Search results for: artificial intelligence in semiconductor manufacturing
3896 The Twin Terminal of Pedestrian Trajectory Based on City Intelligent Model (CIM) 4.0
Authors: Chen Xi, Lao Xuerui, Li Junjie, Jiang Yike, Wang Hanwei, Zeng Zihao
Abstract:
To further promote the development of smart cities, the microscopic "nerve endings" of the City Intelligent Model (CIM) are extended to be more sensitive. In this paper, we develop a pedestrian trajectory twin terminal based on the CIM and CNN technology. It also uses 5G networks, architectural and geoinformatics technologies, convolutional neural networks, combined with deep learning networks for human behaviour recognition models, to provide empirical data such as 'pedestrian flow data and human behavioural characteristics data', and ultimately form spatial performance evaluation criteria and spatial performance warning systems, to make the empirical data accurate and intelligent for prediction and decision making.Keywords: urban planning, urban governance, CIM, artificial intelligence, convolutional neural network
Procedia PDF Downloads 1503895 Instance Segmentation of Wildfire Smoke Plumes using Mask-RCNN
Authors: Jamison Duckworth, Shankarachary Ragi
Abstract:
Detection and segmentation of wildfire smoke plumes from remote sensing imagery are being pursued as a solution for early fire detection and response. Smoke plume detection can be automated and made robust by the application of artificial intelligence methods. Specifically, in this study, the deep learning approach Mask Region-based Convolutional Neural Network (RCNN) is being proposed to learn smoke patterns across different spectral bands. This method is proposed to separate the smoke regions from the background and return masks placed over the smoke plumes. Multispectral data was acquired using NASA’s Earthdata and WorldView and services and satellite imagery. Due to the use of multispectral bands along with the three visual bands, we show that Mask R-CNN can be applied to distinguish smoke plumes from clouds and other landscape features that resemble smoke.Keywords: deep learning, mask-RCNN, smoke plumes, spectral bands
Procedia PDF Downloads 1273894 Resource-Constrained Heterogeneous Workflow Scheduling Algorithms in Heterogeneous Computing Clusters
Authors: Lei Wang, Jiahao Zhou
Abstract:
The development of heterogeneous computing clusters provides a strong computility guarantee for large-scale workflows (e.g., scientific computing, artificial intelligence (AI), etc.). However, the tasks within large-scale workflows have also gradually become heterogeneous due to different demands on computing resources, which leads to the addition of a task resource-restricted constraint to the workflow scheduling problem on heterogeneous computing platforms. In this paper, we propose a heterogeneous constrained minimum makespan scheduling algorithm based on the idea of greedy strategy, which provides an efficient solution to the heterogeneous workflow scheduling problem in a heterogeneous platform. In this paper, we test the effectiveness of our proposed scheduling algorithm by randomly generating heterogeneous workflows with heterogeneous computing platform, and the experiments show that our method improves 15.2% over the state-of-the-art methods.Keywords: heterogeneous computing, workflow scheduling, constrained resources, minimal makespan
Procedia PDF Downloads 353893 The Mediating Effect of SMEs Export Performance between Technological Advancement Capabilities and Business Performance
Authors: Fawad Hussain, Mohammad Basir Bin Saud, Mohd Azwardi Md Isa
Abstract:
The aim of this study is to empirically investigate the mediating impact of export performance (EP) between technological advancement capabilities (TAC) and business performance (BP) of Malaysian manufacturing MSME’s. Firm’s technological advancement resources are hypothesized as a platform to enhance both exports and business performance of manufacturing MSMEs in Malaysia. This study is twofold, primary it has investigated that technological advancement capabilities helps to appreciates main performance measures noted in terms of export performance and Secondly it investigates that how efficiently and effectively technological advancement capabilities can contributes in overall Malaysian MSME’s business performance. Smart PLS-3 statistical software is used to know the association between technological advancement capabilities, MSME’s export performance and business performance. In this study the data was composed from Malaysian manufacturing MSME’s in east coast industrial zones known as manufacturing hub of MSMEs. Seven Hundred and Fifty (750) questionnaires were distributed but only 148 usable questionnaires are returned. The finding of this study indicated that technological advancement capabilities helps to strengthen the export in term of time and cost efficient and it plays a significant role in appreciating their business performance. This study is helpful for small and medium enterprises owners who intent to expand their business overseas and though smart technological advancement resources they can achieve their business competitiveness and excellence both at local and international markets.Keywords: technological advancement capabilities, export performance, business performance, small and medium manufacturing enterprises, malaysia
Procedia PDF Downloads 4323892 The Use of Emerging Technologies in Higher Education Institutions: A Case of Nelson Mandela University, South Africa
Authors: Ayanda P. Deliwe, Storm B. Watson
Abstract:
The COVID-19 pandemic has disrupted the established practices of higher education institutions (HEIs). Most higher education institutions worldwide had to shift from traditional face-to-face to online learning. The online environment and new online tools are disrupting the way in which higher education is presented. Furthermore, the structures of higher education institutions have been impacted by rapid advancements in information and communication technologies. Emerging technologies should not be viewed in a negative light because, as opposed to the traditional curriculum that worked to create productive and efficient researchers, emerging technologies encourage creativity and innovation. Therefore, using technology together with traditional means will enhance teaching and learning. Emerging technologies in higher education not only change the experience of students, lecturers, and the content, but it is also influencing the attraction and retention of students. Higher education institutions are under immense pressure because not only are they competing locally and nationally, but emerging technologies also expand the competition internationally. Emerging technologies have eliminated border barriers, allowing students to study in the country of their choice regardless of where they are in the world. Higher education institutions are becoming indifferent as technology is finding its way into the lecture room day by day. Academics need to utilise technology at their disposal if they want to get through to their students. Academics are now competing for students' attention with social media platforms such as WhatsApp, Snapchat, Instagram, Facebook, TikTok, and others. This is posing a significant challenge to higher education institutions. It is, therefore, critical to pay attention to emerging technologies in order to see how they can be incorporated into the classroom in order to improve educational quality while remaining relevant in the work industry. This study aims to understand how emerging technologies have been utilised at Nelson Mandela University in presenting teaching and learning activities since April 2020. The primary objective of this study is to analyse how academics are incorporating emerging technologies in their teaching and learning activities. This primary objective was achieved by conducting a literature review on clarifying and conceptualising the emerging technologies being utilised by higher education institutions, reviewing and analysing the use of emerging technologies, and will further be investigated through an empirical analysis of the use of emerging technologies at Nelson Mandela University. Findings from the literature review revealed that emerging technology is impacting several key areas in higher education institutions, such as the attraction and retention of students, enhancement of teaching and learning, increase in global competition, elimination of border barriers, and highlighting the digital divide. The literature review further identified that learning management systems, open educational resources, learning analytics, and artificial intelligence are the most prevalent emerging technologies being used in higher education institutions. The identified emerging technologies will be further analysed through an empirical analysis to identify how they are being utilised at Nelson Mandela University.Keywords: artificial intelligence, emerging technologies, learning analytics, learner management systems, open educational resources
Procedia PDF Downloads 693891 A Prioritisation Guide for More Sustainable Manufacturing Processes
Authors: Cansu Kandemir, Marco Franchino
Abstract:
To attain sustainability goals, the manufacturing industries must assess and improve their processes, adopt the latest technologies, and ensure minimal environmental impact. Ongoing debates claim that the definition of sustainability and its assessment is vague. Companies struggle with understanding which processes they should prioritise and necessitate a methodology to aid decision-making. For that reason, our investigation focused on defining a prioritisation guide to help to manufacture engineers identify areas of a facility to prioritise de-carbonisation efforts based on existing sources of data. The authors at the University of Sheffield Advanced Manufacturing Research Centre (AMRC) worked with a range of major businesses, including Food and Drink (Moy Park), Automotive (Nissan), Aerospace and Defence (BAE, Meggitt, Leonardo, and GKN) and Technology (Accenture and Intellium AI). Collected information has been integrated into a prioritisation guide framework that helps process comparison and decision-making. The framework developed in this study aims to ensure that companies have guidance on where to focus their efforts whilst striving to fulfil their environmental and societal obligations.Keywords: decision making, sustainability, carbon emissions, manufacturing
Procedia PDF Downloads 613890 Optimization of Lean Methodologies in the Textile Industry Using Design of Experiments
Authors: Ahmad Yame, Ahad Ali, Badih Jawad, Daw Al-Werfalli Mohamed Nasser, Sabah Abro
Abstract:
Industries in general have a lot of waste. Wool textile company, Baniwalid, Libya has many complex problems that led to enormous waste generated due to the lack of lean strategies, expertise, technical support and commitment. To successfully address waste at wool textile company, this study will attempt to develop a methodical approach that integrates lean manufacturing tools to optimize performance characteristics such as lead time and delivery. This methodology will utilize Value Stream Mapping (VSM) techniques to identify the process variables that affect production. Once these variables are identified, Design of Experiments (DOE) Methodology will be used to determine the significantly influential process variables, these variables are then controlled and set at their optimal to achieve optimal levels of productivity, quality, agility, efficiency and delivery to analyze the outputs of the simulation model for different lean configurations. The goal of this research is to investigate how the tools of lean manufacturing can be adapted from the discrete to the continuous manufacturing environment and to evaluate their benefits at a specific industrial.Keywords: lean manufacturing, DOE, value stream mapping, textiles
Procedia PDF Downloads 4553889 Rule-Based Expert System for Headache Diagnosis and Medication Recommendation
Authors: Noura Al-Ajmi, Mohammed A. Almulla
Abstract:
With the increased utilization of technology devices around the world, healthcare and medical diagnosis are critical issues that people worry about these days. Doctors are doing their best to avoid any medical errors while diagnosing diseases and prescribing the wrong medication. Subsequently, artificial intelligence applications that can be installed on mobile devices such as rule-based expert systems facilitate the task of assisting doctors in several ways. Due to their many advantages, the usage of expert systems has increased recently in health sciences. This work presents a backward rule-based expert system that can be used for a headache diagnosis and medication recommendation system. The structure of the system consists of three main modules, namely the input unit, the processing unit, and the output unit.Keywords: headache diagnosis system, prescription recommender system, expert system, backward rule-based system
Procedia PDF Downloads 2153888 Elucidating Microstructural Evolution Mechanisms in Tungsten via Layerwise Rolling in Additive Manufacturing: An Integrated Simulation and Experimental Approach
Authors: Sadman Durlov, Aditya Ganesh-Ram, Hamidreza Hekmatjou, Md Najmus Salehin, Nora Shayesteh Ameri
Abstract:
In the field of additive manufacturing, tungsten stands out for its exceptional resistance to high temperatures, making it an ideal candidate for use in extreme conditions. However, its inherent brittleness and vulnerability to thermal cracking pose significant challenges to its manufacturability. This study explores the microstructural evolution of tungsten processed through layer-wise rolling in laser powder bed fusion additive manufacturing, utilizing a comprehensive approach that combines advanced simulation techniques with empirical research. We aim to uncover the complex processes of plastic deformation and microstructural transformations, with a particular focus on the dynamics of grain size, boundary evolution, and phase distribution. Our methodology employs a combination of simulation and experimental data, allowing for a detailed comparison that elucidates the key mechanisms influencing microstructural alterations during the rolling process. This approach facilitates a deeper understanding of the material's behavior under additive manufacturing conditions, specifically in terms of deformation and recrystallization. The insights derived from this research not only deepen our theoretical knowledge but also provide actionable strategies for refining manufacturing parameters to improve the tungsten components' mechanical properties and functional performance. By integrating simulation with practical experimentation, this study significantly enhances the field of materials science, offering a robust framework for the development of durable materials suited for challenging operational environments. Our findings pave the way for optimizing additive manufacturing techniques and expanding the use of tungsten across various demanding sectors.Keywords: additive manufacturing, layer wise rolling, refractory materials, in-situ microstructure modifications
Procedia PDF Downloads 613887 Organizational Commitment in Islamic Boarding School: The Implementation of Organizational Behavior Integrative Model
Authors: Siswoyo Haryono
Abstract:
Purpose – The fundamental goal of this research is to see if the integrative organizational behavior model can be used effectively in Islamic boarding schools. This paper also seeks to assess the effect of Islamic organizational culture, leadership, and spiritual intelligence on teachers' organizational commitment to Islamic Boarding schools. The goal of the mediation analysis is to see if the Islamic work ethic has a more significant effect on the instructors' organizational commitment than the direct effects of Islamic organizational culture, leadership, and Islamic spiritual intelligence. Design/methodology/approach – A questionnaire survey was used to obtain data from teachers at Islamic Boarding Schools. This study used the AMOS technique for structural equation modeling to evaluate the expected direct effect. To test the hypothesized indirect effect, employed Sobel test. Findings – Islamic organizational culture, Islamic leadership, and Islamic spiritual intelligence significantly affect Islamic work ethic. When it comes to Islamic corporate culture, Islamic leadership, Islamic spiritual intelligence, and Islamic work ethics have a significant impact. The findings of the mediation study reveal that Islamic organizational culture, leadership, and spiritual intelligence influences organizational commitment through Islamic work ethic. The total effect analysis shows that the most effective path to increasing teachers’ organizational commitment is Islamic leadership - Islamic work ethic – organizational commitment. Originality/value – This study evaluates the Integrative Model of Organizational Behavior by Colquitt (2016) applied in Islamic Boarding School. The model consists of contemporary leadership and individual characteristic as the antecedent. The mediating variables of the model consist of individual mechanisms such as trust, justice, and ethic. Individual performance and organizational commitment are the model's outcomes. These variables, on the other hand, do not represent the Islamic viewpoint as a whole. As a result, this study aims to assess the role of Islamic principles in the model. The study employs reliability and validity tests to get reliable and valid measures. The findings revealed that the evaluation model is proven to improve organizational commitment at Islamic Boarding School.Keywords: Islamic leadership, Islamic spiritual intelligence, Islamic work ethic, organizational commitment, Islamic boarding school
Procedia PDF Downloads 1613886 Forming-Free Resistive Switching Effect in ZnₓTiᵧHfzOᵢ Nanocomposite Thin Films for Neuromorphic Systems Manufacturing
Authors: Vladimir Smirnov, Roman Tominov, Vadim Avilov, Oleg Ageev
Abstract:
The creation of a new generation micro- and nanoelectronics elements opens up unlimited possibilities for electronic devices parameters improving, as well as developing neuromorphic computing systems. Interest in the latter is growing up every year, which is explained by the need to solve problems related to the unstructured classification of data, the construction of self-adaptive systems, and pattern recognition. However, for its technical implementation, it is necessary to fulfill a number of conditions for the basic parameters of electronic memory, such as the presence of non-volatility, the presence of multi-bitness, high integration density, and low power consumption. Several types of memory are presented in the electronics industry (MRAM, FeRAM, PRAM, ReRAM), among which non-volatile resistive memory (ReRAM) is especially distinguished due to the presence of multi-bit property, which is necessary for neuromorphic systems manufacturing. ReRAM is based on the effect of resistive switching – a change in the resistance of the oxide film between low-resistance state (LRS) and high-resistance state (HRS) under an applied electric field. One of the methods for the technical implementation of neuromorphic systems is cross-bar structures, which are ReRAM cells, interconnected by cross data buses. Such a structure imitates the architecture of the biological brain, which contains a low power computing elements - neurons, connected by special channels - synapses. The choice of the ReRAM oxide film material is an important task that determines the characteristics of the future neuromorphic system. An analysis of literature showed that many metal oxides (TiO2, ZnO, NiO, ZrO2, HfO2) have a resistive switching effect. It is worth noting that the manufacture of nanocomposites based on these materials allows highlighting the advantages and hiding the disadvantages of each material. Therefore, as a basis for the neuromorphic structures manufacturing, it was decided to use ZnₓTiᵧHfzOᵢ nanocomposite. It is also worth noting that the ZnₓTiᵧHfzOᵢ nanocomposite does not need an electroforming, which degrades the parameters of the formed ReRAM elements. Currently, this material is not well studied, therefore, the study of the effect of resistive switching in forming-free ZnₓTiᵧHfzOᵢ nanocomposite is an important task and the goal of this work. Forming-free nanocomposite ZnₓTiᵧHfzOᵢ thin film was grown by pulsed laser deposition (Pioneer 180, Neocera Co., USA) on the SiO2/TiN (40 nm) substrate. Electrical measurements were carried out using a semiconductor characterization system (Keithley 4200-SCS, USA) with W probes. During measurements, TiN film was grounded. The analysis of the obtained current-voltage characteristics showed a resistive switching from HRS to LRS resistance states at +1.87±0.12 V, and from LRS to HRS at -2.71±0.28 V. Endurance test shown that HRS was 283.21±32.12 kΩ, LRS was 1.32±0.21 kΩ during 100 measurements. It was shown that HRS/LRS ratio was about 214.55 at reading voltage of 0.6 V. The results can be useful for forming-free nanocomposite ZnₓTiᵧHfzOᵢ films in neuromorphic systems manufacturing. This work was supported by RFBR, according to the research project № 19-29-03041 mk. The results were obtained using the equipment of the Research and Education Center «Nanotechnologies» of Southern Federal University.Keywords: nanotechnology, nanocomposites, neuromorphic systems, RRAM, pulsed laser deposition, resistive switching effect
Procedia PDF Downloads 1323885 The Problem of the Use of Learning Analytics in Distance Higher Education: An Analytical Study of the Open and Distance University System in Mexico
Authors: Ismene Ithai Bras-Ruiz
Abstract:
Learning Analytics (LA) is employed by universities not only as a tool but as a specialized ground to enhance students and professors. However, not all the academic programs apply LA with the same goal and use the same tools. In fact, LA is formed by five main fields of study (academic analytics, action research, educational data mining, recommender systems, and personalized systems). These fields can help not just to inform academic authorities about the situation of the program, but also can detect risk students, professors with needs, or general problems. The highest level applies Artificial Intelligence techniques to support learning practices. LA has adopted different techniques: statistics, ethnography, data visualization, machine learning, natural language process, and data mining. Is expected that any academic program decided what field wants to utilize on the basis of his academic interest but also his capacities related to professors, administrators, systems, logistics, data analyst, and the academic goals. The Open and Distance University System (SUAYED in Spanish) of the University National Autonomous of Mexico (UNAM), has been working for forty years as an alternative to traditional programs; one of their main supports has been the employ of new information and communications technologies (ICT). Today, UNAM has one of the largest network higher education programs, twenty-six academic programs in different faculties. This situation means that every faculty works with heterogeneous populations and academic problems. In this sense, every program has developed its own Learning Analytic techniques to improve academic issues. In this context, an investigation was carried out to know the situation of the application of LA in all the academic programs in the different faculties. The premise of the study it was that not all the faculties have utilized advanced LA techniques and it is probable that they do not know what field of study is closer to their program goals. In consequence, not all the programs know about LA but, this does not mean they do not work with LA in a veiled or, less clear sense. It is very important to know the grade of knowledge about LA for two reasons: 1) This allows to appreciate the work of the administration to improve the quality of the teaching and, 2) if it is possible to improve others LA techniques. For this purpose, it was designed three instruments to determinate the experience and knowledge in LA. These were applied to ten faculty coordinators and his personnel; thirty members were consulted (academic secretary, systems manager, or data analyst, and coordinator of the program). The final report allowed to understand that almost all the programs work with basic statistics tools and techniques, this helps the administration only to know what is happening inside de academic program, but they are not ready to move up to the next level, this means applying Artificial Intelligence or Recommender Systems to reach a personalized learning system. This situation is not related to the knowledge of LA, but the clarity of the long-term goals.Keywords: academic improvements, analytical techniques, learning analytics, personnel expertise
Procedia PDF Downloads 1283884 The Impact of Artificial Intelligence on Autism Attitude and Skills
Authors: Sara Fayez Fawzy Mikhael
Abstract:
Inclusive education services for students with autism are still developing in Thailand. Although many more children with intellectual disabilities have been attending school since the Thai government enacted the Education for Persons with Disabilities Act in 2008, facilities for students with disabilities and their families are generally inadequate. This comprehensive study used the Attitudes and Preparedness for Teaching Students with Autism Scale (APTSAS) to examine the attitudes and preparedness of 110, elementary teachers in teaching students with autism in the general education setting. Descriptive statistical analyzes showed that the most important factor in the formation of a negative image of teachers with autism is student attitudes. Most teachers also stated that their pre-service training did not prepare them to meet the needs of children with special needs who cannot speak. The study is important and provides directions for improving non-formal teacher education in Thailand.Keywords: attitude, autism, teachers, thailandsports activates, movement skills, motor skills
Procedia PDF Downloads 663883 Engineers’ Ability to Lead Effectively the Transformation to Sustainable Manufacturing: A Case Study of Saudi Arabia
Authors: Mohammed Alharbi, Clare Wood, Vasileios Samaras
Abstract:
Sustainability leadership is a controversial topic, particularly in the engineering context. The theoretical and practical technical focus of the engineering profession impacts our lives. Technologically, engineers significantly contribute to our modern civilization. Industrial revolutions are among the top engineering accomplishments that have contributed to the flourishing of our life. However, engineers have not always received the credit they deserve; instead, they have been blamed for the advent of various global issues, among them the global warming phenomena that are believed to be a result of the industrial revolutions. Global challenges demand engineers demonstrate more than their technical skills for effective contribution to a sustainable future. As a result, engineering leadership has emerged as a new research field. Sustainable manufacturing is a cornerstone for sustainable development. Investigating the change to more sustainable manufacturing practices is a significant issue for all, and even more in the field of engineering leadership. Engineers dominate the manufacturing industry; however, one of the main criticism of engineers is the lack of leadership skills. The literature on engineering leadership has not highlighted enough the engineers' leadership ability in leading sustainable manufacturing. Since we are at the cusp of a new industrial revolution -Industry 4.0, it is vital to investigate the ability of engineers to lead the industry towards a sustainable future. The primary purpose of this paper is to evaluate engineers' sustainability leadership competencies utilizing The Cambridge University Behavioral Competency Model. However, the practical application of the Cambridge model is limited due to the absence of a reliable measurement tool. Therefore, this study developed a valid and reliable survey instrument tool compatible with the Cambridge model as a secondary objective. More than 300 Saudi engineers from the manufacturing industry responded to an online questionnaire collected through the Qualtrics platform and analyzed using SPSS software. The findings provide a contemporary understanding of engineers' mindset related to sustainability leadership. The output of this research study could be valuable in designing effective engineering leadership programs in academia or industry, particularly for enhancing a sustainable manufacturing environment.Keywords: engineer, leadership, manufacturing, sustainability
Procedia PDF Downloads 1583882 A Study on Manufacturing of Head-Part of Pipes Using a Rotating Manufacturing Process
Authors: J. H. Park, S. K. Lee, Y. W. Kim, D. C. Ko
Abstract:
A large variety of pipe flange is required in marine and construction industry.Pipe flanges are usually welded or screwed to the pipe end and are connected with bolts.This approach is very simple and widely used for a long time, however, it results in high development cost and low productivity, and the productions made by this approach usually have safety problem at the welding area.In this research, a new approach of forming pipe flange based on cold forging and floating die concept is presented.This innovative approach increases the effectiveness of the material usage and save the time cost compared with conventional welding method. To ensure the dimensional accuracy of the final product, the finite element analysis (FEA) was carried out to simulate the process of cold forging, and the orthogonal experiment methods were used to investigate the influence of four manufacturing factors (pin die angle, pipe flange angle, rpm, pin die distance from clamp jig) and predicted the best combination of them. The manufacturing factors were obtained by numerical and experimental studies and it shows that the approach is very useful and effective for the forming of pipe flange, and can be widely used later.Keywords: cold forging, FEA (finite element analysis), forge-3D, rotating forming, tubes
Procedia PDF Downloads 3773881 Predicting Data Center Resource Usage Using Quantile Regression to Conserve Energy While Fulfilling the Service Level Agreement
Authors: Ahmed I. Alutabi, Naghmeh Dezhabad, Sudhakar Ganti
Abstract:
Data centers have been growing in size and dema nd continuously in the last two decades. Planning for the deployment of resources has been shallow and always resorted to over-provisioning. Data center operators try to maximize the availability of their services by allocating multiple of the needed resources. One resource that has been wasted, with little thought, has been energy. In recent years, programmable resource allocation has paved the way to allow for more efficient and robust data centers. In this work, we examine the predictability of resource usage in a data center environment. We use a number of models that cover a wide spectrum of machine learning categories. Then we establish a framework to guarantee the client service level agreement (SLA). Our results show that using prediction can cut energy loss by up to 55%.Keywords: machine learning, artificial intelligence, prediction, data center, resource allocation, green computing
Procedia PDF Downloads 1083880 Design of a Standard Weather Data Acquisition Device for the Federal University of Technology, Akure Nigeria
Authors: Isaac Kayode Ogunlade
Abstract:
Data acquisition (DAQ) is the process by which physical phenomena from the real world are transformed into an electrical signal(s) that are measured and converted into a digital format for processing, analysis, and storage by a computer. The DAQ is designed using PIC18F4550 microcontroller, communicating with Personal Computer (PC) through USB (Universal Serial Bus). The research deployed initial knowledge of data acquisition system and embedded system to develop a weather data acquisition device using LM35 sensor to measure weather parameters and the use of Artificial Intelligence(Artificial Neural Network - ANN)and statistical approach(Autoregressive Integrated Moving Average – ARIMA) to predict precipitation (rainfall). The device is placed by a standard device in the Department of Meteorology, Federal University of Technology, Akure (FUTA) to know the performance evaluation of the device. Both devices (standard and designed) were subjected to 180 days with the same atmospheric condition for data mining (temperature, relative humidity, and pressure). The acquired data is trained in MATLAB R2012b environment using ANN, and ARIMAto predict precipitation (rainfall). Root Mean Square Error (RMSE), Mean Absolute Error (MAE), Correction Square (R2), and Mean Percentage Error (MPE) was deplored as standardize evaluation to know the performance of the models in the prediction of precipitation. The results from the working of the developed device show that the device has an efficiency of 96% and is also compatible with Personal Computer (PC) and laptops. The simulation result for acquired data shows that ANN models precipitation (rainfall) prediction for two months (May and June 2017) revealed a disparity error of 1.59%; while ARIMA is 2.63%, respectively. The device will be useful in research, practical laboratories, and industrial environments.Keywords: data acquisition system, design device, weather development, predict precipitation and (FUTA) standard device
Procedia PDF Downloads 923879 Emotional Intelligence: Strategies in the Sphere of Leadership
Authors: Raghavi Janaswamy, Srinivas Janaswamy
Abstract:
Emotional Intelligence (EI) measures the degree to which individuals can identify, understand and manage emotions. Indeed, it highlights the intricate relationship between thoughts, feelings, and behavior of an individual. In today's world, EI competencies appear to be more valuable compared to cognitive and/or technical expertise. Higher EI endows realistic confidence to perceive challenges with positive thinking and, in turn, offers a steady growth as well as the speed of work and discerning ability. It certainly plays a vital role for aspirants to ascend the organizational ladder and distinguishes outstanding leaders from the rest. Emotional maturity further reflects on the behavioral pattern toward dealing with self and the immediate environment. Indeed, it aids in cementing inter-personal relations at a workplace with a thorough understanding and certainly paves the way for leaders to their prosperity as well as organizational growth. Herein, EI contributions to an individual, team, and organizational success are discussed with an emphasis on the required tools to acquire higher EI traits. The strategies for promoting self-awareness, empathy, and social skills and changing trends of the new programs for the EI improvement are also highlighted.Keywords: emotional intelligence, leadership, organizational growth, self-awareness skills
Procedia PDF Downloads 823878 Total Quality Management in Companies Manufacturing
Authors: Malki Nadia Fatima Zahra, Kellal Cheimaa, Brahimi Houria
Abstract:
Aim of the study is to show the role of total Quality Management on firm performance; the research relied on the views of sample managers working in the Marinel pharmaceutical company. The research aims to achieve many objectives, including increasing awareness of the concepts of Total Quality Management on Firm Performance, especially in the manufacturing firm, providing a future vision of the possibility of success, and the actual application of the Principles of Total Quality Management in the manufacturing company. The research adopted a default model was built after a review and analysis of the literature review in the context of one hypothesis main points at the origin of a group of sub-hypotheses. The research presented a set of conclusions, and the most important of these conclusions was there is a relationship between the Principles of TQM and Firm Performance.Keywords: total quality management, TQM dimension, firm performance, strategies
Procedia PDF Downloads 683877 Photovoltaic Maximum Power-Point Tracking Using Artificial Neural Network
Authors: Abdelazziz Aouiche, El Moundher Aouiche, Mouhamed Salah Soudani
Abstract:
Renewable energy sources now significantly contribute to the replacement of traditional fossil fuel energy sources. One of the most potent types of renewable energy that has developed quickly in recent years is photovoltaic energy. We all know that solar energy, which is sustainable and non-depleting, is the best knowledge form of energy that we have at our disposal. Due to changing weather conditions, the primary drawback of conventional solar PV cells is their inability to track their maximum power point. In this study, we apply artificial neural networks (ANN) to automatically track and measure the maximum power point (MPP) of solar panels. In MATLAB, the complete system is simulated, and the results are adjusted for the external environment. The results are better performance than traditional MPPT methods and the results demonstrate the advantages of using neural networks in solar PV systems.Keywords: modeling, photovoltaic panel, artificial neural networks, maximum power point tracking
Procedia PDF Downloads 883876 Real-Time Inventory Management and Operational Efficiency in Manufacturing
Authors: Tom Wanyama
Abstract:
We have developed a weight-based parts inventory monitoring system utilizing the Industrial Internet of Things (IIoT) to enhance operational efficiencies in manufacturing. The system addresses various challenges, including eliminating downtimes caused by stock-outs, preventing human errors in parts delivery and product assembly, and minimizing motion waste by reducing unnecessary worker movements. The system incorporates custom QR codes for simplified inventory tracking and retrieval processes. The generated data serves a dual purpose by enabling real-time optimization of parts flow within manufacturing facilities and facilitating retroactive optimization of stock levels for informed decision-making in inventory management. The pilot implementation at SEPT Learning Factory successfully eradicated data entry errors, optimized parts delivery, and minimized workstation downtimes, resulting in a remarkable increase of over 10% in overall equipment efficiency across all workstations. Leveraging the IIoT features, the system seamlessly integrates information into the process control system, contributing to the enhancement of product quality. This approach underscores the importance of effective tracking of parts inventory in manufacturing to achieve transparency, improved inventory control, and overall profitability. In the broader context, our inventory monitoring system aligns with the evolving focus on optimizing supply chains and maintaining well-managed warehouses to ensure maximum efficiency in the manufacturing industry.Keywords: industrial Internet of things, industrial systems integration, inventory monitoring, inventory control in manufacturing
Procedia PDF Downloads 363875 Analyzing the Influence of Principals’ Cultural Intelligence on Teachers’ Perceived Diversity Climate
Authors: Meghry Nazarian, Ibrahim Duyar
Abstract:
Effective management of a diverse workforce in the United Arab Emirates (UAE) presents peculiar importance as two-thirds of residents are expatriates who have diverse ethnic and cultural backgrounds. Like any other organization in the country, UAE schools have become upmost diverse settings in the world. The purpose of this study was to examine whether principals’ cultural intelligence has direct and indirect (moderating) influences on teachers’ perceived diversity climate. A quantitative causal-comparative research design was employed to analyze the data. Participants included random samples of principals and teachers working in the private and charter schools in the Emirate of Abu Dhabi. The data-gathering online questionnaires included previously developed and validated scales as the measures of study variables. More specifically, the multidimensional short-form measure of Cultural Intelligence (CQ) and the diversity climate scale were used to measure the study variables. Multivariate statistics, including the analysis of multivariate analysis of variance (MANCOVA) and structural equation modeling (SEM), were employed to examine the relationships between the study variables. The preliminary analyses of data showed that principals and teachers have differing views of diversity management and climate in schools. Findings also showed that principals’ cultural intelligence has both direct and moderating influences on teachers’ perceived diversity climate. The study findings are expected to inform policymakers and practicing educational leaders in addressing diversity management in a country where the majority of the residents are the minority who have diverse ethnic and cultural backgrounds.Keywords: diversity management, united arab emirates, school principals’ cultural intelligence (CQ), teachers’ perceived diversity climate
Procedia PDF Downloads 1123874 Relationship between Leadership and Emotional Intelligence in Educational Supervision in Saudi Arabia
Authors: Jawaher Bakheet Almudarra
Abstract:
The Saudi Arabian educational system shared the philosophical principles, in its foundation, which concentrated on the achievement of goals, thereby taking up authoritative styles of leadership. However, organisations are beginning to be more liberal in today’s environment than in the 1940s and 1950s, and appealing to emotional intelligence as a tool and skill are needed for effective leadership. In the Saudi Arabian case, such developments are characterised by changes such as that of the educational supervisor having the role redefined to that of a director. This review tracks several parts: the first section helps western reader to understand the subtleties, complexities, and intricacies of the Saudi Arabia education system and its approach to leadership system of education, history, culture and political contribution. This can lead to the larger extent understand if emotional intelligence is a provocation for better leadership of Saudi Arabian education sector or not. The second part is the growth of educational supervision in Saudi Arabia, focusing on the education system, and evaluates the impact of emotional intelligence as a necessary skill in leadership. The third section looks at emotions and emotional intelligence, gender roles, and contributions by emotional intelligence in the education system. The education system of Saudi Arabia has undergone significant transformation. To fully understand the current climate of Saudi Arabia, it is essential to review this process of transformation in terms of the historical, cultural, political and social positions and transformations. Over the years, the education system in Saudi Arabia has undergone significant metamorphosis. The Saudi government has instituted a wide range of reforms in an attempt to improve education standards and outcomes, facilitate improvements and ensure that high standards of education standards are upheld to keep pace with the global environment and knowledge economy. Leadership itself has become an increasingly prominent aspect of educational reform worldwide. Emotional intelligence is often considered a significant aspect of leadership, but it is in its early stages in Saudi Arabia. Its recognition and adoption may improve leadership practices, particularly among educational supervisors and contribute to national and international understandings of leadership in Saudi Arabia. Studying leadership in the Saudi Arabian context is imperative as the new generation of leaders need to cultivate pertinent skills that will allow them to become fundamentally and positively involved in the regions’ decision making processes in order to impact the progression of the Saudi Arabian education system. Understanding leadership in the education context will allow for suitable inculcation of leadership skills. These skills include goal-setting, sound decision-making as well as problem-solving within the education system of Saudi Arabia.Keywords: educational supervision, educational administration, emotional intelligence, educational leadership
Procedia PDF Downloads 2973873 Parameters Tuning of a PID Controller on a DC Motor Using Honey Bee and Genetic Algorithms
Authors: Saeid Jalilzadeh
Abstract:
PID controllers are widely used to control the industrial plants because of their robustness and simple structures. Tuning of the controller's parameters to get a desired response is difficult and time consuming. With the development of computer technology and artificial intelligence in automatic control field, all kinds of parameters tuning methods of PID controller have emerged in endlessly, which bring much energy for the study of PID controller, but many advanced tuning methods behave not so perfect as to be expected. Honey Bee algorithm (HBA) and genetic algorithm (GA) are extensively used for real parameter optimization in diverse fields of study. This paper describes an application of HBA and GA to the problem of designing a PID controller whose parameters comprise proportionality constant, integral constant and derivative constant. Presence of three parameters to optimize makes the task of designing a PID controller more challenging than conventional P, PI, and PD controllers design. The suitability of the proposed approach has been demonstrated through computer simulation using MATLAB/SIMULINK.Keywords: controller, GA, optimization, PID, PSO
Procedia PDF Downloads 5443872 Why Use of Artificial Intelligence Should Be Centred around Emotions to Create Effective Learning Environment in the Corporate Workplace?
Authors: Artur Willoński
Abstract:
This research introduces the concept of Emotions Based Collaborative Prompting (EBCP) as a response to the need for a unified learning environment in the corporate workplace. The first section examines the key characteristics of workplace learning, presenting three core propositions: (1) workplace learning is both informal and diverse, requiring adaptable approaches; (2) corporate settings provide inherent structures that can be leveraged for collaborative learning; and (3) emotional engagement and human interaction play a central role in effective learning processes. The second section describes how EBCP framework creates an environment that helps identify emotions, assign emotions with parameters, and allows these parameters to be collected, analysed, and turned into a context-aware learning environment. It concludes that EBCP allows people who come from different social backgrounds, age groups, and positions in the organisation to collaborate and generate knowledge based on both formal and informal interactions.Keywords: collaborative learning, self-regulated learning, emotions, AI
Procedia PDF Downloads 23871 Examining the Relationship Between Job Stress And Burnout Among Academic Staff During The Covid-19 Pandemic; The Importance Of Emotional Intelligence
Authors: Parisa Gharibi Khoshkar
Abstract:
The global outbreak of Covid-19 forced a swift shift in the education sector, transitioning from traditional in-person settings to remote online setups in a short period. This abrupt change, coupled with health risks and other stressors such as the lack of social interaction, has had a negative impact on academic staff, leading to increased job-related stress and psychological pressures that can result in burnout. To address this, the current research aims to investigate the relationship between job stress and burnout among academic staff in Hebron, Palestine. Furthermore, this study examines the moderating role of emotional intelligence to gain a deeper understanding of its effects in reducing burnout among academic staff and teachers. This research posits that emotional intelligence plays a vital role in helping individuals manage job-related stress and anxiety, thereby preventing burnout. Using a self-administered questionnaire, the study gathered data from 185 samples comprising teachers and administrative staff from two universities in Hebron. The data was analyzed using moderated regression analysis, ANOVA model, and interaction plots. The findings indicate that work-related stress has a direct and significant influence on burnout. Moreover, the current results highlight that emotional intelligence serves as a key determinant in managing the negative effects of the pandemic-induced stress that can lead to burnout among individuals. Given the high-demand nature of the education sector, this research strongly recommends that school authorities take proactive measures to provide much-needed support to academic staff, enabling them to better cope with job stress and fostering an environment that prioritizes individuals' wellbeing. The results of this study hold practical implications for both scholars and practitioners, as they highlight the importance of emotional intelligence in managing stress and anxiety effectively. Understanding the significance of emotional intelligence can aid in implementing targeted interventions and support systems to promote the well-being and resilience of academic staff amidst challenging circumstances.Keywords: job stress, burnout, employee wellbeing, emotional intelligence, industrial organizational psychology, human resource management, organizational psychology
Procedia PDF Downloads 713870 Discrete Swarm with Passive Congregation for Cost Minimization of the Multiple Vehicle Routing Problem
Authors: Tarek Aboueldahab, Hanan Farag
Abstract:
Cost minimization of Multiple Vehicle Routing Problem becomes a critical issue in the field of transportation because it is NP-hard optimization problem and the search space is complex. Many researches use the hybridization of artificial intelligence (AI) models to solve this problem; however, it can not guarantee to reach the best solution due to the difficulty of searching the whole search space. To overcome this problem, we introduce the hybrid model of Discrete Particle Swarm Optimization (DPSO) with a passive congregation which enable searching the whole search space to compromise between both local and global search. The practical experiment shows that our model obviously outperforms other hybrid models in cost minimization.Keywords: cost minimization, multi-vehicle routing problem, passive congregation, discrete swarm, passive congregation
Procedia PDF Downloads 983869 Exploratory Analysis and Development of Sustainable Lean Six Sigma Methodologies Integration for Effective Operation and Risk Mitigation in Manufacturing Sectors
Authors: Chukwumeka Daniel Ezeliora
Abstract:
The Nigerian manufacturing sector plays a pivotal role in the country's economic growth and development. However, it faces numerous challenges, including operational inefficiencies and inherent risks that hinder its sustainable growth. This research aims to address these challenges by exploring the integration of Lean and Six Sigma methodologies into the manufacturing processes, ultimately enhancing operational effectiveness and risk mitigation. The core of this research involves the development of a sustainable Lean Six Sigma framework tailored to the specific needs and challenges of Nigeria's manufacturing environment. This framework aims to streamline processes, reduce waste, improve product quality, and enhance overall operational efficiency. It incorporates principles of sustainability to ensure that the proposed methodologies align with environmental and social responsibility goals. To validate the effectiveness of the integrated Lean Six Sigma approach, case studies and real-world applications within select manufacturing companies in Nigeria will be conducted. Data were collected to measure the impact of the integration on key performance indicators, such as production efficiency, defect reduction, and risk mitigation. The findings from this research provide valuable insights and practical recommendations for selected manufacturing companies in South East Nigeria. By adopting sustainable Lean Six Sigma methodologies, these organizations can optimize their operations, reduce operational risks, improve product quality, and enhance their competitiveness in the global market. In conclusion, this research aims to bridge the gap between theory and practice by developing a comprehensive framework for the integration of Lean and Six Sigma methodologies in Nigeria's manufacturing sector. This integration is envisioned to contribute significantly to the sector's sustainable growth, improved operational efficiency, and effective risk mitigation strategies, ultimately benefiting the Nigerian economy as a whole.Keywords: lean six sigma, manufacturing, risk mitigation, sustainability, operational efficiency
Procedia PDF Downloads 2073868 Haemocompatibility of Surface Modified AISI 316L Austenitic Stainless Steel Tested in Artificial Plasma
Authors: W. Walke, J. Przondziono, K. Nowińska
Abstract:
The study comprises evaluation of suitability of passive layer created on the surface of AISI 316L stainless steel for products that are intended to have contact with blood. For that purpose, prior to and after chemical passivation, samples were subject to 7 day exposure in artificial plasma at the temperature of T=37°C. Next, tests of metallic ions infiltration from the surface to the solution were performed. The tests were performed with application of spectrometer JY 2000, by Yobin – Yvon, employing Inductively Coupled Plasma Atomic Emission Spectrometry (ICP-AES). In order to characterize physical and chemical features of electrochemical processes taking place during exposure of samples to artificial plasma, tests with application of electrochemical impedance spectroscopy were suggested. The tests were performed with application of measuring unit equipped with potentiostat PGSTAT 302n with an attachment for impedance tests FRA2. Measurements were made in the environment simulating human blood at the temperature of T=37°C. Performed tests proved that application of chemical passivation process for AISI 316L stainless steel used for production of goods intended to have contact with blood is well-grounded and useful in order to improve safety of their usage.Keywords: AISI 316L stainless steel, chemical passivation, artificial plasma, ions infiltration, EIS
Procedia PDF Downloads 2663867 In₀.₁₈Al₀.₈₂N/AlN/GaN/Si Metal-Oxide-Semiconductor Heterostructure Field-Effect Transistors with Backside Metal-Trench Design
Authors: C. S Lee, W. C. Hsu, H. Y. Liu, C. J. Lin, S. C. Yao, Y. T. Shen, Y. C. Lin
Abstract:
In₀.₁₈Al₀.₈₂N/AlN/GaN metal-oxide-semiconductor heterostructure field-effect transistors (MOS-HFETs) having Al₂O₃ gate-dielectric and backside metal-trench structure are investigated. The Al₂O₃ gate oxide was formed by using a cost-effective non-vacuum ultrasonic spray pyrolysis deposition (USPD) method. In order to enhance the heat dissipation efficiency, metal trenches were etched 3-µm deep and evaporated with a 150-nm thick Ni film on the backside of the Si substrate. The present In₀.₁₈Al₀.₈₂N/AlN/GaN MOS-HFET (Schottky-gate HFET) has demonstrated improved maximum drain-source current density (IDS, max) of 1.08 (0.86) A/mm at VDS = 8 V, gate-voltage swing (GVS) of 4 (2) V, on/off-current ratio (Ion/Ioff) of 8.9 × 10⁸ (7.4 × 10⁴), subthreshold swing (SS) of 140 (244) mV/dec, two-terminal off-state gate-drain breakdown voltage (BVGD) of -191.1 (-173.8) V, turn-on voltage (Von) of 4.2 (1.2) V, and three-terminal on-state drain-source breakdown voltage (BVDS) of 155.9 (98.5) V. Enhanced power performances, including saturated output power (Pout) of 27.9 (21.5) dBm, power gain (Gₐ) of 20.3 (15.5) dB, and power-added efficiency (PAE) of 44.3% (34.8%), are obtained. Superior breakdown and RF power performances are achieved. The present In₀.₁₈Al₀.₈₂N/AlN/GaN MOS-HFET design with backside metal-trench is advantageous for high-power circuit applications.Keywords: backside metal-trench, InAlN/AlN/GaN, MOS-HFET, non-vacuum ultrasonic spray pyrolysis deposition
Procedia PDF Downloads 254