Search results for: one-shot object detection
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 4477

Search results for: one-shot object detection

3487 Predicting the Diagnosis of Alzheimer’s Disease: Development and Validation of Machine Learning Models

Authors: Jay L. Fu

Abstract:

Patients with Alzheimer's disease progressively lose their memory and thinking skills and, eventually, the ability to carry out simple daily tasks. The disease is irreversible, but early detection and treatment can slow down the disease progression. In this research, publicly available MRI data and demographic data from 373 MRI imaging sessions were utilized to build models to predict dementia. Various machine learning models, including logistic regression, k-nearest neighbor, support vector machine, random forest, and neural network, were developed. Data were divided into training and testing sets, where training sets were used to build the predictive model, and testing sets were used to assess the accuracy of prediction. Key risk factors were identified, and various models were compared to come forward with the best prediction model. Among these models, the random forest model appeared to be the best model with an accuracy of 90.34%. MMSE, nWBV, and gender were the three most important contributing factors to the detection of Alzheimer’s. Among all the models used, the percent in which at least 4 of the 5 models shared the same diagnosis for a testing input was 90.42%. These machine learning models allow early detection of Alzheimer’s with good accuracy, which ultimately leads to early treatment of these patients.

Keywords: Alzheimer's disease, clinical diagnosis, magnetic resonance imaging, machine learning prediction

Procedia PDF Downloads 143
3486 Emotion Detection in a General Human-Robot Interaction System Optimized for Embedded Platforms

Authors: Julio Vega

Abstract:

Expression recognition is a field of Artificial Intelligence whose main objectives are to recognize basic forms of affective expression that appear on people’s faces and contributing to behavioral studies. In this work, a ROS node has been developed that, based on Deep Learning techniques, is capable of detecting the facial expressions of the people that appear in the image. These algorithms were optimized so that they can be executed in real time on an embedded platform. The experiments were carried out in a PC with a USB camera and in a Raspberry Pi 4 with a PiCamera. The final results shows a plausible system, which is capable to work in real time even in an embedded platform.

Keywords: python, low-cost, raspberry pi, emotion detection, human-robot interaction, ROS node

Procedia PDF Downloads 129
3485 Conceptual Model for Massive Open Online Blended Courses Based on Disciplines’ Concepts Capitalization and Obstacles’ Detection

Authors: N. Hammid, F. Bouarab-Dahmani, T. Berkane

Abstract:

Since its appearance, the MOOC (massive open online course) is gaining more and more intention of the educational communities over the world. Apart from the current MOOCs design and purposes, the creators of MOOC focused on the importance of the connection and knowledge exchange between individuals in learning. In this paper, we present a conceptual model for massive open online blended courses where teachers over the world can collaborate and exchange their experience to get a common efficient content designed as a MOOC opened to their students to live a better learning experience. This model is based on disciplines’ concepts capitalization and the detection of the obstacles met by their students when faced with problem situations (exercises, projects, case studies, etc.). This detection is possible by analyzing the frequently of semantic errors committed by the students. The participation of teachers in the design of the course and the attendance by their students can guarantee an efficient and extensive participation (an important number of participants) in the course, the learners’ motivation and the evaluation issues, in the way that the teachers designing the course assess their students. Thus, the teachers review, together with their knowledge, offer a better assessment and efficient connections to their students.

Keywords: massive open online course, MOOC, online learning, e-learning

Procedia PDF Downloads 268
3484 Obstacle Detection and Path Tracking Application for Disables

Authors: Aliya Ashraf, Mehreen Sirshar, Fatima Akhtar, Farwa Kazmi, Jawaria Wazir

Abstract:

Vision, the basis for performing navigational tasks, is absent or greatly reduced in visually impaired people due to which they face many hurdles. For increasing the navigational capabilities of visually impaired people a desktop application ODAPTA is presented in this paper. The application uses camera to capture video from surroundings, apply various image processing algorithms to get information about path and obstacles, tracks them and delivers that information to user through voice commands. Experimental results show that the application works effectively for straight paths in daylight.

Keywords: visually impaired, ODAPTA, Region of Interest (ROI), driver fatigue, face detection, expression recognition, CCD camera, artificial intelligence

Procedia PDF Downloads 549
3483 Design and Development of 5-DOF Color Sorting Manipulator for Industrial Applications

Authors: Atef A. Ata, Sohair F. Rezeka, Ahmed El-Shenawy, Mohammed Diab

Abstract:

Image processing in today’s world grabs massive attentions as it leads to possibilities of broaden application in many fields of high technology. The real challenge is how to improve existing sorting system applications which consists of two integrated stations of processing and handling with a new image processing feature. Existing color sorting techniques use a set of inductive, capacitive, and optical sensors to differentiate object color. This research presents a mechatronics color sorting system solution with the application of image processing. A 5-DOF robot arm is designed and developed with pick and place operation to be main part of the color sorting system. Image processing procedure senses the circular objects in an image captured in real time by a webcam attached at the end-effector then extracts color and position information out of it. This information is passed as a sequence of sorting commands to the manipulator that has pick-and-place mechanism. Performance analysis proves that this color based object sorting system works very accurate under ideal condition in term of adequate illumination, circular objects shape and color. The circular objects tested for sorting are red, green and blue. For non-ideal condition, such as unspecified color the accuracy reduces to 80%.

Keywords: robotics manipulator, 5-DOF manipulator, image processing, color sorting, pick-and-place

Procedia PDF Downloads 374
3482 The Power of the Proper Orthogonal Decomposition Method

Authors: Charles Lee

Abstract:

The Principal Orthogonal Decomposition (POD) technique has been used as a model reduction tool for many applications in engineering and science. In principle, one begins with an ensemble of data, called snapshots, collected from an experiment or laboratory results. The beauty of the POD technique is that when applied, the entire data set can be represented by the smallest number of orthogonal basis elements. It is the such capability that allows us to reduce the complexity and dimensions of many physical applications. Mathematical formulations and numerical schemes for the POD method will be discussed along with applications in NASA’s Deep Space Large Antenna Arrays, Satellite Image Reconstruction, Cancer Detection with DNA Microarray Data, Maximizing Stock Return, and Medical Imaging.

Keywords: reduced-order methods, principal component analysis, cancer detection, image reconstruction, stock portfolios

Procedia PDF Downloads 84
3481 A Handheld Light Meter Device for Methamphetamine Detection in Oral Fluid

Authors: Anindita Sen

Abstract:

Oral fluid is a promising diagnostic matrix for drugs of abuse compared to urine and serum. Detection of methamphetamine in oral fluid would pave way for the easy evaluation of impairment in drivers during roadside drug testing as well as ensure safe working environments by facilitating evaluation of impairment in employees at workplaces. A membrane-based point-of-care (POC) friendly pre-treatment technique has been developed which aided elimination of interferences caused by salivary proteins and facilitated the demonstration of methamphetamine detection in saliva using a gold nanoparticle based colorimetric aptasensor platform. It was found that the colorimetric response in saliva was always suppressed owing to the matrix effects. By navigating the challenging interfering issues in saliva, we were successfully able to detect methamphetamine at nanomolar levels in saliva offering immense promise for the translation of these platforms for on-site diagnostic systems. This subsequently motivated the development of a handheld portable light meter device that can reliably transduce the aptasensors colorimetric response into absorbance, facilitating quantitative detection of analyte concentrations on-site. This is crucial due to the prevalent unreliability and sensitivity problems of the conventional drug testing kits. The fabricated light meter device response was validated against a standard UV-Vis spectrometer to confirm reliability. The portable and cost-effective handheld detector device features sensitivity comparable to the well-established UV-Vis benchtop instrument and the easy-to-use device could potentially serve as a prototype for a commercial device in the future.

Keywords: aptasensors, colorimetric gold nanoparticle assay, point-of-care, oral fluid

Procedia PDF Downloads 59
3480 A Structure-Switching Electrochemical Aptasensor for Rapid, Reagentless and Single-Step, Nanomolar Detection of C-Reactive Protein

Authors: William L. Whitehouse, Louisa H. Y. Lo, Andrew B. Kinghorn, Simon C. C. Shiu, Julian. A. Tanner

Abstract:

C-reactive protein (CRP) is an acute-phase reactant and sensitive indicator for sepsis and other life-threatening pathologies, including systemic inflammatory response syndrome (SIRS). Currently, clinical turn-around times for established CRP detection methods take between 30 minutes to hours or even days from centralized laboratories. Here, we report the development of an electrochemical biosensor using redox probe-tagged DNA aptamers functionalized onto cheap, commercially available screen-printed electrodes. Binding-induced conformational switching of the CRP-targeting aptamer induces a specific and selective signal-ON event, which enables single-step and reagentless detection of CRP in as little as 1 minute. The aptasensor dynamic range spans 5-1000nM (R=0.97) or 5-500nM (R=0.99) in 50% diluted human serum, with a LOD of 3nM, corresponding to 2-orders of magnitude sensitivity under the clinically relevant cut-off for CRP. The sensor is stable for up to one week and can be reused numerous times, as judged from repeated real-time dosing and dose-response assays. By decoupling binding events from the signal induction mechanism, structure-switching electrochemical aptamer-based sensors (SS-EABs) provide considerable advantages over their adsorption-based counterparts. Our work expands on the retinue of such sensors reported in the literature and is the first instance of an SS-EAB for reagentless CRP detection. We hope this study can inspire further investigations into the suitability of SS-EABs for diagnostics, which will aid translational R&D toward fully realized devices aimed at point-of-care applications or for use more broadly by the public.

Keywords: structure-switching, C-reactive protein, electrochemical, biosensor, aptasensor.

Procedia PDF Downloads 70
3479 Virtual and Visual Reconstructions in Museum Expositions

Authors: Ekaterina Razuvalova, Konstantin Rudenko

Abstract:

In this article the most successful examples of international visual and virtual reconstructions of historical and culture objects, which are based on informative and communicative technologies, are represented. 3D reconstructions can demonstrate outward appearance, visualize different hypothesis, connected to represented object. Virtual reality can give us any daytime and season, any century and environment. We can see how different people from different countries and different era lived; we can get different information about any object; we can see historical complexes in real city environment, which are damaged or vanished. These innovations confirm the fact, that 3D reconstruction is important in museum development. Considering the most interesting examples of visual and virtual reconstructions, we can notice, that visual reconstruction is a 3D image of different objects, historical complexes, buildings and phenomena. They are constant and we can see them only as momentary objects. And virtual reconstruction is some environment with its own time, rules and phenomena. These reconstructions are continuous; seasons, daytime and natural conditions can change there. They can demonstrate abilities of virtual world existence. In conclusion: new technologies give us opportunities to expand the boundaries of museum space, improve abilities of museum expositions, create emotional atmosphere of game immersion, which can interest visitor. Usage of network sources allows increasing the number of visitors and virtual reconstruction opportunities show creative side of museum business.

Keywords: computer technologies, historical reconstruction, museums, museum expositions, virtual reconstruction

Procedia PDF Downloads 329
3478 Automatic Furrow Detection for Precision Agriculture

Authors: Manpreet Kaur, Cheol-Hong Min

Abstract:

The increasing advancement in the robotics equipped with machine vision sensors applied to precision agriculture is a demanding solution for various problems in the agricultural farms. An important issue related with the machine vision system concerns crop row and weed detection. This paper proposes an automatic furrow detection system based on real-time processing for identifying crop rows in maize fields in the presence of weed. This vision system is designed to be installed on the farming vehicles, that is, submitted to gyros, vibration and other undesired movements. The images are captured under image perspective, being affected by above undesired effects. The goal is to identify crop rows for vehicle navigation which includes weed removal, where weeds are identified as plants outside the crop rows. The images quality is affected by different lighting conditions and gaps along the crop rows due to lack of germination and wrong plantation. The proposed image processing method consists of four different processes. First, image segmentation based on HSV (Hue, Saturation, Value) decision tree. The proposed algorithm used HSV color space to discriminate crops, weeds and soil. The region of interest is defined by filtering each of the HSV channels between maximum and minimum threshold values. Then the noises in the images were eliminated by the means of hybrid median filter. Further, mathematical morphological processes, i.e., erosion to remove smaller objects followed by dilation to gradually enlarge the boundaries of regions of foreground pixels was applied. It enhances the image contrast. To accurately detect the position of crop rows, the region of interest is defined by creating a binary mask. The edge detection and Hough transform were applied to detect lines represented in polar coordinates and furrow directions as accumulations on the angle axis in the Hough space. The experimental results show that the method is effective.

Keywords: furrow detection, morphological, HSV, Hough transform

Procedia PDF Downloads 231
3477 Impact of Capture Effect on Receiver Initiated Collision Detection with Sequential Resolution in WLAN

Authors: Sethu Lekshmi, Shahanas, Prettha P.

Abstract:

All existing protocols in wireless networks are mainly based on Carrier Sense Multiple Access with Collision avoidance. By applying collision detection in wireless networks, the time spent on collision can be reduced and thus improves system throughput. However in a real WLAN scenario due to the use of nonlinear modulation techniques only receiver can decided whether a packet loss take place, even there are multiple transmissions. In this proposed method, the receiver or Access Point detects the collision when multiple data packets are transmitted from different wireless stations. Whenever the receiver detects a collision, it transmits a jamming signal to all the transmitting stations so that they can immediately stop their on-going transmissions. We also provide preferential access to all collided packet to reduce unfairness and to increase system throughput by reducing contention. However, this preferential access will not block the channel for the long time. Here, an in-band transmission is considered in which both the data frames and control frames are transmitted in the same channel. We also provide a simple mathematical model for the proposed protocol and give the simulation result of WLAN scenario under various capture thresholds.

Keywords: 802.11, WLAN, capture effect, collision detection, collision resolution, receiver initiated

Procedia PDF Downloads 359
3476 Angle of Arrival Estimation Using Maximum Likelihood Method

Authors: Olomon Wu, Hung Lu, Nick Wilkins, Daniel Kerr, Zekeriya Aliyazicioglu, H. K. Hwang

Abstract:

Multiple Input Multiple Output (MIMO) radar has received increasing attention in recent years. MIMO radar has many advantages over conventional phased array radar such as target detection, resolution enhancement, and interference suppression. In this paper, the results are presented from a simulation study of MIMO Uniformly-Spaced Linear Array (ULA) antennas. The performance is investigated under varied parameters, including varied array size, Pseudo Random (PN) sequence length, number of snapshots, and Signal to Noise Ratio (SNR). The results of MIMO are compared to a traditional array antenna.

Keywords: MIMO radar, phased array antenna, target detection, radar signal processing

Procedia PDF Downloads 542
3475 Non-Destructive Static Damage Detection of Structures Using Genetic Algorithm

Authors: Amir Abbas Fatemi, Zahra Tabrizian, Kabir Sadeghi

Abstract:

To find the location and severity of damage that occurs in a structure, characteristics changes in dynamic and static can be used. The non-destructive techniques are more common, economic, and reliable to detect the global or local damages in structures. This paper presents a non-destructive method in structural damage detection and assessment using GA and static data. Thus, a set of static forces is applied to some of degrees of freedom and the static responses (displacements) are measured at another set of DOFs. An analytical model of the truss structure is developed based on the available specification and the properties derived from static data. The damages in structure produce changes to its stiffness so this method used to determine damage based on change in the structural stiffness parameter. Changes in the static response which structural damage caused choose to produce some simultaneous equations. Genetic Algorithms are powerful tools for solving large optimization problems. Optimization is considered to minimize objective function involve difference between the static load vector of damaged and healthy structure. Several scenarios defined for damage detection (single scenario and multiple scenarios). The static damage identification methods have many advantages, but some difficulties still exist. So it is important to achieve the best damage identification and if the best result is obtained it means that the method is Reliable. This strategy is applied to a plane truss. This method is used for a plane truss. Numerical results demonstrate the ability of this method in detecting damage in given structures. Also figures show damage detections in multiple damage scenarios have really efficient answer. Even existence of noise in the measurements doesn’t reduce the accuracy of damage detections method in these structures.

Keywords: damage detection, finite element method, static data, non-destructive, genetic algorithm

Procedia PDF Downloads 237
3474 Detecting and Thwarting Interest Flooding Attack in Information Centric Network

Authors: Vimala Rani P, Narasimha Malikarjunan, Mercy Shalinie S

Abstract:

Data Networking was brought forth as an instantiation of information-centric networking. The attackers can send a colossal number of spoofs to take hold of the Pending Interest Table (PIT) named an Interest Flooding attack (IFA) since the in- interests are recorded in the PITs of the intermediate routers until they receive corresponding Data Packets are go beyond the time limit. These attacks can be detrimental to network performance. PIT expiration rate or the Interest satisfaction rate, which cannot differentiate the IFA from attacks, is the criterion Traditional IFA detection techniques are concerned with. Threshold values can casually affect Threshold-based traditional methods. This article proposes an accurate IFA detection mechanism based on a Multiple Feature-based Extreme Learning Machine (MF-ELM). Accuracy of the attack detection can be increased by presenting the entropy of Internet names, Interest satisfaction rate and PIT usage as features extracted in the MF-ELM classifier. Furthermore, we deploy a queue-based hostile Interest prefix mitigation mechanism. The inference of this real-time test bed is that the mechanism can help the network to resist IFA with higher accuracy and efficiency.

Keywords: information-centric network, pending interest table, interest flooding attack, MF-ELM classifier, queue-based mitigation strategy

Procedia PDF Downloads 206
3473 Determination of Benzatropine in Hair by GC/MS after Liquid-Liquid Extraction (LLE)

Authors: Abdulsallam A. Bakdash, Aiyshah M. Alshehri, Hind M. Alenzi

Abstract:

Benzatropine (benztropine) is used to treat symptoms of Parkinson's disease or involuntary movements due to the side effects of certain psychiatric drugs. We report in this study, results of a procedure for the determination of benzatropine in hair using LLE, once with methanol and second with phosphate buffer (pH 6.0), followed by filtration and then re-extraction with dichloromethane. A GC/MS method was developed and validated for this determination using selected ion monitoring (SIM) detection without derivatization. Linearity established over the concentration range 0.1-20.0 ng/mg hair, and the correlation coefficients were greater than 0.99. Recoveries were 52.2% and 21.1% using methanol and phosphate buffer extraction, respectively. Detection limits of benzatropine in hair were between 0.65 and 3.0 ng/mg hair, while the accuracy were 10.4% and 18.5% (RSD), respectively. We also applied this method to the analysis of soaked hair samples and demonstrated that the LLE using methanol meets the requirement for the analysis of benzatropine in hair.

Keywords: hair analysis, benzatropine, liquid-liquid extraction, GC/MS

Procedia PDF Downloads 402
3472 ADCOR © Muscle Damage Rapid Detection Test Based on Skeletal Troponin I Immunochromatography Reaction

Authors: Muhammad Solikhudin Nafi, Wahyu Afif Mufida, Mita Erna Wati, Fitri Setyani Rokim, M. Al-Rizqi Dharma Fauzi

Abstract:

High dose activity without any pre-exercise will impact Delayed Onset Muscle Soreness (DOMS). DOMS known as delayed pain post-exercise and induce skeletal injury which will decrease athletes’ performances. From now on, post-exercise muscle damage can be detected by measuring skeletal troponin I (sTnI) concentration in serum using ELISA but this method needs more time and cost. To prevent decreased athletes performances, screening need to be done rapidly. We want to introduce our new prototype to detect DOMS acutely. Rapid detection tests are based on immunological reaction between skeletal troponin I antibodies and sTnI in human serum or whole blood. Chemical methods that are used in the manufacture of diagnostic test is lateral flow immunoassay. The material used is rat monoclonal antibody sTnI, colloidal gold, anti-mouse IgG, nitrocellulose membrane, conjugate pad, sample pad, wick and backing card. The procedure are made conjugate (colloidal gold and mAb sTnI) and insert into the conjugate pad, gives spray sTnI mAb and anti-mouse IgG into nitrocellulose membrane, and assemble RDT. RDT had been evaluated by measuring the sensitivity of positive human serum (n = 30) and negative human serum (n = 30). Overall sensitivity value was 93% and specificity value was 90%. ADCOR as the first rapid detection test qualitatively showed antigen-antibody reaction and showed good overall performances for screening of muscle damage. Furthermore, these finding still need more improvements to get best results.

Keywords: DOMS, sTnI, rapid detection test, ELISA

Procedia PDF Downloads 513
3471 Duplex Real-Time Loop-Mediated Isothermal Amplification Assay for Simultaneous Detection of Beef and Pork

Authors: Mi-Ju Kim, Hae-Yeong Kim

Abstract:

Product mislabeling and adulteration have been increasing the concerns in processed meat products. Relatively inexpensive pork meat compared to meat such as beef was adulterated for economic benefit. These food fraud incidents related to pork were concerned due to economic, religious and health reasons. In this study, a rapid on-site detection method using loop-mediated isothermal amplification (LAMP) was developed for the simultaneous identification of beef and pork. Each specific LAMP primer for beef and pork was designed targeting on mitochondrial D-loop region. The LAMP assay reaction was performed at 65 ℃ for 40 min. The specificity of each primer for beef and pork was evaluated using DNAs extracted from 13 animal species including beef and pork. The sensitivity of duplex LAMP assay was examined by serial dilution of beef and pork DNAs, and reference binary mixtures. This assay was applied to processed meat products including beef and pork meat for monitoring. Each set of primers amplified only the targeted species with no cross-reactivity with animal species. The limit of detection of duplex real-time LAMP was 1 pg for each DNA of beef and pork and 1% pork in a beef-meat mixture. Commercial meat products that declared the presence of beef and/or pork meat on the label showed positive results for those species. This method was successfully applied to detect simultaneous beef and pork meats in processed meat products. The optimized duplex LAMP assay can identify simultaneously beef and pork meat within less than 40 min. A portable real-time fluorescence device used in this study is applicable for on-site detection of beef and pork in processed meat products. Thus, this developed assay was considered to be an efficient tool for monitoring meat products.

Keywords: beef, duplex real-time LAMP, meat identification, pork

Procedia PDF Downloads 224
3470 Brain Tumor Detection and Classification Using Pre-Trained Deep Learning Models

Authors: Aditya Karade, Sharada Falane, Dhananjay Deshmukh, Vijaykumar Mantri

Abstract:

Brain tumors pose a significant challenge in healthcare due to their complex nature and impact on patient outcomes. The application of deep learning (DL) algorithms in medical imaging have shown promise in accurate and efficient brain tumour detection. This paper explores the performance of various pre-trained DL models ResNet50, Xception, InceptionV3, EfficientNetB0, DenseNet121, NASNetMobile, VGG19, VGG16, and MobileNet on a brain tumour dataset sourced from Figshare. The dataset consists of MRI scans categorizing different types of brain tumours, including meningioma, pituitary, glioma, and no tumour. The study involves a comprehensive evaluation of these models’ accuracy and effectiveness in classifying brain tumour images. Data preprocessing, augmentation, and finetuning techniques are employed to optimize model performance. Among the evaluated deep learning models for brain tumour detection, ResNet50 emerges as the top performer with an accuracy of 98.86%. Following closely is Xception, exhibiting a strong accuracy of 97.33%. These models showcase robust capabilities in accurately classifying brain tumour images. On the other end of the spectrum, VGG16 trails with the lowest accuracy at 89.02%.

Keywords: brain tumour, MRI image, detecting and classifying tumour, pre-trained models, transfer learning, image segmentation, data augmentation

Procedia PDF Downloads 74
3469 Evidence of the Effect of the Structure of Social Representations on Group Identification

Authors: Eric Bonetto, Anthony Piermatteo, Fabien Girandola, Gregory Lo Monaco

Abstract:

The present contribution focuses on the effect of the structure of social representations on group identification. A social representation (SR) is defined as an organized and structured set of cognitions, produced and shared by members of a same group about a same social object. Within this framework, the central core theory establishes a structural distinction between central cognitions – or 'core' – and peripheral ones: the former are theoretically considered as more connected than the later to group members’ social identity and may play a greater role in SRs’ ability to allow group identification by means of a common vision of the object of representation. Indeed, the central core provides a reference point for the in-group as it constitutes a consensual vision that gives meaning to a social object particularly important to individuals and to the group. However, while numerous contributions clearly refer to the underlying role of SRs in group identification, there are only few empirical evidences of this aspect. Thus, we hypothesize an effect of the structure of SRs on group identification. More precisely, central cognitions (vs. peripheral ones) will lead to a stronger group identification. In addition, we hypothesize that the refutation of a cognition will lead to a stronger group identification than its activation. The SR mobilized here is that of 'studying' among a population of first-year undergraduate psychology students. Thus, a pretest (N = 82), using an Attribute-Challenge Technique, was designed in order to identify the central and the peripheral cognitions to use in the primings of our main study. The results of this pretest are in line with previous studies. Then, the main study (online; N = 184), using a social priming methodology, was based on a 2 (Structural status of the cognitions belonging to the prime: central vs. peripheral) x 2 (Type of prime: activation vs. refutation) experimental design in order to test our hypotheses. Results revealed, as expected, the main effect of the structure of the SR on group identification. Indeed, central cognitions trigger a higher level of identification than the peripheral ones. However, we observe neither effect of the type of prime, nor interaction effect. These results experimentally demonstrate for the first time the effect of the structure of SRs on group identification and indicate that central cognitions are more connected than peripheral ones to group members’ social identity. These results will be discussed considering the importance of understanding identity as a function of SRs and on their ability to potentially solve the lack of consideration of the definition of the group in Social Representations Theory.

Keywords: group identification, social identity, social representations, structural approach

Procedia PDF Downloads 191
3468 Enhancing Fault Detection in Rotating Machinery Using Wiener-CNN Method

Authors: Mohamad R. Moshtagh, Ahmad Bagheri

Abstract:

Accurate fault detection in rotating machinery is of utmost importance to ensure optimal performance and prevent costly downtime in industrial applications. This study presents a robust fault detection system based on vibration data collected from rotating gears under various operating conditions. The considered scenarios include: (1) both gears being healthy, (2) one healthy gear and one faulty gear, and (3) introducing an imbalanced condition to a healthy gear. Vibration data was acquired using a Hentek 1008 device and stored in a CSV file. Python code implemented in the Spider environment was used for data preprocessing and analysis. Winner features were extracted using the Wiener feature selection method. These features were then employed in multiple machine learning algorithms, including Convolutional Neural Networks (CNN), Multilayer Perceptron (MLP), K-Nearest Neighbors (KNN), and Random Forest, to evaluate their performance in detecting and classifying faults in both the training and validation datasets. The comparative analysis of the methods revealed the superior performance of the Wiener-CNN approach. The Wiener-CNN method achieved a remarkable accuracy of 100% for both the two-class (healthy gear and faulty gear) and three-class (healthy gear, faulty gear, and imbalanced) scenarios in the training and validation datasets. In contrast, the other methods exhibited varying levels of accuracy. The Wiener-MLP method attained 100% accuracy for the two-class training dataset and 100% for the validation dataset. For the three-class scenario, the Wiener-MLP method demonstrated 100% accuracy in the training dataset and 95.3% accuracy in the validation dataset. The Wiener-KNN method yielded 96.3% accuracy for the two-class training dataset and 94.5% for the validation dataset. In the three-class scenario, it achieved 85.3% accuracy in the training dataset and 77.2% in the validation dataset. The Wiener-Random Forest method achieved 100% accuracy for the two-class training dataset and 85% for the validation dataset, while in the three-class training dataset, it attained 100% accuracy and 90.8% accuracy for the validation dataset. The exceptional accuracy demonstrated by the Wiener-CNN method underscores its effectiveness in accurately identifying and classifying fault conditions in rotating machinery. The proposed fault detection system utilizes vibration data analysis and advanced machine learning techniques to improve operational reliability and productivity. By adopting the Wiener-CNN method, industrial systems can benefit from enhanced fault detection capabilities, facilitating proactive maintenance and reducing equipment downtime.

Keywords: fault detection, gearbox, machine learning, wiener method

Procedia PDF Downloads 80
3467 Towards a Conscious Design in AI by Overcoming Dark Patterns

Authors: Ayse Arslan

Abstract:

One of the important elements underpinning a conscious design is the degree of toxicity in communication. This study explores the mechanisms and strategies for identifying toxic content by avoiding dark patterns. Given the breadth of hate and harassment attacks, this study explores a threat model and taxonomy to assist in reasoning about strategies for detection, prevention, mitigation, and recovery. In addition to identifying some relevant techniques such as nudges, automatic detection, or human-ranking, the study suggests the use of major metrics such as the overhead and friction of solutions on platforms and users or balancing false positives (e.g., incorrectly penalizing legitimate users) against false negatives (e.g., users exposed to hate and harassment) to maintain a conscious design towards fairness.

Keywords: AI, ML, algorithms, policy, system design

Procedia PDF Downloads 121
3466 Hardware Implementation for the Contact Force Reconstruction in Tactile Sensor Arrays

Authors: María-Luisa Pinto-Salamanca, Wilson-Javier Pérez-Holguín

Abstract:

Reconstruction of contact forces is a fundamental technique for analyzing the properties of a touched object and is essential for regulating the grip force in slip control loops. This is based on the processing of the distribution, intensity, and direction of the forces during the capture of the sensors. Currently, efficient hardware alternatives have been used more frequently in different fields of application, allowing the implementation of computationally complex algorithms, as is the case with tactile signal processing. The use of hardware for smart tactile sensing systems is a research area that promises to improve the processing time and portability requirements of applications such as artificial skin and robotics, among others. The literature review shows that hardware implementations are present today in almost all stages of smart tactile detection systems except in the force reconstruction process, a stage in which they have been less applied. This work presents a hardware implementation of a model-driven reported in the literature for the contact force reconstruction of flat and rigid tactile sensor arrays from normal stress data. From the analysis of a software implementation of such a model, this implementation proposes the parallelization of tasks that facilitate the execution of matrix operations and a two-dimensional optimization function to obtain a vector force by each taxel in the array. This work seeks to take advantage of the parallel hardware characteristics of Field Programmable Gate Arrays, FPGAs, and the possibility of applying appropriate techniques for algorithms parallelization using as a guide the rules of generalization, efficiency, and scalability in the tactile decoding process and considering the low latency, low power consumption, and real-time execution as the main parameters of design. The results show a maximum estimation error of 32% in the tangential forces and 22% in the normal forces with respect to the simulation by the Finite Element Modeling (FEM) technique of Hertzian and non-Hertzian contact events, over sensor arrays of 10×10 taxels of different sizes. The hardware implementation was carried out on an MPSoC XCZU9EG-2FFVB1156 platform of Xilinx® that allows the reconstruction of force vectors following a scalable approach, from the information captured by means of tactile sensor arrays composed of up to 48 × 48 taxels that use various transduction technologies. The proposed implementation demonstrates a reduction in estimation time of x / 180 compared to software implementations. Despite the relatively high values of the estimation errors, the information provided by this implementation on the tangential and normal tractions and the triaxial reconstruction of forces allows to adequately reconstruct the tactile properties of the touched object, which are similar to those obtained in the software implementation and in the two FEM simulations taken as reference. Although errors could be reduced, the proposed implementation is useful for decoding contact forces for portable tactile sensing systems, thus helping to expand electronic skin applications in robotic and biomedical contexts.

Keywords: contact forces reconstruction, forces estimation, tactile sensor array, hardware implementation

Procedia PDF Downloads 195
3465 Immuno-field Effect Transistor Using Carbon Nanotubes Network – Based for Human Serum Albumin Highly Sensitive Detection

Authors: Muhamad Azuddin Hassan, Siti Shafura Karim, Ambri Mohamed, Iskandar Yahya

Abstract:

Human serum albumin plays a significant part in the physiological functions of the human body system (HSA).HSA level monitoring is critical for early detection of HSA-related illnesses. The goal of this study is to show that a field effect transistor (FET)-based immunosensor can assess HSA using high aspect ratio carbon nanotubes network (CNT) as a transducer. The CNT network were deposited using air brush technique, and the FET device was made using a shadow mask process. Field emission scanning electron microscopy and a current-voltage measurement system were used to examine the morphology and electrical properties of the CNT network, respectively. X-ray photoelectron spectroscopy and Fourier transform infrared spectroscopy were used to confirm the surface alteration of the CNT. The detection process is based on covalent binding interactions between an antibody and an HSA target, which resulted in a change in the manufactured biosensor's drain current (Id).In a linear range between 1 ng/ml and 10zg/ml, the biosensor has a high sensitivity of 0.826 mA (g/ml)-1 and a LOD value of 1.9zg/ml.HSA was also identified in a genuine serum despite interference from other biomolecules, demonstrating the CNT-FET immunosensor's ability to quantify HSA in a complex biological environment.

Keywords: carbon nanotubes network, biosensor, human serum albumin

Procedia PDF Downloads 137
3464 The Effect of Technology on Skin Development and Progress

Authors: Haidy Weliam Megaly Gouda

Abstract:

Dermatology is often a neglected specialty in low-resource settings despite the high morbidity associated with skin disease. This becomes even more significant when associated with HIV infection, as dermatological conditions are more common and aggressive in HIV-positive patients. African countries have the highest HIV infection rates, and skin conditions are frequently misdiagnosed and mismanaged because of a lack of dermatological training and educational material. The frequent lack of diagnostic tests in the African setting renders basic clinical skills all the more vital. This project aimed to improve the diagnosis and treatment of skin disease in the HIV population in a district hospital in Malawi. A basic dermatological clinical tool was developed and produced in collaboration with local staff and based on available literature and data collected from clinics. The aim was to improve diagnostic accuracy and provide guidance for the treatment of skin disease in HIV-positive patients. A literature search within Embassy, Medline and Google Scholar was performed and supplemented through data obtained from attending 5 Antiretroviral clinics. From the literature, conditions were selected for inclusion in the resource if they were described as specific, more prevalent, or extensive in the HIV population or have more adverse outcomes if they develop in HIV patients. Resource-appropriate treatment options were decided using Malawian Ministry of Health guidelines and textbooks specific to African dermatology. After the collection of data and discussion with local clinical and pharmacy staff, a list of 15 skin conditions was included, and a booklet was created using the simple layout of a picture, a diagnostic description of the disease and treatment options. Clinical photographs were collected from local clinics (with full consent of the patient) or from the book ‘Common Skin Diseases in Africa’ (permission granted if fully acknowledged and used in a not-for-profit capacity). This tool was evaluated by the local staff alongside an educational teaching session on skin disease. This project aimed to reduce uncertainty in diagnosis and provide guidance for appropriate treatment in HIV patients by gathering information into one practical and manageable resource. To further this project, we hope to review the effectiveness of the tool in practice.

Keywords: prevalence and pattern of skin diseases, impact on quality of life, rural Nepal, interventions, quality switched ruby laser, skin color river blindness, clinical signs, circularity index, grey level run length matrix, grey level co-occurrence matrix, local binary pattern, object detection, ring detection, shape identification

Procedia PDF Downloads 62
3463 Intelligent Decision Support for Wind Park Operation: Machine-Learning Based Detection and Diagnosis of Anomalous Operating States

Authors: Angela Meyer

Abstract:

The operation and maintenance cost for wind parks make up a major fraction of the park’s overall lifetime cost. To minimize the cost and risk involved, an optimal operation and maintenance strategy requires continuous monitoring and analysis. In order to facilitate this, we present a decision support system that automatically scans the stream of telemetry sensor data generated from the turbines. By learning decision boundaries and normal reference operating states using machine learning algorithms, the decision support system can detect anomalous operating behavior in individual wind turbines and diagnose the involved turbine sub-systems. Operating personal can be alerted if a normal operating state boundary is exceeded. The presented decision support system and method are applicable for any turbine type and manufacturer providing telemetry data of the turbine operating state. We demonstrate the successful detection and diagnosis of anomalous operating states in a case study at a German onshore wind park comprised of Vestas V112 turbines.

Keywords: anomaly detection, decision support, machine learning, monitoring, performance optimization, wind turbines

Procedia PDF Downloads 167
3462 Detection of Intentional Attacks in Images Based on Watermarking

Authors: Hazem Munawer Al-Otum

Abstract:

In this work, an efficient watermarking technique is proposed and can be used for detecting intentional attacks in RGB color images. The proposed technique can be implemented for image authentication and exhibits high robustness against unintentional common image processing attacks. It deploys two measures to discern between intentional and unintentional attacks based on using a quantization-based technique in a modified 2D multi-pyramidal DWT transform. Simulations have shown high accuracy in detecting intentionally attacked regions while exhibiting high robustness under moderate to severe common image processing attacks.

Keywords: image authentication, copyright protection, semi-fragile watermarking, tamper detection

Procedia PDF Downloads 255
3461 An Electrochemical Enzymatic Biosensor Based on Multi-Walled Carbon Nanotubes and Poly (3,4 Ethylenedioxythiophene) Nanocomposites for Organophosphate Detection

Authors: Navpreet Kaur, Himkusha Thakur, Nirmal Prabhakar

Abstract:

The most controversial issue in crop production is the use of Organophosphate insecticides. This is evident in many reports that Organophosphate (OP) insecticides, among the broad range of pesticides are mainly involved in acute and chronic poisoning cases. OPs detection is of crucial importance for health protection, food and environmental safety. In our study, a nanocomposite of poly (3,4 ethylenedioxythiophene) (PEDOT) and multi-walled carbon nanotubes (MWCNTs) has been deposited electrochemically onto the surface of fluorine doped tin oxide sheets (FTO) for the analysis of malathion OP. The -COOH functionalization of MWCNTs has been done for the covalent binding with amino groups of AChE enzyme. The use of PEDOT-MWCNT films exhibited an excellent conductivity, enables fast transfer kinetics and provided a favourable biocompatible microenvironment for AChE, for the significant malathion OP detection. The prepared biosensors were characterized by Fourier transform infrared spectrometry (FTIR), Field emission-scanning electron microscopy (FE-SEM) and electrochemical studies. Various optimization studies were done for different parameters including pH (7.5), AChE concentration (50 mU), substrate concentration (0.3 mM) and inhibition time (10 min). Substrate kinetics has been performed and studied for the determination of Michaelis Menten constant. The detection limit for malathion OP was calculated to be 1 fM within the linear range 1 fM to 1 µM. The activity of inhibited AChE enzyme was restored to 98% of its original value by 2-pyridine aldoxime methiodide (2-PAM) (5 mM) treatment for 11 min. The oxime 2-PAM is able to remove malathion from the active site of AChE by means of trans-esterification reaction. The storage stability and reusability of the prepared biosensor is observed to be 30 days and seven times, respectively. The application of the developed biosensor has also been evaluated for spiked lettuce sample. Recoveries of malathion from the spiked lettuce sample ranged between 96-98%. The low detection limit obtained by the developed biosensor made them reliable, sensitive and a low cost process.

Keywords: PEDOT-MWCNT, malathion, organophosphates, acetylcholinesterase, biosensor, oxime (2-PAM)

Procedia PDF Downloads 445
3460 Power Line Communication Integrated in a Wireless Power Transfer System: Feasibility of Surveillance Movement

Authors: M. Hemnath, S. Kannan, R. Kiran, K. Thanigaivelu

Abstract:

This paper is based on exploring the possible opportunities and applications using Power Line Communication (PLC) for security and surveillance operations. Various research works are done for introducing PLC into onboard vehicle communication and networking (CAN, LIN etc.) and various international standards have been developed. Wireless power transfer (WPT) is also an emerging technology which is studied and tested for recharging purposes. In this work we present a system which embeds the detection and the response into one which eliminates the need for dedicated network for data transmission. Also we check the feasibility for integrating wireless power transfer system into this proposed security system for transmission of power to detection unit wirelessly from the response unit.

Keywords: power line communication, wireless power transfer, surveillance

Procedia PDF Downloads 535
3459 Analysis of Factors Influencing the Response Time of an Aspirating Gaseous Agent Concentration Detection Method

Authors: Yu Guan, Song Lu, Wei Yuan, Heping Zhang

Abstract:

Gas fire extinguishing system is widely used due to its cleanliness and efficiency, and since its spray will be affected by many factors such as convection and obstacles in jetting region, so in order to evaluate its effectiveness, detecting concentration distribution in the jetting area is indispensable, which is commonly achieved by aspirating concentration detection technique. During the concentration measurement, the response time of detector is a very important parameter, especially for those fire-extinguishing systems with rapid gas dispersion. Long response time will not only underestimate its concentration but also prolong the change of concentration with time. Therefore it is necessary to analyze the factors influencing the response time. In the paper, an aspirating concentration detection method was introduced, which is achieved by using a small critical nozzle and a laminar flowmeter, and because of the response time is mainly related to the gas transport process from sampling site to the sensor, the effects of exhaust pipe size, gas flow rate, and gas concentration on its response time were analyzed. During the research, Bromotrifluoromethane (CBrF₃) was used. The effect of the sampling tube was investigated with different length of 1, 2, 3, 4 and 5 m (5mm in pipe diameter) and different pipe diameter of 3, 4, 5, 6 and 8 mm (3m in length). The effect of gas flow rate was analyzed by changing the throat diameter of the critical nozzle with 0.5, 0.682, 0.75, 0.8, 0.84 and 0.88 mm. The effect of gas concentration on response time was studied with the concentration range of 0-25%. The result showed that the response time increased with the increase of both the length and diameter of the sampling pipe, and the effect of length on response time was linear, but for the effect of diameter, it was exponential. It was also found that as the throat diameter of critical nozzle increased, the response time reduced a lot, in other words, gas flow rate has a great influence on response time. For the effect of gas concentration, the response time increased with the increase of the CBrF₃ concentration, and the slope of the curve was reduced.

Keywords: aspirating concentration detection, fire extinguishing, gaseous agent, response time

Procedia PDF Downloads 270
3458 Design and Development of Multi-Functional Intelligent Robot Arm Gripper

Authors: W. T. Asheber, L. Chyi-Yeu

Abstract:

An intelligent robot arm is expected to recognize the desired object, grasp it with appropriate force without dropping or damaging it, and also manipulate and deliver the object to the desired destination safely. This paper presents an intelligent multi-finger robot arm gripper design along with vision, proximity, and tactile sensor for efficient grasping and manipulation tasks. The generic design of the gripper makes it convenient for improved parts manipulation, multi-tasking and ease for components assembly. The proposed design emulates the human’s hand fingers structure using linkages and direct drive through power screw like transmission. The actuation and transmission mechanism is designed in such a way that it has non-back-drivable capability, which makes the fingers hold their position when even unpowered. The structural elements are optimized for a finest performance in motion and force transmissivity of the gripper fingers. The actuation mechanisms is designed specially to drive each finger and also rotate two of the fingers about the palm to form appropriate configuration to grasp various size and shape objects. The gripper has an automatic tool set fixture incorporated into its palm, which will reduce time wastage and do assembling in one go. It is equipped with camera-in-hand integrated into its palm; subsequently an image based visual-servoing control scheme is employed.

Keywords: gripper, intelligent gripper, transmissivity, vision sensor

Procedia PDF Downloads 355