Search results for: multi-objective particle swarm optimization
3764 Optimization by Means of Genetic Algorithm of the Equivalent Electrical Circuit Model of Different Order for Li-ion Battery Pack
Authors: V. Pizarro-Carmona, S. Castano-Solis, M. Cortés-Carmona, J. Fraile-Ardanuy, D. Jimenez-Bermejo
Abstract:
The purpose of this article is to optimize the Equivalent Electric Circuit Model (EECM) of different orders to obtain greater precision in the modeling of Li-ion battery packs. Optimization includes considering circuits based on 1RC, 2RC and 3RC networks, with a dependent voltage source and a series resistor. The parameters are obtained experimentally using tests in the time domain and in the frequency domain. Due to the high non-linearity of the behavior of the battery pack, Genetic Algorithm (GA) was used to solve and optimize the parameters of each EECM considered (1RC, 2RC and 3RC). The objective of the estimation is to minimize the mean square error between the measured impedance in the real battery pack and those generated by the simulation of different proposed circuit models. The results have been verified by comparing the Nyquist graphs of the estimation of the complex impedance of the pack. As a result of the optimization, the 2RC and 3RC circuit alternatives are considered as viable to represent the battery behavior. These battery pack models are experimentally validated using a hardware-in-the-loop (HIL) simulation platform that reproduces the well-known New York City cycle (NYCC) and Federal Test Procedure (FTP) driving cycles for electric vehicles. The results show that using GA optimization allows obtaining EECs with 2RC or 3RC networks, with high precision to represent the dynamic behavior of a battery pack in vehicular applications.Keywords: Li-ion battery packs modeling optimized, EECM, GA, electric vehicle applications
Procedia PDF Downloads 1263763 Improving the Efficiency of a High Pressure Turbine by Using Non-Axisymmetric Endwall: A Comparison of Two Optimization Algorithms
Authors: Abdul Rehman, Bo Liu
Abstract:
Axial flow turbines are commonly designed with high loads that generate strong secondary flows and result in high secondary losses. These losses contribute to almost 30% to 50% of the total losses. Non-axisymmetric endwall profiling is one of the passive control technique to reduce the secondary flow loss. In this paper, the non-axisymmetric endwall profile construction and optimization for the stator endwalls are presented to improve the efficiency of a high pressure turbine. The commercial code NUMECA Fine/ Design3D coupled with Fine/Turbo was used for the numerical investigation, design of experiments and the optimization. All the flow simulations were conducted by using steady RANS and Spalart-Allmaras as a turbulence model. The non-axisymmetric endwalls of stator hub and shroud were created by using the perturbation law based on Bezier Curves. Each cut having multiple control points was supposed to be created along the virtual streamlines in the blade channel. For the design of experiments, each sample was arbitrarily generated based on values automatically chosen for the control points defined during parameterization. The Optimization was achieved by using two algorithms i.e. the stochastic algorithm and gradient-based algorithm. For the stochastic algorithm, a genetic algorithm based on the artificial neural network was used as an optimization method in order to achieve the global optimum. The evaluation of the successive design iterations was performed using artificial neural network prior to the flow solver. For the second case, the conjugate gradient algorithm with a three dimensional CFD flow solver was used to systematically vary a free-form parameterization of the endwall. This method is efficient and less time to consume as it requires derivative information of the objective function. The objective function was to maximize the isentropic efficiency of the turbine by keeping the mass flow rate as constant. The performance was quantified by using a multi-objective function. Other than these two classifications of the optimization methods, there were four optimizations cases i.e. the hub only, the shroud only, and the combination of hub and shroud. For the fourth case, the shroud endwall was optimized by using the optimized hub endwall geometry. The hub optimization resulted in an increase in the efficiency due to more homogenous inlet conditions for the rotor. The adverse pressure gradient was reduced but the total pressure loss in the vicinity of the hub was increased. The shroud optimization resulted in an increase in efficiency, total pressure loss and entropy were reduced. The combination of hub and shroud did not show overwhelming results which were achieved for the individual cases of the hub and the shroud. This may be caused by fact that there were too many control variables. The fourth case of optimization showed the best result because optimized hub was used as an initial geometry to optimize the shroud. The efficiency was increased more than the individual cases of optimization with a mass flow rate equal to the baseline design of the turbine. The results of artificial neural network and conjugate gradient method were compared.Keywords: artificial neural network, axial turbine, conjugate gradient method, non-axisymmetric endwall, optimization
Procedia PDF Downloads 2263762 Topology Optimization Design of Transmission Structure in Flapping-Wing Micro Aerial Vehicle via 3D Printing
Authors: Zuyong Chen, Jianghao Wu, Yanlai Zhang
Abstract:
Flapping-wing micro aerial vehicle (FMAV) is a new type of aircraft by mimicking the flying behavior to that of small birds or insects. Comparing to the traditional fixed wing or rotor-type aircraft, FMAV only needs to control the motion of flapping wings, by changing the size and direction of lift to control the flight attitude. Therefore, its transmission system should be designed very compact. Lightweight design can effectively extend its endurance time, while engineering experience alone is difficult to simultaneously meet the requirements of FMAV for structural strength and quality. Current researches still lack the guidance of considering nonlinear factors of 3D printing material when carrying out topology optimization, especially for the tiny FMAV transmission system. The coupling of non-linear material properties and non-linear contact behaviors of FMAV transmission system is a great challenge to the reliability of the topology optimization result. In this paper, topology optimization design based on FEA solver package Altair Optistruct for the transmission system of FMAV manufactured by 3D Printing was carried out. Firstly, the isotropic constitutive behavior of the Ultraviolet (UV) Cureable Resin used to fabricate the structure of FMAV was evaluated and confirmed through tensile test. Secondly, a numerical computation model describing the mechanical behavior of FMAV transmission structure was established and verified by experiments. Then topology optimization modeling method considering non-linear factors were presented, and optimization results were verified by dynamic simulation and experiments. Finally, detail discussions of different load status and constraints were carried out to explore the leading factors affecting the optimization results. The contributions drawn from this article helpful for guiding the lightweight design of FMAV are summarizing as follow; first, a dynamic simulation modeling method used to obtain the load status is presented. Second, verification method of optimized results considering non-linear factors is introduced. Third, based on or can achieve a better weight reduction effect and improve the computational efficiency rather than taking multi-states into account. Fourth, basing on makes for improving the ability to resist bending deformation. Fifth, constraint of displacement helps to improve the structural stiffness of optimized result. Results and engineering guidance in this paper may shed lights on the structural optimization and light-weight design for future advanced FMAV.Keywords: flapping-wing micro aerial vehicle, 3d printing, topology optimization, finite element analysis, experiment
Procedia PDF Downloads 1703761 Optimum Design of Helical Gear System on Basis of Maximum Power Transmission Capability
Authors: Yasaman Esfandiari
Abstract:
Mechanical engineering has always dealt with amplification of the input power in power trains. One of the ways to achieve this goal is to use gears to change the amplitude and direction of the torque and the speed. However, the gears should be optimally designed to best achieve these objectives. In this study, helical gear systems are optimized to achieve maximum power. Material selection, space restriction, available facilities for manufacturing, the probability of tooth breakage, and tooth wear are taken into account and governing equations are derived. Finally, a Matlab code was generated to solve the optimization problem and the results are verified.Keywords: design, gears, Matlab, optimization
Procedia PDF Downloads 2413760 Reliability Analysis of Variable Stiffness Composite Laminate Structures
Authors: A. Sohouli, A. Suleman
Abstract:
This study focuses on reliability analysis of variable stiffness composite laminate structures to investigate the potential structural improvement compared to conventional (straight fibers) composite laminate structures. A computational framework was developed which it consists of a deterministic design step and reliability analysis. The optimization part is Discrete Material Optimization (DMO) and the reliability of the structure is computed by Monte Carlo Simulation (MCS) after using Stochastic Response Surface Method (SRSM). The design driver in deterministic optimization is the maximum stiffness, while optimization method concerns certain manufacturing constraints to attain industrial relevance. These manufacturing constraints are the change of orientation between adjacent patches cannot be too large and the maximum number of successive plies of a particular fiber orientation should not be too high. Variable stiffness composites may be manufactured by Automated Fiber Machines (AFP) which provides consistent quality with good production rates. However, laps and gaps are the most important challenges to steer fibers that effect on the performance of the structures. In this study, the optimal curved fiber paths at each layer of composites are designed in the first step by DMO, and then the reliability analysis is applied to investigate the sensitivity of the structure with different standard deviations compared to the straight fiber angle composites. The random variables are material properties and loads on the structures. The results show that the variable stiffness composite laminate structures are much more reliable, even for high standard deviation of material properties, than the conventional composite laminate structures. The reason is that the variable stiffness composite laminates allow tailoring stiffness and provide the possibility of adjusting stress and strain distribution favorably in the structures.Keywords: material optimization, Monte Carlo simulation, reliability analysis, response surface method, variable stiffness composite structures
Procedia PDF Downloads 5203759 Influence of Radio Frequency Identification Technology at Cost of Supply Chain as a Driver for the Generation of Competitive Advantage
Authors: Mona Baniahmadi, Saied Haghanifar
Abstract:
Radio Frequency Identification (RFID) is regarded as a promising technology for the optimization of supply chain processes since it improves manufacturing and retail operations from forecasting demand for planning, managing inventory, and distribution. This study precisely aims at learning to know the RFID technology and at explaining how it can concretely be used for supply chain management and how it can help improving it in the case of Hejrat Company which is located in Iran and works on the distribution of medical drugs and cosmetics. This study uses some statistical analysis to calculate the expected benefits of an integrated RFID system on supply chain obtained through competitive advantages increases with decreasing cost factor. The study investigates how the cost of storage process, labor cost, the cost of missing goods, inventory management optimization, on-time delivery, order cost, lost sales and supply process optimization affect the performance of the integrated RFID supply chain regarding cost factors and provides a competitive advantage.Keywords: cost, competitive advantage, radio frequency identification, supply chain
Procedia PDF Downloads 2773758 Formulation and Evaluation of Silibilin Loaded PLGA Nanoparticles for Cancer Therapy
Authors: Priya Patel, Paresh Patel, Mihir Raval
Abstract:
Silibinin, a flavanone as an antimicrotubular agent used in the treatment of cancer, was encapsulated in nanoparticles (NPs) of poly (lactide-co-glycolide) (PLGA) polymer using the spray-drying technique. The effects of various experimental parameters were optimized by box-behnken experimental design. Production yield, encapsulation efficiency and dissolution study along with characterization by scanning electron microscopy, DSC, FTIR followed by bioavailability study. Particle size and zeta potential were evaluated by using zetatrac particle size analyzer. Experimental design it was evaluated that inlet temperature and polymer concentration influence on the drug release. Feed flow rate impact on particle size. Results showed that spray drying technique yield 149 nm indicate nanosize range. The small size of the nanoparticle resulted in an enhanced cellular entry and greater bioavailability. Entrapment efficiency was found between 89.35% and 98.36%. Zeta potential shows good stability index of nanoparticle formulation. The in vitro release studies indicated the silibinin loaded PLGA nanoparticles provide controlled drug release over a period of 32 h. Pharmacokinetic studies demonstrated that after oral administration of silibinin-loaded PLGA nanoparticles to rats at a dose of 10 mg/kg, relative bioavailability was enhanced about 8.85-fold, compared to silibinin suspension as control hence, this investigation demonstrated the potential of the experimental design in understanding the effect of the formulation variables on the quality of silibinin loaded PLGA nanoparticles. These results describe an effective strategy of silibinin loaded PLGA nanoparticles and might provide a promising approach against the cancer.Keywords: silibinin, cancer, nanoparticles, PLGA, bioavailability
Procedia PDF Downloads 4293757 A Linear Programming Approach to Assist Roster Construction Under a Salary Cap
Authors: Alex Contarino
Abstract:
Professional sports leagues often have a “free agency” period, during which teams may sign players with expiring contracts.To promote parity, many leagues operate under a salary cap that limits the amount teams can spend on player’s salaries in a given year. Similarly, in fantasy sports leagues, salary cap drafts are a popular method for selecting players. In order to sign a free agent in either setting, teams must bid against one another to buy the player’s services while ensuring the sum of their player’s salaries is below the salary cap. This paper models the bidding process for a free agent as a constrained optimization problem that can be solved using linear programming. The objective is to determine the largest bid that a team should offer the player subject to the constraint that the value of signing the player must exceed the value of using the salary cap elsewhere. Iteratively solving this optimization problem for each available free agent provides teams with an effective framework for maximizing the talent on their rosters. The utility of this approach is demonstrated for team sport roster construction and fantasy sport drafts, using recent data sets from both settings.Keywords: linear programming, optimization, roster management, salary cap
Procedia PDF Downloads 1113756 Novel Solid Lipid Nanoparticles for Oral Delivery of Oxyresveratrol: Effect of the Formulation Parameters on the Physicochemical Properties and in vitro Release
Authors: Yaowaporn Sangsen, Kittisak Likhitwitayawuid, Boonchoo Sritularak, Kamonthip Wiwattanawongsa, Ruedeekorn Wiwattanapatapee
Abstract:
Novel solid lipid nanoparticles (SLNs) were developed to improve oral bioavailability of oxyresveratrol (OXY). The SLNs were prepared by a high speed homogenization technique, at an effective speed and time, using Compritol® 888 ATO (5% w/w) as the solid lipid. The appropriate weight proportions (0.3% w/w) of OXY affected the physicochemical properties of blank SLNs. The effects of surfactant types on the properties of the formulations such as particle size and entrapment efficacy were also investigated. Conclusively, Tween 80 combined with soy lecithin was the most appropriate surfactant to stabilize OXY-loaded SLNs. The mean particle size of the optimized formulation was 134.40 ± 0.57 nm. In vitro drug release study, the selected S2 formulation showed a retarded release profile for OXY with no initial burst release compared to OXY suspension in the simulated gastrointestinal fluids. Therefore, these SLNs could provide a suitable system to develop for the oral OXY delivery.Keywords: solid lipid nanoparticles, physicochemical properties, in vitro drug release, oxyresveratrol
Procedia PDF Downloads 3983755 Market Solvency Capital Requirement Minimization: How Non-linear Solvers Provide Portfolios Complying with Solvency II Regulation
Authors: Abraham Castellanos, Christophe Durville, Sophie Echenim
Abstract:
In this article, a portfolio optimization problem is performed in a Solvency II context: it illustrates how advanced optimization techniques can help to tackle complex operational pain points around the monitoring, control, and stability of Solvency Capital Requirement (SCR). The market SCR of a portfolio is calculated as a combination of SCR sub-modules. These sub-modules are the results of stress-tests on interest rate, equity, property, credit and FX factors, as well as concentration on counter-parties. The market SCR is non convex and non differentiable, which does not make it a natural optimization criteria candidate. In the SCR formulation, correlations between sub-modules are fixed, whereas risk-driven portfolio allocation is usually driven by the dynamics of the actual correlations. Implementing a portfolio construction approach that is efficient on both a regulatory and economic standpoint is not straightforward. Moreover, the challenge for insurance portfolio managers is not only to achieve a minimal SCR to reduce non-invested capital but also to ensure stability of the SCR. Some optimizations have already been performed in the literature, simplifying the standard formula into a quadratic function. But to our knowledge, it is the first time that the standard formula of the market SCR is used in an optimization problem. Two solvers are combined: a bundle algorithm for convex non- differentiable problems, and a BFGS (Broyden-Fletcher-Goldfarb- Shanno)-SQP (Sequential Quadratic Programming) algorithm, to cope with non-convex cases. A market SCR minimization is then performed with historical data. This approach results in significant reduction of the capital requirement, compared to a classical Markowitz approach based on the historical volatility. A comparative analysis of different optimization models (equi-risk-contribution portfolio, minimizing volatility portfolio and minimizing value-at-risk portfolio) is performed and the impact of these strategies on risk measures including market SCR and its sub-modules is evaluated. A lack of diversification of market SCR is observed, specially for equities. This was expected since the market SCR strongly penalizes this type of financial instrument. It was shown that this direct effect of the regulation can be attenuated by implementing constraints in the optimization process or minimizing the market SCR together with the historical volatility, proving the interest of having a portfolio construction approach that can incorporate such features. The present results are further explained by the Market SCR modelling.Keywords: financial risk, numerical optimization, portfolio management, solvency capital requirement
Procedia PDF Downloads 1173754 Long Time Oxidation Behavior of Machined 316 Austenitic Stainless Steel in Primary Water Reactor
Authors: Siyang Wang, Yujin Hu, Xuelin Wang, Wenqian Zhang
Abstract:
Austenitic stainless steels are widely used in nuclear industry to manufacture critical components owing to their excellent corrosion resistance at high temperatures. Almost all the components used in nuclear power plants are produced by surface finishing (surface cold work) such as milling, grinding and so on. The change of surface states induced by machining has great influence on the corrosion behavior. In the present study, long time oxidation behavior of machined 316 austenitic stainless steel exposed to simulated pressure water reactor environment was investigated considering different surface states. Four surface finishes were produced by electro-polishing (P), grinding (G), and two milling (M and M1) processes respectively. Before oxidation, the surface Vickers micro-hardness, surface roughness of each type of sample was measured. Corrosion behavior of four types of sample was studied by using oxidation weight gain method for six oxidation periods. The oxidation time of each period was 120h, 216h, 336h, 504h, 672h and 1344h, respectively. SEM was used to observe the surface morphology of oxide film in several period. The results showed that oxide film on austenitic stainless steel has a duplex-layer structure. The inner oxide film is continuous and compact, while the outer layer is composed of oxide particles. The oxide particle consisted of large particles (nearly micron size) and small particles (dozens of nanometers to a few hundred nanometers). The formation of oxide particle could be significantly affected by the machined surface states. The large particle on cold worked samples (grinding and milling) appeared earlier than electro-polished one, and the milled sample has the largest particle size followed by ground one and electro-polished one. For machined samples, the large particles were almost distributed along the direction of machining marks. Severe exfoliation was observed on one milled surface (M) which had the most heavily cold worked layer, while rare local exfoliation occurred on the ground sample (G) and the other milled sample (M1). The electro-polished sample (P) entirely did not exfoliate.Keywords: austenitic stainless steel, oxidation, machining, SEM
Procedia PDF Downloads 2873753 Causality, Special Relativity and Non-existence of Material Particles of Zero Rest Mass
Authors: Mohammad Saleem, Mujahid Kamran
Abstract:
It is shown that causality, the principle that cause must precede effect, leads inter alia, to highly significant result that the velocity of a material particle cannot be even equal to that of light. Consequently, combined with special relativity, it leads to the conclusion that material particles of zero rest mass cannot exist in nature. Thus, causality, a principle without which nature would be incomprehensible, combined with special relativity, forbids the existence of material particles of zero rest mass. For instance, the neutrinos, as is now known, are material particles of non-zero rest mass. The situation changes when we consider the gauge particles. In fact, when the principle of causality was proposed, the concept of gauge particles had not yet been introduced. Now we know that photon, a gauge particle with zero rest mass does exist in nature. Therefore, principle of causality, as generally stated, is valid only for material particles. For gauge particles, in order to make the statement of causality consistent with experiment, it has to be modified: The cause should either precede or be simultaneous with the effect. Combined with special relativity, it allows gauge particles of zero rest mass.Keywords: causality, gauge particles, material particles, special relativity
Procedia PDF Downloads 5033752 Flocculation and Settling Rate Studies of Clean Coal Fines at Different Flocculants Dosage, pH Values, Bulk Density and Particle Size
Authors: Patel Himeshkumar Ashokbhai, Suchit Sharma, Arvind Kumar Garg
Abstract:
The results obtained from settling test of coal fines are used as an important tool to select the dewatering equipment such as thickeners, centrifuges and filters. Coal being hydrophobic in nature does not easily settle when mixed with water. Coal slurry that takes longer time to release water is highly undesirable because it poses additional challenge during sedimentation, centrifuge and filtration. If filter cake has higher than permitted moisture content then it not only creates handling problems but inflated freight costs and reduction in input and productivity for coke oven charges. It is to be noted that coal fines drastically increase moisture percentage in filter cake hence are to be minimized. To increase settling rate of coal fines in slurry chemical substances called flocculants or coagulants are added that cause coal particles to flocculate or coalesce into larger particles. These larger particles settle at faster rate and have higher settling velocity. Other important factors affecting settling rate are flocculent dosage, slurry or pulp density and particle size. Hence in this paper we tried to study the settling characteristic of clean coal fines by varying one of the four factors namely 1. Flocculant Dosage (acryl-amide) 2. pH of the water 3. Bulk density 4. Particle size of clean coal fines in settling experiment and drew important conclusions. Result of this paper will be much useful not only for coal beneficiation plant design but also for cost reduction of coke production facilities.Keywords: bulk density, coal fines, flocculants, flocculation, settling velocity, pH
Procedia PDF Downloads 3243751 On the Application of Heuristics of the Traveling Salesman Problem for the Task of Restoring the DNA Matrix
Authors: Boris Melnikov, Dmitrii Chaikovskii, Elena Melnikova
Abstract:
The traveling salesman problem (TSP) is a well-known optimization problem that seeks to find the shortest possible route that visits a set of points and returns to the starting point. In this paper, we apply some heuristics of the TSP for the task of restoring the DNA matrix. This restoration problem is often considered in biocybernetics. For it, we must recover the matrix of distances between DNA sequences if not all the elements of the matrix under consideration are known at the input. We consider the possibility of using this method in the testing of distance calculation algorithms between a pair of DNAs to restore the partially filled matrix.Keywords: optimization problems, DNA matrix, partially filled matrix, traveling salesman problem, heuristic algorithms
Procedia PDF Downloads 1513750 Effect of Nano Packaging Containing Ag-TiO₂ in Inactivating the Selected Bacteria Experimentally Exposed to the Chicken-Eggshell
Authors: Hamed Ahari, Sepideh Farokhi, Mohamad Reza Abedini
Abstract:
This paper focuses on inactivation of the growth of the bacterial mixture, Salmonella enteritidis, Staphylococcus aureus, Bacillus cereus and Escherichia coli, experimentally subjected to the chicken eggshell by two types of nano particle-Ag, composite film and colloidal spray carried out at concentrations of 500, 1000 and 2000 ppm over 28 days. The GLM, Repeated Measurement-ANOVA procedure was used to analyze the effect of time and concentration of nano groups on inactivation of bacteria, simultaneously. The maximum reduction of the bacterial growth was respected to the group “spray 2000 ppm” for which the value of the bacteria reached the minimum (0.93±0.42) on day 7, calculated to be 0.0 on days14 and 28 and followed by the group “spray 1000 ppm”. It was obviously concluded that increasing the dilution of nano coating in spray and film created a significant decrease in the number of bacteria colonies on the eggshells but the effect of packaging in different concentrations of nanocomposite was not statistically significant in different days of the study.Keywords: nano particle, composite film, eggshell, bacteria
Procedia PDF Downloads 3963749 Modeling and Optimization of Algae Oil Extraction Using Response Surface Methodology
Authors: I. F. Ejim, F. L. Kamen
Abstract:
Aims: In this experiment, algae oil extraction with a combination of n-hexane and ethanol was investigated. The effects of extraction solvent concentration, extraction time and temperature on the yield and quality of oil were studied using Response Surface Methodology (RSM). Experimental Design: Optimization of algae oil extraction using Box-Behnken design was used to generate 17 experimental runs in a three-factor-three-level design where oil yield, specific gravity, acid value and saponification value were evaluated as the response. Result: In this result, a minimum oil yield of 17% and maximum of 44% was realized. The optimum values for yield, specific gravity, acid value and saponification value from the overlay plot were 40.79%, 0.8788, 0.5056 mg KOH/g and 180.78 mg KOH/g respectively with desirability of 0.801. The maximum point prediction was yield 40.79% at solvent concentration 66.68 n-hexane, temperature of 40.0°C and extraction time of 4 hrs. Analysis of Variance (ANOVA) results showed that the linear and quadratic coefficient were all significant at p<0.05. The experiment was validated and results obtained were with the predicted values. Conclusion: Algae oil extraction was successfully optimized using RSM and its quality indicated it is suitable for many industrial uses.Keywords: algae oil, response surface methodology, optimization, Box-Bohnken, extraction
Procedia PDF Downloads 3393748 Aerodynamic Optimum Nose Shape Change of High-Speed Train by Design Variable Variation
Authors: Minho Kwak, Suhwan Yun, Choonsoo Park
Abstract:
Nose shape optimizations of high-speed train are performed for the improvement of aerodynamic characteristics. Based on the commercial train, KTX-Sancheon, multi-objective optimizations are conducted for the improvement of the side wind stability and the micro-pressure wave following the optimization for the reduction of aerodynamic drag. 3D nose shapes are modelled by the Vehicle Modeling Function. Aerodynamic drag and side wind stability are calculated by three-dimensional compressible Navier-Stokes solver, and micro pressure wave is done by axi-symmetric compressible Navier-Stokes solver. The Maxi-min Latin Hypercube Sampling method is used to extract sampling points to construct the approximation model. The kriging model is constructed for the approximation model and the NSGA-II algorithm was used as the multi-objective optimization algorithm. Nose length, nose tip height, and lower surface curvature are design variables. Because nose length is a dominant variable for aerodynamic characteristics of train nose, two optimization processes are progressed respectively with and without the design variable, nose length. Each pareto set was obtained and each optimized nose shape is selected respectively considering Honam high-speed rail line infrastructure in South Korea. Through the optimization process with the nose length, when compared to KTX Sancheon, aerodynamic drag was reduced by 9.0%, side wind stability was improved by 4.5%, micro-pressure wave was reduced by 5.4% whereas aerodynamic drag by 7.3%, side wind stability by 3.9%, micro-pressure wave by 3.9%, without the nose length. As a result of comparison between two optimized shapes, similar shapes are extracted other than the effect of nose length.Keywords: aerodynamic characteristics, design variable, multi-objective optimization, train nose shape
Procedia PDF Downloads 3483747 A Genetic Algorithm for the Load Balance of Parallel Computational Fluid Dynamics Computation with Multi-Block Structured Mesh
Authors: Chunye Gong, Ming Tie, Jie Liu, Weimin Bao, Xinbiao Gan, Shengguo Li, Bo Yang, Xuguang Chen, Tiaojie Xiao, Yang Sun
Abstract:
Large-scale CFD simulation relies on high-performance parallel computing, and the load balance is the key role which affects the parallel efficiency. This paper focuses on the load-balancing problem of parallel CFD simulation with structured mesh. A mathematical model for this load-balancing problem is presented. The genetic algorithm, fitness computing, two-level code are designed. Optimal selector, robust operator, and local optimization operator are designed. The properties of the presented genetic algorithm are discussed in-depth. The effects of optimal selector, robust operator, and local optimization operator are proved by experiments. The experimental results of different test sets, DLR-F4, and aircraft design applications show the presented load-balancing algorithm is robust, quickly converged, and is useful in real engineering problems.Keywords: genetic algorithm, load-balancing algorithm, optimal variation, local optimization
Procedia PDF Downloads 1853746 Seismic Response Mitigation of Structures Using Base Isolation System Considering Uncertain Parameters
Authors: Rama Debbarma
Abstract:
The present study deals with the performance of Linear base isolation system to mitigate seismic response of structures characterized by random system parameters. This involves optimization of the tuning ratio and damping properties of the base isolation system considering uncertain system parameters. However, the efficiency of base isolator may reduce if it is not tuned to the vibrating mode it is designed to suppress due to unavoidable presence of system parameters uncertainty. With the aid of matrix perturbation theory and first order Taylor series expansion, the total probability concept is used to evaluate the unconditional response of the primary structures considering random system parameters. For this, the conditional second order information of the response quantities are obtained in random vibration framework using state space formulation. Subsequently, the maximum unconditional root mean square displacement of the primary structures is used as the objective function to obtain optimum damping parameters Numerical study is performed to elucidate the effect of parameters uncertainties on the optimization of parameters of linear base isolator and system performance.Keywords: linear base isolator, earthquake, optimization, uncertain parameters
Procedia PDF Downloads 4353745 Bounded Solution Method for Geometric Programming Problem with Varying Parameters
Authors: Abdullah Ali H. Ahmadini, Firoz Ahmad, Intekhab Alam
Abstract:
Geometric programming problem (GPP) is a well-known non-linear optimization problem having a wide range of applications in many engineering problems. The structure of GPP is quite dynamic and easily fit to the various decision-making processes. The aim of this paper is to highlight the bounded solution method for GPP with special reference to variation among right-hand side parameters. Thus this paper is taken the advantage of two-level mathematical programming problems and determines the solution of the objective function in a specified interval called lower and upper bounds. The beauty of the proposed bounded solution method is that it does not require sensitivity analyses of the obtained optimal solution. The value of the objective function is directly calculated under varying parameters. To show the validity and applicability of the proposed method, a numerical example is presented. The system reliability optimization problem is also illustrated and found that the value of the objective function lies between the range of lower and upper bounds, respectively. At last, conclusions and future research are depicted based on the discussed work.Keywords: varying parameters, geometric programming problem, bounded solution method, system reliability optimization
Procedia PDF Downloads 1343744 Using Complete Soil Particle Size Distributions for More Precise Predictions of Soil Physical and Hydraulic Properties
Authors: Habib Khodaverdiloo, Fatemeh Afrasiabi, Farrokh Asadzadeh, Martinus Th. Van Genuchten
Abstract:
The soil particle-size distribution (PSD) is known to affect a broad range of soil physical, mechanical and hydraulic properties. Complete descriptions of a PSD curve should provide more information about these properties as opposed to having only information about soil textural class or the soil sand, silt and clay (SSC) fractions. We compared the accuracy of 19 different models of the cumulative PSD in terms of fitting observed data from a large number of Iranian soils. Parameters of the six most promising models were correlated with measured values of the field saturated hydraulic conductivity (Kfs), the mean weight diameter of soil aggregates (MWD), bulk density (ρb), and porosity (∅). These same soil properties were correlated also with conventional PSD parameters (SSC fractions), selected geometric PSD parameters (notably the mean diameter dg and its standard deviation σg), and several other PSD parameters (D50 and D60). The objective was to find the best predictions of several soil physical quality indices and the soil hydraulic properties. Neither SSC nor dg, σg, D50 and D60 were found to have a significant correlation with both Kfs or logKfs, However, the parameters of several cumulative PSD models showed statistically significant correlation with Kfs and/or logKfs (|r| = 0.42 to 0.65; p ≤ 0.05). The correlation between MWD and the model parameters was generally also higher than either with SSC fraction and dg, or with D50 and D60. Porosity (∅) and the bulk density (ρb) also showed significant correlation with several PSD model parameters, with ρb additionally correlating significantly with various geometric (dg), mechanical (D50 and D60), and agronomic (clay and sand) representations of the PSD. The fitted parameters of selected PSD models furthermore showed statistically significant correlations with Kfs,, MWD and soil porosity, which may be viewed as soil quality indices. Results of this study are promising for developing more accurate pedotransfer functions.Keywords: particle size distribution, soil texture, hydraulic conductivity, pedotransfer functions
Procedia PDF Downloads 2793743 Optimization of the Mechanical Performance of Fused Filament Fabrication Parts
Authors: Iván Rivet, Narges Dialami, Miguel Cervera, Michele Chiumenti
Abstract:
Process parameters in Additive Manufacturing (AM) play a critical role in the mechanical performance of the final component. In order to find the input configuration that guarantees the optimal performance of the printed part, the process-performance relationship must be found. Fused Filament Fabrication (FFF) is the selected demonstrative AM technology due to its great popularity in the industrial manufacturing world. A material model that considers the different printing patterns present in a FFF part is used. A voxelized mesh is built from the manufacturing toolpaths described in the G-Code file. An Adaptive Mesh Refinement (AMR) based on the octree strategy is used in order to reduce the complexity of the mesh while maintaining its accuracy. High-fidelity and cost-efficient Finite Element (FE) simulations are performed and the influence of key process parameters in the mechanical performance of the component is analyzed. A robust optimization process based on appropriate failure criteria is developed to find the printing direction that leads to the optimal mechanical performance of the component. The Tsai-Wu failure criterion is implemented due to the orthotropy and heterogeneity constitutive nature of FFF components and because of the differences between the strengths in tension and compression. The optimization loop implements a modified version of an Anomaly Detection (AD) algorithm and uses the computed metrics to obtain the optimal printing direction. The developed methodology is verified with a case study on an industrial demonstrator.Keywords: additive manufacturing, optimization, printing direction, mechanical performance, voxelization
Procedia PDF Downloads 643742 Optimization and Retrofitting for an Egyptian Refinery Water Network
Authors: Mohamed Mousa
Abstract:
Sacristies in the supply of freshwater, strict regulations on discharging wastewater and the support to encourage sustainable development by water minimization techniques leads to raise the interest of water reusing, regeneration, and recycling. Water is considered a vital element in chemical industries. In this study, an optimization model will be developed to determine the optimal design of refinery’s water network system via source interceptor sink that involves several network alternatives, then a Mixed-Integer Non-Linear programming (MINLP) was used to obtain the optimal network superstructure based on flowrates, the concentration of contaminants, etc. The main objective of the model is to reduce the fixed cost of piping installation interconnections, reducing the operating cots of all streams within the refiner’s water network, and minimize the concentration of pollutants to comply with the environmental regulations. A real case study for one of the Egyptian refineries was studied by GAMS / BARON global optimization platform, and the water network had been retrofitted and optimized, leading to saving around 195 m³/ hr. of freshwater with a total reduction reaches to 26 %.Keywords: freshwater minimization, modelling, GAMS, BARON, water network design, wastewater reudction
Procedia PDF Downloads 2333741 Analysis of a CO₂ Two-Phase Ejector Performances with Taguchi and Anova Optimization
Authors: Karima Megdouli
Abstract:
The ejector, a central element within the CO₂ transcritical ejection refrigeration system, holds significant importance in enhancing refrigeration capacity and minimizing compressor power usage. This study's objective is to introduce a technique for enhancing the effectiveness of the CO₂ transcritical two-phase ejector, utilizing Taguchi and ANOVA analysis. The investigation delves into the impact of geometric parameters, secondary flow temperature, and primary flow pressure on the efficiency of the ejector. Results indicate that employing a combination of Taguchi and ANOVA offers increased reliability and superior performance when optimizing the design of the CO₂ two-phase ejector.Keywords: ejector, supersonic, Taguchi, ANOVA, optimization
Procedia PDF Downloads 883740 Optimization of Tolerance Grades of a Bearing and Shaft Assembly in a Washing Machine with Regard to Fatigue Life
Authors: M. Cangi, T. Dolar, C. Ersoy, Y. E. Aydogdu, A. I. Aydeniz, A. Mugan
Abstract:
The drum is one of the critical parts in a washing machine in which the clothes are washed and spin by the rotational movement. It is activated by the drum shaft which is attached to an electric motor and subjected to dynamic loading. Being one of the critical components, failures of the drum require costly repairs of dynamic components. In this study, tolerance bands between the drum shaft and its two bearings were examined to develop a relationship between the fatigue life of the shaft and the interaction tolerances. Optimization of tolerance bands was completed in consideration of the fatigue life of the shaft as the cost function. The following methodology is followed: multibody dynamic model of a washing machine was constructed and used to calculate dynamic loading on the components. Then, these forces were used in finite element analyses to calculate the stress field in critical components which was used for fatigue life predictions. The factors affecting the fatigue life were examined to find optimum tolerance grade for a given test condition. Numerical results were verified by experimental observations.Keywords: fatigue life, finite element analysis, tolerance analysis, optimization
Procedia PDF Downloads 1573739 Zinc Oxid Nanotubes Modified by SiO2 as a Recyclable Catalyst for the Synthesis of 2,3-Dihydroquinazolin-4(1H)-Ones
Authors: Rakhshan Hakimelahi
Abstract:
In recent years, zinc oxid nano tubes have attracted much attention. The direct use of zinc oxid nano tubes modified by SiO2 as recoverable catalysts for organic reactions is very rare. The catalysts were characterized by XRD. The average particle size of ZnO catalysts is 57 nm and there are high density defects on nano tubes surfaces. A simple and efficient method for the quinazolin derivatives synthesis from the condensation isatoic anhydride and an aromatic aldehyde with ammonium acetate in the presence of a catalytic amount zinc oxid nano tubes modified by SiO2 is described. The reason proposed for higher catalytic activity of zinc oxid nano tubes modified by SiO2 is a combination effect of the small particle size and high-density surface defects. The practical and simple method led to excellent yields of the 2,3-Di hydro quinazolin-4(1H)-one derivatives under mild conditions and within short times.Keywords: 2, 3-Dihydroquinazolin-4(1H)-one derivatives, reusable catalyst, SiO2, zinc oxid nanotubes
Procedia PDF Downloads 3733738 A Different Approach to Optimize Fuzzy Membership Functions with Extended FIR Filter
Authors: Jun-Ho Chung, Sung-Hyun Yoo, In-Hwan Choi, Hyun-Kook Lee, Moon-Kyu Song, Choon-Ki Ahn
Abstract:
The extended finite impulse response (EFIR) filter is addressed to optimize membership functions (MFs) of the fuzzy model that has strong nonlinearity. MFs are important parts of the fuzzy logic system (FLS) and, thus optimizing MFs of FLS is one of approaches to improve the performance of output. We employ the EFIR as an alternative optimization option to nonlinear fuzzy model. The performance of EFIR is demonstrated on a fuzzy cruise control via a numerical example.Keywords: fuzzy logic system, optimization, membership function, extended FIR filter
Procedia PDF Downloads 7243737 Magnetic Susceptibility Measurements of Urban Areas in Denizli City and Showing the Distributions of Heavy Metal Pollution
Authors: Ali Aydin
Abstract:
Three hundred and fifty soil samples were collected around the urban and residential area, for the purpose of a magnetic susceptibility study on pollution in Denizli City, Turkiye. Measurements of volume-specific magnetic susceptibility (к) and mass-specific magnetic susceptibility (χ) show a significant variation range from place to place collected soil samples. In this study, we did a primary magnetic study near the high heavy traffic pollution in a part of Denizli city, Turkiye which was said the most polluted city in Aegean Region of Turkey. The magnetic susceptibility measurements increased from the garden area to residential area and reached the high levels near the industrial areas of the city. Magnetic particle concentration and grain size sourced exhaust gasses, and other pollution sources increase with the increasing distance from a residential area, indicating the high traffic road area.Keywords: magnetic susceptibility, pollution, magnetic particle, Denizli
Procedia PDF Downloads 2963736 Distributed System Computing Resource Scheduling Algorithm Based on Deep Reinforcement Learning
Authors: Yitao Lei, Xingxiang Zhai, Burra Venkata Durga Kumar
Abstract:
As the quantity and complexity of computing in large-scale software systems increase, distributed system computing becomes increasingly important. The distributed system realizes high-performance computing by collaboration between different computing resources. If there are no efficient resource scheduling resources, the abuse of distributed computing may cause resource waste and high costs. However, resource scheduling is usually an NP-hard problem, so we cannot find a general solution. However, some optimization algorithms exist like genetic algorithm, ant colony optimization, etc. The large scale of distributed systems makes this traditional optimization algorithm challenging to work with. Heuristic and machine learning algorithms are usually applied in this situation to ease the computing load. As a result, we do a review of traditional resource scheduling optimization algorithms and try to introduce a deep reinforcement learning method that utilizes the perceptual ability of neural networks and the decision-making ability of reinforcement learning. Using the machine learning method, we try to find important factors that influence the performance of distributed system computing and help the distributed system do an efficient computing resource scheduling. This paper surveys the application of deep reinforcement learning on distributed system computing resource scheduling proposes a deep reinforcement learning method that uses a recurrent neural network to optimize the resource scheduling, and proposes the challenges and improvement directions for DRL-based resource scheduling algorithms.Keywords: resource scheduling, deep reinforcement learning, distributed system, artificial intelligence
Procedia PDF Downloads 1133735 Design and Optimization of Flow Field for Cavitation Reduction of Valve Sleeves
Authors: Kamal Upadhyay, Zhou Hua, Yu Rui
Abstract:
This paper aims to improve the streamline linked with the flow field and cavitation on the valve sleeve. We observed that local pressure fluctuation produces a low-pressure zone, central to the formation of vapor volume fraction within the valve chamber led to air-bubbles (or cavities). Thus, it allows simultaneously to a severe negative impact on the inner surface and lifespan of the valve sleeves. Cavitation reduction is a vitally important issue to pressure control valves. The optimization of the flow field is proposed in this paper to reduce the cavitation of valve sleeves. In this method, the inner wall of the valve sleeve is changed from a cylindrical surface to the conical surface, leading to the decline of the fluid flow velocity and the rise of the outlet pressure. Besides, the streamline is distributed inside the sleeve uniformly. Thus, the bubble generation is lessened. The fluid models are built and analysis of flow field distribution, pressure, vapor volume and velocity was carried out using computational fluid dynamics (CFD) and numerical technique. The results indicate that this structure can suppress the cavitation of valve sleeves effectively.Keywords: streamline, cavitation, optimization, computational fluid dynamics
Procedia PDF Downloads 148