidence suggests that exposure-induced changes to humoral immunerelated tissue/cells/molecules response to vaccines may have predominant roles in the inverse associations between antibody responsiveness to vaccines and environmental toxicants. These results help us to conduct better immunization policies for children under environmental toxicant burden.

Keywords: environmental toxicants, immunotoxicity, vaccination, antibodies, children's health

Procedia PDF Downloads 59
4158 Recreational Forestry, Social Forestry and Deteriorating Nigerian Environment

Authors: Pius Akindele Adeniyi

Abstract:

Developing countries including Nigeria are greatly saddled with problems emanating from environmental deterioration. These problems are glaringly threatening the existence of mankind. A wide range of factors contribute to environmental problems and prominent among these are: increase in human population, deforestation, industrialization, urbanization, ignorance and socio-economic activities. The economic function of the forest has for quite a long time played a major role in the economic life of the people of Nigeria while the social function such as the recreational use of the forest has until today play very little role in the cultural development of the country. Recreation forest ameliorates the environment, reduces psychological stress, and broadens individual outlook and horizon. Unfortunately domestic tourism of recreational forest is not developed and almost unknown due to poverty and non existence of recreational facilities. Social forestry is seen as a sustainable means of combating ecological problems especially in third world countries such as Nigeria. The programme also provides social and economic benefits to the rural people. As a rural-based activity, people's participation is crucial for its success. There is need to create awareness on recreational forestry and social forestry as well as harness their resources for the country .This paper therefore highlights the constraints in the practice of social and recreational forestry in developing countries and suggests ways to motivate the rural people to participate in the programme. . Attempt has been made to trace the causes and consequences of Nigerian environmental deterioration, while suggestions on possible solutions are proffered .

Keywords: recreational, social, deteriorating, forestry

Procedia PDF Downloads 76
4157 Expression of Somatostatin and Neuropeptide Y in Dorsal Root Ganglia Following Hind Paw Incision in Rats

Authors: Anshu Bahl, Saroj Kaler, Shivani Gupta, S B Ray

Abstract:

Background: Somatostatin is an endogenous regulatory neuropeptide. Somatostatin and its analogues play an important role in neuropathic and inflammatory pain. Neuropeptide Y is extensively distributed in the mammalian nervous system. NPY has an important role in blood pressure, circadian rhythm, obesity, appetite and memory. The purpose was to investigate somatostatin and NPY expression in dorsal root ganglia during pain. The plantar incision model in rats is similar to postoperative pain in humans. Methods: 24 adult male Sprague dawley rats were distributed randomly into two groups – Control (n=6) and incision (n=18) groups. Using Hargreaves apparatus, thermal hyperalgesia behavioural test for nociception was done under basal condition and after surgical incision in right hind paw at different time periods (day 1, 3 and 5). The plantar incision was performed as per standard protocol. Perfusion was done using 4% paraformaldehyde followed by extraction of dorsal root ganglia at L4 level. The tissue was processed for immunohistochemical localisation for somatostatin and neuropeptide Y. Results: Post incisional groups (day 1, 3 and 5) exhibited significant decrease of paw withdrawal latency as compared to control groups. Somatostatin expression was noted under basal conditions. It decreased on day 1, but again gradually increased on day 3 and further on day five post incision. The expression of Neuropeptide Y was noted in the cytoplasm of dorsal root ganglia under basal conditions. Compared to control group, expression of neuropeptide Y decreased on day one after incision, but again gradually increased on day 3. Maximum expression was noted on day five post incision. Conclusion: Decrease in paw withdrawal latency indicated nociception, particularly on day 1. In comparison to control, somatostatin and NPY expression was decreased on day one post incision. This could be correlated with increased axoplasmic flow towards the spinal cord. Somatostatin and NPY expression was maximum on day five post incision. This could be due to decreased migration from the site of synthesis towards the spinal cord.

Keywords: dorsal root ganglia, neuropeptide y, postoperative pain, somatostatin

Procedia PDF Downloads 178