Search results for: real
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 5242

Search results for: real

4252 Impact of Charging PHEV at Different Penetration Levels on Power System Network

Authors: M. R. Ahmad, I. Musirin, M. M. Othman, N. A. Rahmat

Abstract:

Plug-in Hybrid-Electric Vehicle (PHEV) has gained immense popularity in recent years. PHEV offers numerous advantages compared to the conventional internal-combustion engine (ICE) vehicle. Millions of PHEVs are estimated to be on the road in the USA by 2020. Uncoordinated PHEV charging is believed to cause severe impacts to the power grid; i.e. feeders, lines and transformers overload and voltage drop. Nevertheless, improper PHEV data model used in such studies may cause the findings of their works is in appropriated. Although smart charging is more attractive to researchers in recent years, its implementation is not yet attainable on the street due to its requirement for physical infrastructure readiness and technology advancement. As the first step, it is finest to study the impact of charging PHEV based on real vehicle travel data from National Household Travel Survey (NHTS) and at present charging rate. Due to the lack of charging station on the street at the moment, charging PHEV at home is the best option and has been considered in this work. This paper proposed a technique that comprehensively presents the impact of charging PHEV on power system networks considering huge numbers of PHEV samples with its traveling data pattern. Vehicles Charging Load Profile (VCLP) is developed and implemented in IEEE 30-bus test system that represents a portion of American Electric Power System (Midwestern US). Normalization technique is used to correspond to real time loads at all buses. Results from the study indicated that charging PHEV using opportunity charging will have significant impacts on power system networks, especially whereas bigger battery capacity (kWh) is used as well as for higher penetration level.

Keywords: plug-in hybrid electric vehicle, transportation electrification, impact of charging PHEV, electricity demand profile, load profile

Procedia PDF Downloads 287
4251 Controlling Drone Flight Missions through Natural Language Processors Using Artificial Intelligence

Authors: Sylvester Akpah, Selasi Vondee

Abstract:

Unmanned Aerial Vehicles (UAV) as they are also known, drones have attracted increasing attention in recent years due to their ubiquitous nature and boundless applications in the areas of communication, surveying, aerial photography, weather forecasting, medical delivery, surveillance amongst others. Operated remotely in real-time or pre-programmed, drones can fly autonomously or on pre-defined routes. The application of these aerial vehicles has successfully penetrated the world due to technological evolution, thus a lot more businesses are utilizing their capabilities. Unfortunately, while drones are replete with the benefits stated supra, they are riddled with some problems, mainly attributed to the complexities in learning how to master drone flights, collision avoidance and enterprise security. Additional challenges, such as the analysis of flight data recorded by sensors attached to the drone may take time and require expert help to analyse and understand. This paper presents an autonomous drone control system using a chatbot. The system allows for easy control of drones using conversations with the aid of Natural Language Processing, thus to reduce the workload needed to set up, deploy, control, and monitor drone flight missions. The results obtained at the end of the study revealed that the drone connected to the chatbot was able to initiate flight missions with just text and voice commands, enable conversation and give real-time feedback from data and requests made to the chatbot. The results further revealed that the system was able to process natural language and produced human-like conversational abilities using Artificial Intelligence (Natural Language Understanding). It is recommended that radio signal adapters be used instead of wireless connections thus to increase the range of communication with the aerial vehicle.

Keywords: artificial ntelligence, chatbot, natural language processing, unmanned aerial vehicle

Procedia PDF Downloads 142
4250 Experimental and Modal Determination of the State-Space Model Parameters of a Uni-Axial Shaker System for Virtual Vibration Testing

Authors: Jonathan Martino, Kristof Harri

Abstract:

In some cases, the increase in computing resources makes simulation methods more affordable. The increase in processing speed also allows real time analysis or even more rapid tests analysis offering a real tool for test prediction and design process optimization. Vibration tests are no exception to this trend. The so called ‘Virtual Vibration Testing’ offers solution among others to study the influence of specific loads, to better anticipate the boundary conditions between the exciter and the structure under test, to study the influence of small changes in the structure under test, etc. This article will first present a virtual vibration test modeling with a main focus on the shaker model and will afterwards present the experimental parameters determination. The classical way of modeling a shaker is to consider the shaker as a simple mechanical structure augmented by an electrical circuit that makes the shaker move. The shaker is modeled as a two or three degrees of freedom lumped parameters model while the electrical circuit takes the coil impedance and the dynamic back-electromagnetic force into account. The establishment of the equations of this model, describing the dynamics of the shaker, is presented in this article and is strongly related to the internal physical quantities of the shaker. Those quantities will be reduced into global parameters which will be estimated through experiments. Different experiments will be carried out in order to design an easy and practical method for the identification of the shaker parameters leading to a fully functional shaker model. An experimental modal analysis will also be carried out to extract the modal parameters of the shaker and to combine them with the electrical measurements. Finally, this article will conclude with an experimental validation of the model.

Keywords: lumped parameters model, shaker modeling, shaker parameters, state-space, virtual vibration

Procedia PDF Downloads 269
4249 CRYPTO COPYCAT: A Fashion Centric Blockchain Framework for Eliminating Fashion Infringement

Authors: Magdi Elmessiry, Adel Elmessiry

Abstract:

The fashion industry represents a significant portion of the global gross domestic product, however, it is plagued by cheap imitators that infringe on the trademarks which destroys the fashion industry's hard work and investment. While eventually the copycats would be found and stopped, the damage has already been done, sales are missed and direct and indirect jobs are lost. The infringer thrives on two main facts: the time it takes to discover them and the lack of tracking technologies that can help the consumer distinguish them. Blockchain technology is a new emerging technology that provides a distributed encrypted immutable and fault resistant ledger. Blockchain presents a ripe technology to resolve the infringement epidemic facing the fashion industry. The significance of the study is that a new approach leveraging the state of the art blockchain technology coupled with artificial intelligence is used to create a framework addressing the fashion infringement problem. It transforms the current focus on legal enforcement, which is difficult at best, to consumer awareness that is far more effective. The framework, Crypto CopyCat, creates an immutable digital asset representing the actual product to empower the customer with a near real time query system. This combination emphasizes the consumer's awareness and appreciation of the product's authenticity, while provides real time feedback to the producer regarding the fake replicas. The main findings of this study are that implementing this approach can delay the fake product penetration of the original product market, thus allowing the original product the time to take advantage of the market. The shift in the fake adoption results in reduced returns, which impedes the copycat market and moves the emphasis to the original product innovation.

Keywords: fashion, infringement, blockchain, artificial intelligence, textiles supply chain

Procedia PDF Downloads 261
4248 The Design of a Computer Simulator to Emulate Pathology Laboratories: A Model for Optimising Clinical Workflows

Authors: M. Patterson, R. Bond, K. Cowan, M. Mulvenna, C. Reid, F. McMahon, P. McGowan, H. Cormican

Abstract:

This paper outlines the design of a simulator to allow for the optimisation of clinical workflows through a pathology laboratory and to improve the laboratory’s efficiency in the processing, testing, and analysis of specimens. Often pathologists have difficulty in pinpointing and anticipating issues in the clinical workflow until tests are running late or in error. It can be difficult to pinpoint the cause and even more difficult to predict any issues which may arise. For example, they often have no indication of how many samples are going to be delivered to the laboratory that day or at a given hour. If we could model scenarios using past information and known variables, it would be possible for pathology laboratories to initiate resource preparations, e.g. the printing of specimen labels or to activate a sufficient number of technicians. This would expedite the clinical workload, clinical processes and improve the overall efficiency of the laboratory. The simulator design visualises the workflow of the laboratory, i.e. the clinical tests being ordered, the specimens arriving, current tests being performed, results being validated and reports being issued. The simulator depicts the movement of specimens through this process, as well as the number of specimens at each stage. This movement is visualised using an animated flow diagram that is updated in real time. A traffic light colour-coding system will be used to indicate the level of flow through each stage (green for normal flow, orange for slow flow, and red for critical flow). This would allow pathologists to clearly see where there are issues and bottlenecks in the process. Graphs would also be used to indicate the status of specimens at each stage of the process. For example, a graph could show the percentage of specimen tests that are on time, potentially late, running late and in error. Clicking on potentially late samples will display more detailed information about those samples, the tests that still need to be performed on them and their urgency level. This would allow any issues to be resolved quickly. In the case of potentially late samples, this could help to ensure that critically needed results are delivered on time. The simulator will be created as a single-page web application. Various web technologies will be used to create the flow diagram showing the workflow of the laboratory. JavaScript will be used to program the logic, animate the movement of samples through each of the stages and to generate the status graphs in real time. This live information will be extracted from an Oracle database. As well as being used in a real laboratory situation, the simulator could also be used for training purposes. ‘Bots’ would be used to control the flow of specimens through each step of the process. Like existing software agents technology, these bots would be configurable in order to simulate different situations, which may arise in a laboratory such as an emerging epidemic. The bots could then be turned on and off to allow trainees to complete the tasks required at that step of the process, for example validating test results.

Keywords: laboratory-process, optimization, pathology, computer simulation, workflow

Procedia PDF Downloads 286
4247 Alternating Expectation-Maximization Algorithm for a Bilinear Model in Isoform Quantification from RNA-Seq Data

Authors: Wenjiang Deng, Tian Mou, Yudi Pawitan, Trung Nghia Vu

Abstract:

Estimation of isoform-level gene expression from RNA-seq data depends on simplifying assumptions, such as uniform reads distribution, that are easily violated in real data. Such violations typically lead to biased estimates. Most existing methods provide a bias correction step(s), which is based on biological considerations, such as GC content–and applied in single samples separately. The main problem is that not all biases are known. For example, new technologies such as single-cell RNA-seq (scRNA-seq) may introduce new sources of bias not seen in bulk-cell data. This study introduces a method called XAEM based on a more flexible and robust statistical model. Existing methods are essentially based on a linear model Xβ, where the design matrix X is known and derived based on the simplifying assumptions. In contrast, XAEM considers Xβ as a bilinear model with both X and β unknown. Joint estimation of X and β is made possible by simultaneous analysis of multi-sample RNA-seq data. Compared to existing methods, XAEM automatically performs empirical correction of potentially unknown biases. XAEM implements an alternating expectation-maximization (AEM) algorithm, alternating between estimation of X and β. For speed XAEM utilizes quasi-mapping for read alignment, thus leading to a fast algorithm. Overall XAEM performs favorably compared to other recent advanced methods. For simulated datasets, XAEM obtains higher accuracy for multiple-isoform genes, particularly for paralogs. In a differential-expression analysis of a real scRNA-seq dataset, XAEM achieves substantially greater rediscovery rates in an independent validation set.

Keywords: alternating EM algorithm, bias correction, bilinear model, gene expression, RNA-seq

Procedia PDF Downloads 142
4246 Validation of the Linear Trend Estimation Technique for Prediction of Average Water and Sewerage Charge Rate Prices in the Czech Republic

Authors: Aneta Oblouková, Eva Vítková

Abstract:

The article deals with the issue of water and sewerage charge rate prices in the Czech Republic. The research is specifically focused on the analysis of the development of the average prices of water and sewerage charge rate in the Czech Republic in the years 1994-2021 and on the validation of the chosen methodology relevant for the prediction of the development of the average prices of water and sewerage charge rate in the Czech Republic. The research is based on data collection. The data for this research was obtained from the Czech Statistical Office. The aim of the paper is to validate the relevance of the mathematical linear trend estimate technique for the calculation of the predicted average prices of water and sewerage charge rates. The real values of the average prices of water and sewerage charge rates in the Czech Republic in the years 1994-2018 were obtained from the Czech Statistical Office and were converted into a mathematical equation. The same type of real data was obtained from the Czech Statistical Office for the years 2019-2021. Prediction of the average prices of water and sewerage charge rates in the Czech Republic in the years 2019-2021 were also calculated using a chosen method -a linear trend estimation technique. The values obtained from the Czech Statistical Office and the values calculated using the chosen methodology were subsequently compared. The research result is a validation of the chosen mathematical technique to be a suitable technique for this research.

Keywords: Czech Republic, linear trend estimation, price prediction, water and sewerage charge rate

Procedia PDF Downloads 120
4245 Source-Detector Trajectory Optimization for Target-Based C-Arm Cone Beam Computed Tomography

Authors: S. Hatamikia, A. Biguri, H. Furtado, G. Kronreif, J. Kettenbach, W. Birkfellner

Abstract:

Nowadays, three dimensional Cone Beam CT (CBCT) has turned into a widespread clinical routine imaging modality for interventional radiology. In conventional CBCT, a circular sourcedetector trajectory is used to acquire a high number of 2D projections in order to reconstruct a 3D volume. However, the accumulated radiation dose due to the repetitive use of CBCT needed for the intraoperative procedure as well as daily pretreatment patient alignment for radiotherapy has become a concern. It is of great importance for both health care providers and patients to decrease the amount of radiation dose required for these interventional images. Thus, it is desirable to find some optimized source-detector trajectories with the reduced number of projections which could therefore lead to dose reduction. In this study we investigate some source-detector trajectories with the optimal arbitrary orientation in the way to maximize performance of the reconstructed image at particular regions of interest. To achieve this approach, we developed a box phantom consisting several small target polytetrafluoroethylene spheres at regular distances through the entire phantom. Each of these spheres serves as a target inside a particular region of interest. We use the 3D Point Spread Function (PSF) as a measure to evaluate the performance of the reconstructed image. We measured the spatial variance in terms of Full-Width-Half-Maximum (FWHM) of the local PSFs each related to a particular target. The lower value of FWHM shows the better spatial resolution of reconstruction results at the target area. One important feature of interventional radiology is that we have very well-known imaging targets as a prior knowledge of patient anatomy (e.g. preoperative CT) is usually available for interventional imaging. Therefore, we use a CT scan from the box phantom as the prior knowledge and consider that as the digital phantom in our simulations to find the optimal trajectory for a specific target. Based on the simulation phase we have the optimal trajectory which can be then applied on the device in real situation. We consider a Philips Allura FD20 Xper C-arm geometry to perform the simulations and real data acquisition. Our experimental results based on both simulation and real data show our proposed optimization scheme has the capacity to find optimized trajectories with minimal number of projections in order to localize the targets. Our results show the proposed optimized trajectories are able to localize the targets as good as a standard circular trajectory while using just 1/3 number of projections. Conclusion: We demonstrate that applying a minimal dedicated set of projections with optimized orientations is sufficient to localize targets, may minimize radiation.

Keywords: CBCT, C-arm, reconstruction, trajectory optimization

Procedia PDF Downloads 132
4244 INCIPIT-CRIS: A Research Information System Combining Linked Data Ontologies and Persistent Identifiers

Authors: David Nogueiras Blanco, Amir Alwash, Arnaud Gaudinat, René Schneider

Abstract:

At a time when the access to and the sharing of information are crucial in the world of research, the use of technologies such as persistent identifiers (PIDs), Current Research Information Systems (CRIS), and ontologies may create platforms for information sharing if they respond to the need of disambiguation of their data by assuring interoperability inside and between other systems. INCIPIT-CRIS is a continuation of the former INCIPIT project, whose goal was to set up an infrastructure for a low-cost attribution of PIDs with high granularity based on Archival Resource Keys (ARKs). INCIPIT-CRIS can be interpreted as a logical consequence and propose a research information management system developed from scratch. The system has been created on and around the Schema.org ontology with a further articulation of the use of ARKs. It is thus built upon the infrastructure previously implemented (i.e., INCIPIT) in order to enhance the persistence of URIs. As a consequence, INCIPIT-CRIS aims to be the hinge between previously separated aspects such as CRIS, ontologies and PIDs in order to produce a powerful system allowing the resolution of disambiguation problems using a combination of an ontology such as Schema.org and unique persistent identifiers such as ARK, allowing the sharing of information through a dedicated platform, but also the interoperability of the system by representing the entirety of the data as RDF triplets. This paper aims to present the implemented solution as well as its simulation in real life. We will describe the underlying ideas and inspirations while going through the logic and the different functionalities implemented and their links with ARKs and Schema.org. Finally, we will discuss the tests performed with our project partner, the Swiss Institute of Bioinformatics (SIB), by the use of large and real-world data sets.

Keywords: current research information systems, linked data, ontologies, persistent identifier, schema.org, semantic web

Procedia PDF Downloads 135
4243 Academic Success, Problem-Based Learning and the Middleman: The Community Voice

Authors: Isabel Medina, Mario Duran

Abstract:

Although Problem-based learning provides students with multiple opportunities for rigorous instructional experiences in which students are challenged to address problems in the community; there are still gaps in connecting community leaders to the PBL process. At a south Texas high school, community participation serves as an integral component of the PBL process. Problem-based learning (PBL) has recently gained momentum due to the increase in global communities that value collaboration and critical thinking. As an instructional approach, PBL engages high school students in meaningful learning experiences. Furthermore, PBL focuses on providing students with a connection to real-world situations that require effective peer collaboration. For PBL leaders, providing students with a meaningful process is as important as the final PBL outcome. To achieve this goal, STEM high school strategically created a space for community involvement to be woven within the PBL fabric. This study examines the impact community members had on PBL students attending a STEM high school in South Texas. At STEM High School, community members represent a support system that works through the PBL process to ensure students receive real-life mentoring from business and industry leaders situated in the community. A phenomenological study using a semi-structured approach was used to collect data about students’ perception of community involvement within the PBL process for one South Texas high school. In our proposed presentation, we will discuss how community involvement in the PBL process academically impacted the educational experience of high school students at STEM high school. We address the instructional concerns PBL critics have with the lack of direct instruction, by providing a representation of how STEM high school utilizes community members to assist in impacting the academic experience of students.

Keywords: phenomenological, STEM education, student engagement, community involvement

Procedia PDF Downloads 91
4242 The Guaranteed Detection of the Seismoacoustic Emission Source in the C-OTDR Systems

Authors: Andrey V. Timofeev

Abstract:

A method is proposed for stable detection of seismoacoustic sources in C-OTDR systems that guarantee given upper bounds for probabilities of type I and type II errors. Properties of the proposed method are rigorously proved. The results of practical applications of the proposed method in a real C-OTDR-system are presented in this.

Keywords: guaranteed detection, C-OTDR systems, change point, interval estimation

Procedia PDF Downloads 256
4241 Future Design and Innovative Economic Models for Futuristic Markets in Developing Countries

Authors: Nessreen Y. Ibrahim

Abstract:

Designing the future according to realistic analytical study for the futuristic market needs can be a milestone strategy to make a huge improvement in developing countries economics. In developing countries, access to high technology and latest science approaches is very limited. The financial problems in low and medium income countries have negative effects on the kind and quality of imported new technologies and application for their markets. Thus, there is a strong need for shifting paradigm thinking in the design process to improve and evolve their development strategy. This paper discusses future possibilities in developing countries, and how they can design their own future according to specific future models FDM (Future Design Models), which established to solve certain economical problems, as well as political and cultural conflicts. FDM is strategic thinking framework provides an improvement in both content and process. The content includes; beliefs, values, mission, purpose, conceptual frameworks, research, and practice, while the process includes; design methodology, design systems, and design managements tools. In this paper the main objective was building an innovative economic model to design a chosen possible futuristic scenario; by understanding the market future needs, analyze real world setting, solve the model questions by future driven design, and finally interpret the results, to discuss to what extent the results can be transferred to the real world. The paper discusses Egypt as a potential case study. Since, Egypt has highly complex economical problems, extra-dynamic political factors, and very rich cultural aspects; we considered Egypt is a very challenging example for applying FDM. The paper results recommended using FDM numerical modeling as a starting point to design the future.

Keywords: developing countries, economic models, future design, possible futures

Procedia PDF Downloads 267
4240 In situ Real-Time Multivariate Analysis of Methanolysis Monitoring of Sunflower Oil Using FTIR

Authors: Pascal Mwenge, Tumisang Seodigeng

Abstract:

The combination of world population and the third industrial revolution led to high demand for fuels. On the other hand, the decrease of global fossil 8fuels deposits and the environmental air pollution caused by these fuels has compounded the challenges the world faces due to its need for energy. Therefore, new forms of environmentally friendly and renewable fuels such as biodiesel are needed. The primary analytical techniques for methanolysis yield monitoring have been chromatography and spectroscopy, these methods have been proven reliable but are more demanding, costly and do not provide real-time monitoring. In this work, the in situ monitoring of biodiesel from sunflower oil using FTIR (Fourier Transform Infrared) has been studied; the study was performed using EasyMax Mettler Toledo reactor equipped with a DiComp (Diamond) probe. The quantitative monitoring of methanolysis was performed by building a quantitative model with multivariate calibration using iC Quant module from iC IR 7.0 software. 15 samples of known concentrations were used for the modelling which were taken in duplicate for model calibration and cross-validation, data were pre-processed using mean centering and variance scale, spectrum math square root and solvent subtraction. These pre-processing methods improved the performance indexes from 7.98 to 0.0096, 11.2 to 3.41, 6.32 to 2.72, 0.9416 to 0.9999, RMSEC, RMSECV, RMSEP and R2Cum, respectively. The R2 value of 1 (training), 0.9918 (test), 0.9946 (cross-validation) indicated the fitness of the model built. The model was tested against univariate model; small discrepancies were observed at low concentration due to unmodelled intermediates but were quite close at concentrations above 18%. The software eliminated the complexity of the Partial Least Square (PLS) chemometrics. It was concluded that the model obtained could be used to monitor methanol of sunflower oil at industrial and lab scale.

Keywords: biodiesel, calibration, chemometrics, methanolysis, multivariate analysis, transesterification, FTIR

Procedia PDF Downloads 148
4239 Project Progress Prediction in Software Devlopment Integrating Time Prediction Algorithms and Large Language Modeling

Authors: Dong Wu, Michael Grenn

Abstract:

Managing software projects effectively is crucial for meeting deadlines, ensuring quality, and managing resources well. Traditional methods often struggle with predicting project timelines accurately due to uncertain schedules and complex data. This study addresses these challenges by combining time prediction algorithms with Large Language Models (LLMs). It makes use of real-world software project data to construct and validate a model. The model takes detailed project progress data such as task completion dynamic, team Interaction and development metrics as its input and outputs predictions of project timelines. To evaluate the effectiveness of this model, a comprehensive methodology is employed, involving simulations and practical applications in a variety of real-world software project scenarios. This multifaceted evaluation strategy is designed to validate the model's significant role in enhancing forecast accuracy and elevating overall management efficiency, particularly in complex software project environments. The results indicate that the integration of time prediction algorithms with LLMs has the potential to optimize software project progress management. These quantitative results suggest the effectiveness of the method in practical applications. In conclusion, this study demonstrates that integrating time prediction algorithms with LLMs can significantly improve the predictive accuracy and efficiency of software project management. This offers an advanced project management tool for the industry, with the potential to improve operational efficiency, optimize resource allocation, and ensure timely project completion.

Keywords: software project management, time prediction algorithms, large language models (LLMS), forecast accuracy, project progress prediction

Procedia PDF Downloads 79
4238 Gene Distribution of CB1 Receptor rs2023239 in Thailand Cannabis Patients

Authors: Tanyaporn Chairoch

Abstract:

Introduction: Cannabis is a drug to treat patients with many diseases such as Multiple sclerosis, Alzheimer’s disease, and Epilepsy, where theycontain many active compounds such as delta-9 tetrahydrocannabinol (THC) and cannabidiol (CBD). Especially, THC is the primary psychoactive ingredient in cannabis and binds to cannabinoid 1 (CB1) receptors. Moreover, CB1 is located on the neocortex, hippocampus, basal ganglia, cerebellum, and brainstem. In previous study, we found the association between the variant of CB1recptors gene (rs2023239) and decreased effect of nicotine reinforcement in patients. However, there are no data describing whether the distribution of CB1 receptor gene is a genetic marker for Thai patients who are treated with cannabis. Objective: Thus, the aim of this study we want to investigate the frequency of the CB1 receptor gene in Thai patients. Materials and Methods: All of sixty Thai patients received the medical cannabis for treatment who were recruited in this study. DNA will be extracted from EDTA whole blood by Genomic DNA Mini Kit. The genotyping of CNR1 gene (rs 2023239) was genotyped by the TaqMan real time PCR assay (ABI, Foster City, CA, USA).and using the real-time PCR ViiA7 (ABI, Foster City, CA, USA). Results: We found thirty-eight (63.3%) Thai patients were female, and twenty-two (36.70%) were male in this study with median age of 45.8 (range19 – 87 ) years. Especially, thirty-two (53.30%) medical cannabis tolerant controls were female ( 55%) and median age of52.1 (range 27 – 79 ) years. The most adverse effects for medical cannabis treatment was tachycardia. Furthermore, the number of rs 2023239 (TT) carriers was 26 of 27 (96.29%) in medical cannabis-induced adverse effects and 32 of 33 (96.96%) in tolerant controls. Additionally, rs 2023239 (CT) variant was found just only one of twenty-seven (3.7%) in medical cannabis-induced adverse effects and 1 of 33 (3.03%) in tolerant controls. Conclusions: The distribution of genetic variant in CNR1 gene might serve as a pharmacogenetics markers for screening before initiating the therapy with medical cannabis in Thai patients.

Keywords: cannabis, pharmacogenetics, CNR1 gene, thai patient

Procedia PDF Downloads 110
4237 Climate Change, Multiple Stressors, and Livelihoods: A Search for Communities Understanding, Vulnerability, and Adaptation in Zanzibar Islands

Authors: Thani R. Said

Abstract:

There is a wide concern on the academic literatures that the world is on course to experience “severe and pervasive” negative impacts from climate change unless it takes rapid action to slash its greenhouse gas emissions. The big threat however, is more belligerent in the third world countries, small islands states in particular. Most of the academic literatures claims that the livelihoods, economic and ecological landscapes of most of the coastal communities are into serious danger due to the peril of climate change. However, focusing the climate change alone and paying less intention to the surrounding stressors which sometimes are apparent then the climate change its self has now placed at the greater concern on academic debates. The recently studies have begun to question such narrowed assessment of climate change intervening programs from both its methodological and theoretical perspectives as related with livelihoods and the landscapes of the coastal communities. Looking climate as alone as an ostentatious threat doesn't yield the yield an appropriate mechanisms to address the problem in its totality and tend to provide the partially picture of the real problem striking the majority of the peoples living in the coastal areas of small islands states, Zanzibar in particular. By using the multiples human grounded knowledge approaches, the objective of this study is to go beyond the mere climate change by analyzing other multiples stressors that real challenging and treating the livelihoods, economic and ecological landscapes of the coastal communities through dialectic understanding, vulnerability and adaptive mechanisms at their own localities. To be more focus and to capture the full picture on this study special intention will be given to those areas were climate changes intervening programs have been onto place, the study will further compare and contrast between the two islands communities, Unguja and Pemba taking into account their respective diverse economic and geographical landscapes prevailed.

Keywords: climate change, multiple stressors, livelihoods, vulnerability-adaptation

Procedia PDF Downloads 404
4236 Improved Distance Estimation in Dynamic Environments through Multi-Sensor Fusion with Extended Kalman Filter

Authors: Iffat Ara Ebu, Fahmida Islam, Mohammad Abdus Shahid Rafi, Mahfuzur Rahman, Umar Iqbal, John Ball

Abstract:

The application of multi-sensor fusion for enhanced distance estimation accuracy in dynamic environments is crucial for advanced driver assistance systems (ADAS) and autonomous vehicles. Limitations of single sensors such as cameras or radar in adverse conditions motivate the use of combined camera and radar data to improve reliability, adaptability, and object recognition. A multi-sensor fusion approach using an extended Kalman filter (EKF) is proposed to combine sensor measurements with a dynamic system model, achieving robust and accurate distance estimation. The research utilizes the Mississippi State University Autonomous Vehicular Simulator (MAVS) to create a controlled environment for data collection. Data analysis is performed using MATLAB. Qualitative (visualization of fused data vs ground truth) and quantitative metrics (RMSE, MAE) are employed for performance assessment. Initial results with simulated data demonstrate accurate distance estimation compared to individual sensors. The optimal sensor measurement noise variance and plant noise variance parameters within the EKF are identified, and the algorithm is validated with real-world data from a Chevrolet Blazer. In summary, this research demonstrates that multi-sensor fusion with an EKF significantly improves distance estimation accuracy in dynamic environments. This is supported by comprehensive evaluation metrics, with validation transitioning from simulated to real-world data, paving the way for safer and more reliable autonomous vehicle control.

Keywords: sensor fusion, EKF, MATLAB, MAVS, autonomous vehicle, ADAS

Procedia PDF Downloads 43
4235 Real-Space Mapping of Surface Trap States in Cigse Nanocrystals Using 4D Electron Microscopy

Authors: Riya Bose, Ashok Bera, Manas R. Parida, Anirudhha Adhikari, Basamat S. Shaheen, Erkki Alarousu, Jingya Sun, Tom Wu, Osman M. Bakr, Omar F. Mohammed

Abstract:

This work reports visualization of charge carrier dynamics on the surface of copper indium gallium selenide (CIGSe) nanocrystals in real space and time using four-dimensional scanning ultrafast electron microscopy (4D S-UEM) and correlates it with the optoelectronic properties of the nanocrystals. The surface of the nanocrystals plays a key role in controlling their applicability for light emitting and light harvesting purposes. Typically for quaternary systems like CIGSe, which have many desirable attributes to be used for optoelectronic applications, relative abundance of surface trap states acting as non-radiative recombination centre for charge carriers remains as a major bottleneck preventing further advancements and commercial exploitation of these nanocrystals devices. Though ultrafast spectroscopic techniques allow determining the presence of picosecond carrier trapping channels, because of relative larger penetration depth of the laser beam, only information mainly from the bulk of the nanocrystals is obtained. Selective mapping of such ultrafast dynamical processes on the surfaces of nanocrystals remains as a key challenge, so far out of reach of purely optical probing time-resolved laser techniques. In S-UEM, the optical pulse generated from a femtosecond (fs) laser system is used to generate electron packets from the tip of the scanning electron microscope, instead of the continuous electron beam used in the conventional setup. This pulse is synchronized with another optical excitation pulse that initiates carrier dynamics in the sample. The principle of S-UEM is to detect the secondary electrons (SEs) generated in the sample, which is emitted from the first few nanometers of the top surface. Constructed at different time delays between the optical and electron pulses, these SE images give direct and precise information about the carrier dynamics on the surface of the material of interest. In this work, we report selective mapping of surface dynamics in real space and time of CIGSe nanocrystals applying 4D S-UEM. We show that the trap states can be considerably passivated by ZnS shelling of the nanocrystals, and the carrier dynamics can be significantly slowed down. We also compared and discussed the S-UEM kinetics with the carrier dynamics obtained from conventional ultrafast time-resolved techniques. Additionally, a direct effect of the state trap removal can be observed in the enhanced photoresponse of the nanocrystals after shelling. Direct observation of surface dynamics will not only provide a profound understanding of the photo-physical mechanisms on nanocrystals’ surfaces but also enable to unlock their full potential for light emitting and harvesting applications.

Keywords: 4D scanning ultrafast microscopy, charge carrier dynamics, nanocrystals, optoelectronics, surface passivation, trap states

Procedia PDF Downloads 295
4234 Generation of Knowlege with Self-Learning Methods for Ophthalmic Data

Authors: Klaus Peter Scherer, Daniel Knöll, Constantin Rieder

Abstract:

Problem and Purpose: Intelligent systems are available and helpful to support the human being decision process, especially when complex surgical eye interventions are necessary and must be performed. Normally, such a decision support system consists of a knowledge-based module, which is responsible for the real assistance power, given by an explanation and logical reasoning processes. The interview based acquisition and generation of the complex knowledge itself is very crucial, because there are different correlations between the complex parameters. So, in this project (semi)automated self-learning methods are researched and developed for an enhancement of the quality of such a decision support system. Methods: For ophthalmic data sets of real patients in a hospital, advanced data mining procedures seem to be very helpful. Especially subgroup analysis methods are developed, extended and used to analyze and find out the correlations and conditional dependencies between the structured patient data. After finding causal dependencies, a ranking must be performed for the generation of rule-based representations. For this, anonymous patient data are transformed into a special machine language format. The imported data are used as input for algorithms of conditioned probability methods to calculate the parameter distributions concerning a special given goal parameter. Results: In the field of knowledge discovery advanced methods and applications could be performed to produce operation and patient related correlations. So, new knowledge was generated by finding causal relations between the operational equipment, the medical instances and patient specific history by a dependency ranking process. After transformation in association rules logically based representations were available for the clinical experts to evaluate the new knowledge. The structured data sets take account of about 80 parameters as special characteristic features per patient. For different extended patient groups (100, 300, 500), as well one target value as well multi-target values were set for the subgroup analysis. So the newly generated hypotheses could be interpreted regarding the dependency or independency of patient number. Conclusions: The aim and the advantage of such a semi-automatically self-learning process are the extensions of the knowledge base by finding new parameter correlations. The discovered knowledge is transformed into association rules and serves as rule-based representation of the knowledge in the knowledge base. Even more, than one goal parameter of interest can be considered by the semi-automated learning process. With ranking procedures, the most strong premises and also conjunctive associated conditions can be found to conclude the interested goal parameter. So the knowledge, hidden in structured tables or lists can be extracted as rule-based representation. This is a real assistance power for the communication with the clinical experts.

Keywords: an expert system, knowledge-based support, ophthalmic decision support, self-learning methods

Procedia PDF Downloads 253
4233 On-Site Management from Reactive to Proactive

Authors: Yu-Tzu Chen, Luh-Maan Chang

Abstract:

Construction is an inherently risky industry. The projects have been dominated by reactive actions owing to non-routine in nature. The on-site activities are especially crucial for successful project control. In order to alter actions from reactive to proactive, this paper presents an on-site data collection system utilizing advanced technology RFID and GPS in assisting on-site management with near real time progress monitoring.

Keywords: On-Site management, progress monitoring, RFID, GPS

Procedia PDF Downloads 568
4232 Biological Significance of Long Intergenic Noncoding RNA LINC00273 in Lung Cancer Cell Metastasis

Authors: Ipsita Biswas, Arnab Sarkar, Ashikur Rahaman, Gopeswar Mukherjee, Subhrangsu Chatterjee, Shamee Bhattacharjee, Deba Prasad Mandal

Abstract:

One of the major reasons for the high mortality rate of lung cancer is the substantial delays in disease detection at late metastatic stages. It is of utmost importance to understand the detailed molecular signaling and detect the molecular markers that can be used for the early diagnosis of cancer. Several studies explored the emerging roles of long noncoding RNAs (lncRNAs) in various cancers as well as lung cancer. A long non-coding RNA LINC00273 was recently discovered to promote cancer cell migration and invasion, and its positive correlation with the pathological stages of metastasis may prove it to be a potential target for inhibiting cancer cell metastasis. Comparing real-time expression of LINC00273 in various human clinical cancer tissue samples with normal tissue samples revealed significantly higher expression in cancer tissues. This long intergenic noncoding RNA was found to be highly expressed in human liver tumor-initiating cells, human gastric adenocarcinoma AGS cell line, as well as human non-small cell lung cancer A549 cell line. SiRNA and shRNA-induced knockdown of LINC00273 in both in vitro and in vivo nude mice significantly subsided AGS and A549 cancer cell migration and invasion. LINC00273 knockdown also reduced TGF-β induced SNAIL, SLUG, VIMENTIN, ZEB1 expression, and metastasis in A549 cells. Plenty of reports have suggested the role of microRNAs of the miR200 family in reversing epithelial to mesenchymal transition (EMT) by inhibiting ZEB transcription factors. In this study, hsa-miR-200a-3p was predicted via IntaRNA-Freiburg RNA tools to be a potential target of LINC00273 with a negative free binding energy of −8.793 kcal/mol, and this interaction was verified as a confirmed target of LINC00273 by RNA pulldown, real-time PCR and luciferase assay. Mechanistically, LINC00273 accelerated TGF-β induced EMT by sponging hsa-miR-200a-3p which in turn liberated ZEB1 and promoted prometastatic functions in A549 cells in vitro as verified by real-time PCR and western blotting. The similar expression patterns of these EMT regulatory pathway molecules, viz. LINC00273, hsa-miR-200a-3p, ZEB1 and TGF-β, were also detected in various clinical samples like breast cancer tissues, oral cancer tissues, lung cancer tissues, etc. Overall, this LINC00273 mediated EMT regulatory signaling can serve as a potential therapeutic target for the prevention of lung cancer metastasis.

Keywords: epithelial to mesenchymal transition, long noncoding RNA, microRNA, non-small-cell lung carcinoma

Procedia PDF Downloads 156
4231 Effects of Injectable Thermosensitive Hydrogel Containing Chitosan as a Barrier for Prevention of Post-operative Peritoneal Adhesion in Rats

Authors: Sara Javanmardi, Sepehr Aziziz, Baharak Divband, Masoumeh Firouzamandi

Abstract:

Post-operative adhesions are the most common cause of intestinal obstruction, female infertility and chronic abdominal pain. We developed a novel approach for preventing post-operative peritoneal adhesions using a biodegradable and thermosensitive curcumin hydrogel in rats. Thirteen male Sprague-Dawley rats were assigned randomly into five groups of six animals each: In SHAM group, the cecum was exteriorized, gently manipulated and sent back into the abdomen. In CONTROL group, the surgical abrasion was performed with no further treatment. In Hydrogel group, surgical abrasion was performed with local application of blank hydrogel (1 mL). In Curcumin group, surgical abrasion was performed with local application of curcumin (1 mL). In CUR/HGEL group, surgical abrasion was performed with local application of curcumin hydrogel (1 mL). On day 10, adhesions were assessed using a standardized scale (Evans model), and samples were collected for the Real-time PCR. Real-time PCR was performed to determine mRNA levels of VCAM-1, ICAM-1 and GAPDH. The macroscopic adhesion intensity showed statistically significant differences between the CUR/HGEL and other groups (P=0.0005). The findings of the present study revealed there were statistically significant differences between the groups regarding adhesion band length and numbers (P<0.0001). The protein and mRNA expression of VCAM-1 and ICAM-1 in secal tissues were significantly down regulated due to curcumin-hydrogel application in CUR/HGEL compared to other groups (p<0.05). The thermosensitive hydrogel could reduce the severity and even prevent formation of intra-abdominal adhesion. Curcumin hydrogel could serve as a potential barrier agent to prevent post-operative peritoneal adhesion in rats.

Keywords: peritoneal adhesion, hydrogel, curcumijn, ICAM-1, VCAM-1

Procedia PDF Downloads 88
4230 A Demonstration of How to Employ and Interpret Binary IRT Models Using the New IRT Procedure in SAS 9.4

Authors: Ryan A. Black, Stacey A. McCaffrey

Abstract:

Over the past few decades, great strides have been made towards improving the science in the measurement of psychological constructs. Item Response Theory (IRT) has been the foundation upon which statistical models have been derived to increase both precision and accuracy in psychological measurement. These models are now being used widely to develop and refine tests intended to measure an individual's level of academic achievement, aptitude, and intelligence. Recently, the field of clinical psychology has adopted IRT models to measure psychopathological phenomena such as depression, anxiety, and addiction. Because advances in IRT measurement models are being made so rapidly across various fields, it has become quite challenging for psychologists and other behavioral scientists to keep abreast of the most recent developments, much less learn how to employ and decide which models are the most appropriate to use in their line of work. In the same vein, IRT measurement models vary greatly in complexity in several interrelated ways including but not limited to the number of item-specific parameters estimated in a given model, the function which links the expected response and the predictor, response option formats, as well as dimensionality. As a result, inferior methods (a.k.a. Classical Test Theory methods) continue to be employed in efforts to measure psychological constructs, despite evidence showing that IRT methods yield more precise and accurate measurement. To increase the use of IRT methods, this study endeavors to provide a comprehensive overview of binary IRT models; that is, measurement models employed on test data consisting of binary response options (e.g., correct/incorrect, true/false, agree/disagree). Specifically, this study will cover the most basic binary IRT model, known as the 1-parameter logistic (1-PL) model dating back to over 50 years ago, up until the most recent complex, 4-parameter logistic (4-PL) model. Binary IRT models will be defined mathematically and the interpretation of each parameter will be provided. Next, all four binary IRT models will be employed on two sets of data: 1. Simulated data of N=500,000 subjects who responded to four dichotomous items and 2. A pilot analysis of real-world data collected from a sample of approximately 770 subjects who responded to four self-report dichotomous items pertaining to emotional consequences to alcohol use. Real-world data were based on responses collected on items administered to subjects as part of a scale-development study (NIDA Grant No. R44 DA023322). IRT analyses conducted on both the simulated data and analyses of real-world pilot will provide a clear demonstration of how to construct, evaluate, and compare binary IRT measurement models. All analyses will be performed using the new IRT procedure in SAS 9.4. SAS code to generate simulated data and analyses will be available upon request to allow for replication of results.

Keywords: instrument development, item response theory, latent trait theory, psychometrics

Procedia PDF Downloads 356
4229 Enhancing Scalability in Ethereum Network Analysis: Methods and Techniques

Authors: Stefan K. Behfar

Abstract:

The rapid growth of the Ethereum network has brought forth the urgent need for scalable analysis methods to handle the increasing volume of blockchain data. In this research, we propose efficient methodologies for making Ethereum network analysis scalable. Our approach leverages a combination of graph-based data representation, probabilistic sampling, and parallel processing techniques to achieve unprecedented scalability while preserving critical network insights. Data Representation: We develop a graph-based data representation that captures the underlying structure of the Ethereum network. Each block transaction is represented as a node in the graph, while the edges signify temporal relationships. This representation ensures efficient querying and traversal of the blockchain data. Probabilistic Sampling: To cope with the vastness of the Ethereum blockchain, we introduce a probabilistic sampling technique. This method strategically selects a representative subset of transactions and blocks, allowing for concise yet statistically significant analysis. The sampling approach maintains the integrity of the network properties while significantly reducing the computational burden. Graph Convolutional Networks (GCNs): We incorporate GCNs to process the graph-based data representation efficiently. The GCN architecture enables the extraction of complex spatial and temporal patterns from the sampled data. This combination of graph representation and GCNs facilitates parallel processing and scalable analysis. Distributed Computing: To further enhance scalability, we adopt distributed computing frameworks such as Apache Hadoop and Apache Spark. By distributing computation across multiple nodes, we achieve a significant reduction in processing time and enhanced memory utilization. Our methodology harnesses the power of parallelism, making it well-suited for large-scale Ethereum network analysis. Evaluation and Results: We extensively evaluate our methodology on real-world Ethereum datasets covering diverse time periods and transaction volumes. The results demonstrate its superior scalability, outperforming traditional analysis methods. Our approach successfully handles the ever-growing Ethereum data, empowering researchers and developers with actionable insights from the blockchain. Case Studies: We apply our methodology to real-world Ethereum use cases, including detecting transaction patterns, analyzing smart contract interactions, and predicting network congestion. The results showcase the accuracy and efficiency of our approach, emphasizing its practical applicability in real-world scenarios. Security and Robustness: To ensure the reliability of our methodology, we conduct thorough security and robustness evaluations. Our approach demonstrates high resilience against adversarial attacks and perturbations, reaffirming its suitability for security-critical blockchain applications. Conclusion: By integrating graph-based data representation, GCNs, probabilistic sampling, and distributed computing, we achieve network scalability without compromising analytical precision. This approach addresses the pressing challenges posed by the expanding Ethereum network, opening new avenues for research and enabling real-time insights into decentralized ecosystems. Our work contributes to the development of scalable blockchain analytics, laying the foundation for sustainable growth and advancement in the domain of blockchain research and application.

Keywords: Ethereum, scalable network, GCN, probabilistic sampling, distributed computing

Procedia PDF Downloads 76
4228 Active Control Effects on Dynamic Response of Elevated Water Storage Tanks

Authors: Ali Etemadi, Claudia Fernanda Yasar

Abstract:

Elevated water storage tank structures (EWSTs) are high elevated-ponderous structural systems and very vulnerable to seismic vibrations. In past earthquake events, many of these structures exhibit poor performance and experienced severe damage. The dynamic analysis of the EWSTs under earthquake loads is, therefore, of significant importance for the design of the structure and a key issue for the development of modern methods, such as active control design. In this study, a reduced model of the EWSTs is explained, which is based on a tuned mass damper model (TMD). Vibration analysis of a structure under seismic excitation is presented and then used to propose an active vibration controller. MATLAB/Simulink is employed for dynamic analysis of the system and control of the seismic response. A single degree of freedom (SDOF) and two degree of freedom (2DOF) models of ELSTs are going to be used to study the concept of active vibration control. Lab-scale experimental models similar to pendulum are applied to suppress vibrations in ELST under seismic excitation. One of the most important phenomena in liquid storage tanks is the oscillation of fluid due to the movements of the tank body because of its base motions during an earthquake. Simulation results illustrate that the EWSTs vibration can be reduced by means of an input shaping technique that takes into account the dominant mode shape of the structure. Simulations with which to guide many of our designs are presented in detail. A simple and effective real-time control for seismic vibration damping can be, therefore, design and built-in practice.

Keywords: elevated water storage tank, tuned mass damper model, real time control, shaping control, seismic vibration control, the laplace transform

Procedia PDF Downloads 151
4227 A Proposed Mechanism for Skewing Symmetric Distributions

Authors: M. T. Alodat

Abstract:

In this paper, we propose a mechanism for skewing any symmetric distribution. The new distribution is called the deflation-inflation distribution (DID). We discuss some statistical properties of the DID such moments, stochastic representation, log-concavity. Also we fit the distribution to real data and we compare it to normal distribution and Azzlaini's skew normal distribution. Numerical results show that the DID fits the the tree ring data better than the other two distributions.

Keywords: normal distribution, moments, Fisher information, symmetric distributions

Procedia PDF Downloads 658
4226 Relevance of Dosing Time for Everolimus Toxicity in Respect to the Circadian P-Glycoprotein Expression in Mdr1a::Luc Mice

Authors: Narin Ozturk, Xiao-Mei Li, Sylvie Giachetti, Francis Levi, Alper Okyar

Abstract:

P-glycoprotein (P-gp, MDR1, ABCB1) is a transmembrane protein acting as an ATP-dependent efflux pump and functions as a biological barrier by extruding drugs and xenobiotics out of cells in healthy tissues especially in intestines, liver and brain as well as in tumor cells. The circadian timing system controls a variety of biological functions in mammals including xenobiotic metabolism and detoxification, proliferation and cell cycle events, and may affect pharmacokinetics, toxicity and efficacy of drugs. Selective mTOR (mammalian target of rapamycin) inhibitor everolimus is an immunosuppressant and anticancer drug that is active against many cancers, and its pharmacokinetics depend on P-gp. The aim of this study was to investigate the dosing time-dependent toxicity of everolimus with respect to the intestinal P-gp expression rhythms in mdr1a::Luc mice using Real Time-Biolumicorder (RT-BIO) System. Mdr1a::Luc male mice were synchronized with 12 h of Light and 12 h of Dark (LD12:12, with Zeitgeber Time 0 – ZT0 – corresponding Light onset). After 1-week baseline recordings, everolimus (5 mg/kg/day x 14 days) was administered orally at ZT1-resting period- and ZT13-activity period- to mdr1a::Luc mice singly housed in an innovative monitoring device, Real Time-Biolumicorder units which let us monitor real-time and long-term gene expression in freely moving mice. D-luciferin (1.5 mg/mL) was dissolved in drinking water. Mouse intestinal mdr1a::Luc oscillation profile reflecting P-gp gene expression and locomotor activity pattern were recorded every minute with the photomultiplier tube and infrared sensor respectively. General behavior and clinical signs were monitored, and body weight was measured every day as an index of toxicity. Drug-induced body weight change was expressed relative to body weight on the initial treatment day. Statistical significance of differences between groups was validated with ANOVA. Circadian rhythms were validated with Cosinor Analysis. Everolimus toxicity changed as a function of drug timing, which was least following dosing at ZT13, near the onset of the activity span in male mice. Mean body weight loss was nearly twice as large in mice treated with 5 mg/kg everolimus at ZT1 as compared to ZT13 (8.9% vs. 5.4%; ANOVA, p < 0.001). Based on the body weight loss and clinical signs upon everolimus treatment, tolerability for the drug was best following dosing at ZT13. Both rest-activity and mdr1a::Luc expression displayed stable 24-h periodic rhythms before everolimus and in both vehicle-treated controls. Real-time bioluminescence pattern of mdr1a revealed a circadian rhythm with a 24-h period with an acrophase at ZT16 (Cosinor, p < 0.001). Mdr1a expression remained rhythmic in everolimus-treated mice, whereas down-regulation was observed in P-gp expression in 2 of 4 mice. The study identified the circadian pattern of intestinal P-gp expression with an unprecedented precision. The circadian timing depending on the P-gp expression rhythms may play a crucial role in the tolerability/toxicity of everolimus. The circadian changes in mdr1a genes deserve further studies regarding their relevance for in vitro and in vivo chronotolerance of mdr1a-transported anticancer drugs. Chronotherapy with P-gp-effluxed anticancer drugs could then be applied according to their rhythmic patterns in host and tumor to jointly maximize treatment efficacy and minimize toxicity.

Keywords: circadian rhythm, chronotoxicity, everolimus, mdr1a::Luc mice, p-glycoprotein

Procedia PDF Downloads 342
4225 Re-Thinking Design/Build Curriculum in a Virtual World

Authors: Bruce Wrightsman

Abstract:

Traditionally, in architectural education, we develop studio projects with learning agendas that try to minimize conflict and reveal clear design objectives. Knowledge is gleaned only tacitly through confronting the reciprocity of site and form, space and light, structure and envelope. This institutional reality can limit student learning to the latent learning opportunities they will have to confront later in practice. One intent of academic design-build projects is to address the learning opportunities which one can discover in the messy grey areas of design. In this immersive experience, students confront the limitations of classroom learning and are exposed to challenges that demand collaborative practice. As a result, design-build has been widely adopted in an attempt to address perceived deficiencies in design education vis a vis the integration of building technology and construction. Hands-on learning is not a new topic, as espoused by John Dewey, who posits a debate between static and active learning in his book Democracy and Education. Dewey espouses the concept that individuals should become participants and not mere observers of what happens around them. Advocates of academic design-build programs suggest a direct link between Dewey’s speculation. These experiences provide irreplaceable life lessons: that real-world decisions have real-life consequences. The goal of the paper is not to confirm or refute the legitimacy and efficacy of online virtual learning. Rather, the paper aims to foster a deeper, honest discourse on the meaning of ‘making’ in architectural education and present projects that confronted the burdens of a global pandemic and developed unique teaching strategies that challenged design thinking as an observational and constructive effort to expand design student’s making skills and foster student agency.

Keywords: design/build, making, remote teaching, architectural curriculum

Procedia PDF Downloads 80
4224 Climatic and Human Impact on Karst Aquifer in Semi Arid Zone

Authors: Benhammadi Hocine, Fehdi Chemseddine, Chaffai Hicham

Abstract:

The study site is the plateau Cheria, a city in south eastern Algeria (Tebessa) thanks to its structure perched syncline is the region of Tebessa a real water tower. Special rates provided by some boreholes and wells around the city Cheria have long been led to believe that the reserves were virtually limitless. The investigations carried out in this region have located karstified limestone areas at depth of 100 meters of the carbonate formation. During the last two decades a rainfall deficit has increased the effect of drought has caused an increase in flow from this aquifer. The effect on water resources is a significant and progressive reduction of the static level of the karst aquifer. The qualitative aspect has also been marked by degradation. This climate variability marked by the decade of drought (1990/2000) has had the effect on the local population, a forced change of their activity primarily agricultural. Abandoning agro pastoral mode due to prolonged drought, populations chose agriculture maraichère consumer a lot of water, this increasing the depletion of water resources. This change in activity was accompanied by a rural exodus to urban areas. The result has led to an increase in population in the urban areas, this has resulted in an increase in water demand and an increase in emissions (waste water). Uncontrolled discharges contribute to pollute a little more groundwater. The second consequence is type Geotechnical, it is the appearance of sinkholes, results of the alternating periods of drought and violent floods. Sinkholes are a real concern for the management and urban development. An interdisciplinary contribution (geology, hydrology, climatology and management) is essential to reduce or avoid impacts in different sectors.

Keywords: aquifer, carbonate formation, drought, exodus, resources, chéria, Algéria

Procedia PDF Downloads 451
4223 Identification and Classification of Stakeholders in the Transition to 3D Cadastre

Authors: Qiaowen Lin

Abstract:

The 3D cadastre is an inevitable choice to meet the needs of real cadastral management. Nowadays, more attention is given to the technical aspects of 3D cadastre, resulting in the imbalance within this field. To fulfill this research gap, the stakeholder, which has been regarded as the determining factor in cadastral change has been studied. Delphi method, Michael rating, and stakeholder mapping are used to identify and classify the stakeholders in 3D cadastre. It is concluded that the project managers should pay more attention to the interesting appeal of the key stakeholders and different coping strategies should be adopted to facilitate the transition to 3D cadastre.

Keywords: stakeholders, three dimension, cadastre, transtion

Procedia PDF Downloads 290