Search results for: hyperspectral image classification using tree search algorithm
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 9598

Search results for: hyperspectral image classification using tree search algorithm

8608 Decision Making System for Clinical Datasets

Authors: P. Bharathiraja

Abstract:

Computer Aided decision making system is used to enhance diagnosis and prognosis of diseases and also to assist clinicians and junior doctors in clinical decision making. Medical Data used for decision making should be definite and consistent. Data Mining and soft computing techniques are used for cleaning the data and for incorporating human reasoning in decision making systems. Fuzzy rule based inference technique can be used for classification in order to incorporate human reasoning in the decision making process. In this work, missing values are imputed using the mean or mode of the attribute. The data are normalized using min-ma normalization to improve the design and efficiency of the fuzzy inference system. The fuzzy inference system is used to handle the uncertainties that exist in the medical data. Equal-width-partitioning is used to partition the attribute values into appropriate fuzzy intervals. Fuzzy rules are generated using Class Based Associative rule mining algorithm. The system is trained and tested using heart disease data set from the University of California at Irvine (UCI) Machine Learning Repository. The data was split using a hold out approach into training and testing data. From the experimental results it can be inferred that classification using fuzzy inference system performs better than trivial IF-THEN rule based classification approaches. Furthermore it is observed that the use of fuzzy logic and fuzzy inference mechanism handles uncertainty and also resembles human decision making. The system can be used in the absence of a clinical expert to assist junior doctors and clinicians in clinical decision making.

Keywords: decision making, data mining, normalization, fuzzy rule, classification

Procedia PDF Downloads 519
8607 A Novel Breast Cancer Detection Algorithm Using Point Region Growing Segmentation and Pseudo-Zernike Moments

Authors: Aileen F. Wang

Abstract:

Mammography has been one of the most reliable methods for early detection and diagnosis of breast cancer. However, mammography misses about 17% and up to 30% of breast cancers due to the subtle and unstable appearances of breast cancer in their early stages. Recent computer-aided diagnosis (CADx) technology using Zernike moments has improved detection accuracy. However, it has several drawbacks: it uses manual segmentation, Zernike moments are not robust, and it still has a relatively high false negative rate (FNR)–17.6%. This project will focus on the development of a novel breast cancer detection algorithm to automatically segment the breast mass and further reduce FNR. The algorithm consists of automatic segmentation of a single breast mass using Point Region Growing Segmentation, reconstruction of the segmented breast mass using Pseudo-Zernike moments, and classification of the breast mass using the root mean square (RMS). A comparative study among the various algorithms on the segmentation and reconstruction of breast masses was performed on randomly selected mammographic images. The results demonstrated that the newly developed algorithm is the best in terms of accuracy and cost effectiveness. More importantly, the new classifier RMS has the lowest FNR–6%.

Keywords: computer aided diagnosis, mammography, point region growing segmentation, pseudo-zernike moments, root mean square

Procedia PDF Downloads 453
8606 Documents Emotions Classification Model Based on TF-IDF Weighting Measure

Authors: Amr Mansour Mohsen, Hesham Ahmed Hassan, Amira M. Idrees

Abstract:

Emotions classification of text documents is applied to reveal if the document expresses a determined emotion from its writer. As different supervised methods are previously used for emotion documents’ classification, in this research we present a novel model that supports the classification algorithms for more accurate results by the support of TF-IDF measure. Different experiments have been applied to reveal the applicability of the proposed model, the model succeeds in raising the accuracy percentage according to the determined metrics (precision, recall, and f-measure) based on applying the refinement of the lexicon, integration of lexicons using different perspectives, and applying the TF-IDF weighting measure over the classifying features. The proposed model has also been compared with other research to prove its competence in raising the results’ accuracy.

Keywords: emotion detection, TF-IDF, WEKA tool, classification algorithms

Procedia PDF Downloads 484
8605 Maturity Classification of Oil Palm Fresh Fruit Bunches Using Thermal Imaging Technique

Authors: Shahrzad Zolfagharnassab, Abdul Rashid Mohamed Shariff, Reza Ehsani, Hawa Ze Jaffar, Ishak Aris

Abstract:

Ripeness estimation of oil palm fresh fruit is important processes that affect the profitableness and salability of oil palm fruits. The adulthood or ripeness of the oil palm fruits influences the quality of oil palm. Conventional procedure includes physical grading of Fresh Fruit Bunches (FFB) maturity by calculating the number of loose fruits per bunch. This physical classification of oil palm FFB is costly, time consuming and the results may have human error. Hence, many researchers try to develop the methods for ascertaining the maturity of oil palm fruits and thereby, deviously the oil content of distinct palm fruits without the need for exhausting oil extraction and analysis. This research investigates the potential of infrared images (Thermal Images) as a predictor to classify the oil palm FFB ripeness. A total of 270 oil palm fresh fruit bunches from most common cultivar of oil palm bunches Nigresens according to three maturity categories: under ripe, ripe and over ripe were collected. Each sample was scanned by the thermal imaging cameras FLIR E60 and FLIR T440. The average temperature of each bunches were calculated by using image processing in FLIR Tools and FLIR ThermaCAM researcher pro 2.10 environment software. The results show that temperature content decreased from immature to over mature oil palm FFBs. An overall analysis-of-variance (ANOVA) test was proved that this predictor gave significant difference between underripe, ripe and overripe maturity categories. This shows that the temperature as predictors can be good indicators to classify oil palm FFB. Classification analysis was performed by using the temperature of the FFB as predictors through Linear Discriminant Analysis (LDA), Mahalanobis Discriminant Analysis (MDA), Artificial Neural Network (ANN) and K- Nearest Neighbor (KNN) methods. The highest overall classification accuracy was 88.2% by using Artificial Neural Network. This research proves that thermal imaging and neural network method can be used as predictors of oil palm maturity classification.

Keywords: artificial neural network, maturity classification, oil palm FFB, thermal imaging

Procedia PDF Downloads 363
8604 Foot Recognition Using Deep Learning for Knee Rehabilitation

Authors: Rakkrit Duangsoithong, Jermphiphut Jaruenpunyasak, Alba Garcia

Abstract:

The use of foot recognition can be applied in many medical fields such as the gait pattern analysis and the knee exercises of patients in rehabilitation. Generally, a camera-based foot recognition system is intended to capture a patient image in a controlled room and background to recognize the foot in the limited views. However, this system can be inconvenient to monitor the knee exercises at home. In order to overcome these problems, this paper proposes to use the deep learning method using Convolutional Neural Networks (CNNs) for foot recognition. The results are compared with the traditional classification method using LBP and HOG features with kNN and SVM classifiers. According to the results, deep learning method provides better accuracy but with higher complexity to recognize the foot images from online databases than the traditional classification method.

Keywords: foot recognition, deep learning, knee rehabilitation, convolutional neural network

Procedia PDF Downloads 163
8603 The 'Human Medium' in Communicating the National Image: A Case Study of Chinese Middle-Class Tourists Visiting Japan

Authors: Abigail Qian Zhou

Abstract:

In recent years, the prosperity of mass tourism in China has accelerated the breadth and depth of direct communication between countries, and the national image has been placed in a new communication context. Outbound tourists are not only directly involved in the formation of the national image, but are also the most direct medium and the most active symbol representing the national image. This study uses Chinese middle-class tourists visiting Japan as a case study, and analyzes, through participant observation and semi-structured interviews, the communication function of the national image transmitted by 'human medium' in tourism activities. It also explores the 'human medium' in the era of mass tourism. This study hopes to build a bridge for tourism research and national image and media studies. It will provide a theoretical basis and practical guidance for promoting the national image, strengthening exchanges between tourists and local populations, and expanding the tourism market in the future.

Keywords: human medium, national image, communication, Chinese middle class, outbound tourists

Procedia PDF Downloads 127
8602 Lab Bench for Synthetic Aperture Radar Imaging System

Authors: Karthiyayini Nagarajan, P. V. Ramakrishna

Abstract:

Radar Imaging techniques provides extensive applications in the field of remote sensing, majorly Synthetic Aperture Radar (SAR) that provide high resolution target images. This paper work puts forward the effective and realizable signal generation and processing for SAR images. The major units in the system include camera, signal generation unit, signal processing unit and display screen. The real radio channel is replaced by its mathematical model based on optical image to calculate a reflected signal model in real time. Signal generation realizes the algorithm and forms the radar reflection model. Signal processing unit provides range and azimuth resolution through matched filtering and spectrum analysis procedure to form radar image on the display screen. The restored image has the same quality as that of the optical image. This SAR imaging system has been designed and implemented using MATLAB and Quartus II tools on Stratix III device as a System (Lab Bench) that works in real time to study/investigate on radar imaging rudiments and signal processing scheme for educational and research purposes.

Keywords: synthetic aperture radar, radio reflection model, lab bench, imaging engineering

Procedia PDF Downloads 499
8601 Aerodynamic Design an UAV and Stability Analysis with Method of Genetic Algorithm Optimization

Authors: Saul A. Torres Z., Eduardo Liceaga C., Alfredo Arias M.

Abstract:

We seek to develop a UAV for agricultural spraying at a maximum altitude of 5000 meters above sea level, with a payload of 100 liters of fumigant. For the developing the aerodynamic design of the aircraft is using computational tools such as the "Vortex Lattice Athena" software, "MATLAB", "ANSYS FLUENT", "XFoil" package among others. Also methods are being used structured programming, exhaustive analysis of optimization methods and search. The results have a very low margin of error, and the multi-objective problems can be helpful for future developments. Also we developed method for Stability Analysis (Lateral-Directional and Longitudinal).

Keywords: aerodynamics design, optimization, algorithm genetic, multi-objective problem, longitudinal stability, lateral-directional stability

Procedia PDF Downloads 594
8600 Design and Implementation of a Lab Bench for Synthetic Aperture Radar Imaging System

Authors: Karthiyayini Nagarajan, P. V. RamaKrishna

Abstract:

Radar Imaging techniques provides extensive applications in the field of remote sensing, majorly Synthetic Aperture Radar(SAR) that provide high resolution target images. This paper work puts forward the effective and realizable signal generation and processing for SAR images. The major units in the system include camera, signal generation unit, signal processing unit and display screen. The real radio channel is replaced by its mathematical model based on optical image to calculate a reflected signal model in real time. Signal generation realizes the algorithm and forms the radar reflection model. Signal processing unit provides range and azimuth resolution through matched filtering and spectrum analysis procedure to form radar image on the display screen. The restored image has the same quality as that of the optical image. This SAR imaging system has been designed and implemented using MATLAB and Quartus II tools on Stratix III device as a System(lab bench) that works in real time to study/investigate on radar imaging rudiments and signal processing scheme for educational and research purposes.

Keywords: synthetic aperture radar, radio reflection model, lab bench

Procedia PDF Downloads 468
8599 Obstacle Avoidance Using Image-Based Visual Servoing Based on Deep Reinforcement Learning

Authors: Tong He, Long Chen, Irag Mantegh, Wen-Fang Xie

Abstract:

This paper proposes an image-based obstacle avoidance and tracking target identification strategy in GPS-degraded or GPS-denied environment for an Unmanned Aerial Vehicle (UAV). The traditional force algorithm for obstacle avoidance could produce local minima area, in which UAV cannot get away obstacle effectively. In order to eliminate it, an artificial potential approach based on harmonic potential is proposed to guide the UAV to avoid the obstacle by using the vision system. And image-based visual servoing scheme (IBVS) has been adopted to implement the proposed obstacle avoidance approach. In IBVS, the pixel accuracy is a key factor to realize the obstacle avoidance. In this paper, the deep reinforcement learning framework has been applied by reducing pixel errors through constant interaction between the environment and the agent. In addition, the combination of OpenTLD and Tensorflow based on neural network is used to identify the type of tracking target. Numerical simulation in Matlab and ROS GAZEBO show the satisfactory result in target identification and obstacle avoidance.

Keywords: image-based visual servoing, obstacle avoidance, tracking target identification, deep reinforcement learning, artificial potential approach, neural network

Procedia PDF Downloads 143
8598 Application of Machine Learning Models to Predict Couchsurfers on Free Homestay Platform Couchsurfing

Authors: Yuanxiang Miao

Abstract:

Couchsurfing is a free homestay and social networking service accessible via the website and mobile app. Couchsurfers can directly request free accommodations from others and receive offers from each other. However, it is typically difficult for people to make a decision that accepts or declines a request when they receive it from Couchsurfers because they do not know each other at all. People are expected to meet up with some Couchsurfers who are kind, generous, and interesting while it is unavoidable to meet up with someone unfriendly. This paper utilized classification algorithms of Machine Learning to help people to find out the Good Couchsurfers and Not Good Couchsurfers on the Couchsurfing website. By knowing the prior experience, like Couchsurfer’s profiles, the latest references, and other factors, it became possible to recognize what kind of the Couchsurfers, and furthermore, it helps people to make a decision that whether to host the Couchsurfers or not. The value of this research lies in a case study in Kyoto, Japan in where the author has hosted 54 Couchsurfers, and the author collected relevant data from the 54 Couchsurfers, finally build a model based on classification algorithms for people to predict Couchsurfers. Lastly, the author offered some feasible suggestions for future research.

Keywords: Couchsurfing, Couchsurfers prediction, classification algorithm, hospitality tourism platform, hospitality sciences, machine learning

Procedia PDF Downloads 133
8597 The Use of Classifiers in Image Analysis of Oil Wells Profiling Process and the Automatic Identification of Events

Authors: Jaqueline Maria Ribeiro Vieira

Abstract:

Different strategies and tools are available at the oil and gas industry for detecting and analyzing tension and possible fractures in borehole walls. Most of these techniques are based on manual observation of the captured borehole images. While this strategy may be possible and convenient with small images and few data, it may become difficult and suitable to errors when big databases of images must be treated. While the patterns may differ among the image area, depending on many characteristics (drilling strategy, rock components, rock strength, etc.). Previously we developed and proposed a novel strategy capable of detecting patterns at borehole images that may point to regions that have tension and breakout characteristics, based on segmented images. In this work we propose the inclusion of data-mining classification strategies in order to create a knowledge database of the segmented curves. These classifiers allow that, after some time using and manually pointing parts of borehole images that correspond to tension regions and breakout areas, the system will indicate and suggest automatically new candidate regions, with higher accuracy. We suggest the use of different classifiers methods, in order to achieve different knowledge data set configurations.

Keywords: image segmentation, oil well visualization, classifiers, data-mining, visual computer

Procedia PDF Downloads 304
8596 Design and Implementation of Generative Models for Odor Classification Using Electronic Nose

Authors: Kumar Shashvat, Amol P. Bhondekar

Abstract:

In the midst of the five senses, odor is the most reminiscent and least understood. Odor testing has been mysterious and odor data fabled to most practitioners. The delinquent of recognition and classification of odor is important to achieve. The facility to smell and predict whether the artifact is of further use or it has become undesirable for consumption; the imitation of this problem hooked on a model is of consideration. The general industrial standard for this classification is color based anyhow; odor can be improved classifier than color based classification and if incorporated in machine will be awfully constructive. For cataloging of odor for peas, trees and cashews various discriminative approaches have been used Discriminative approaches offer good prognostic performance and have been widely used in many applications but are incapable to make effectual use of the unlabeled information. In such scenarios, generative approaches have better applicability, as they are able to knob glitches, such as in set-ups where variability in the series of possible input vectors is enormous. Generative models are integrated in machine learning for either modeling data directly or as a transitional step to form an indeterminate probability density function. The algorithms or models Linear Discriminant Analysis and Naive Bayes Classifier have been used for classification of the odor of cashews. Linear Discriminant Analysis is a method used in data classification, pattern recognition, and machine learning to discover a linear combination of features that typifies or divides two or more classes of objects or procedures. The Naive Bayes algorithm is a classification approach base on Bayes rule and a set of qualified independence theory. Naive Bayes classifiers are highly scalable, requiring a number of restraints linear in the number of variables (features/predictors) in a learning predicament. The main recompenses of using the generative models are generally a Generative Models make stronger assumptions about the data, specifically, about the distribution of predictors given the response variables. The Electronic instrument which is used for artificial odor sensing and classification is an electronic nose. This device is designed to imitate the anthropological sense of odor by providing an analysis of individual chemicals or chemical mixtures. The experimental results have been evaluated in the form of the performance measures i.e. are accuracy, precision and recall. The investigational results have proven that the overall performance of the Linear Discriminant Analysis was better in assessment to the Naive Bayes Classifier on cashew dataset.

Keywords: odor classification, generative models, naive bayes, linear discriminant analysis

Procedia PDF Downloads 390
8595 A Multi Sensor Monochrome Video Fusion Using Image Quality Assessment

Authors: M. Prema Kumar, P. Rajesh Kumar

Abstract:

The increasing interest in image fusion (combining images of two or more modalities such as infrared and visible light radiation) has led to a need for accurate and reliable image assessment methods. This paper gives a novel approach of merging the information content from several videos taken from the same scene in order to rack up a combined video that contains the finest information coming from different source videos. This process is known as video fusion which helps in providing superior quality (The term quality, connote measurement on the particular application.) image than the source images. In this technique different sensors (whose redundant information can be reduced) are used for various cameras that are imperative for capturing the required images and also help in reducing. In this paper Image fusion technique based on multi-resolution singular value decomposition (MSVD) has been used. The image fusion by MSVD is almost similar to that of wavelets. The idea behind MSVD is to replace the FIR filters in wavelet transform with singular value decomposition (SVD). It is computationally very simple and is well suited for real time applications like in remote sensing and in astronomy.

Keywords: multi sensor image fusion, MSVD, image processing, monochrome video

Procedia PDF Downloads 573
8594 The Distribution, Productivity and Conservation of Camphor Tree, Dryobalanops Aromatica in West Coast of Sumatra, Indonesia

Authors: Aswandi Anas Husin, Cut Rizlani Kholibrina

Abstract:

Harvesting camphor resin has been carried out since the beginning of civilization on the west coast of Sumatra. Oil or crystals that containing borneol are harvested from the camphor tree (Dryobalanops aromatica). Non-timber forest products are utilized for the manufacture of fragrances, antiseptics, anti-inflammatory, analgesic as well as effective for the treatment of blocked arteries. Based on exploration on the west coast of Sumatra, these endemic tree species were found remaining growing in groups on small spots in the lowlands to the hills. Some populations are found at an altitude of 700 meters above sea level in Kadabuhan, Jongkong and Sultan Daulat in Subulussalam district, Singkohor and Lake Paris in Aceh Singkil district, and Sirandorung and Manduamas in the north of Barus, Central Tapanuli district. These multi-purpose tree species was also identified as being able to adapt to the Singkil Peat Swamp. The decline in tree population has a direct impact on reducing their productivity. Conventionally, the crystals are harvested by cutting and splitting the stem into wooden blocks. In this way about 1.5-2.5 kg of crystals are obtained with various qualities. Camphor retrieval can also be done by making a notch on a standing tree trunk and collecting liquid resin (ombil) that is removed from the injured resin channel. Twigs and leaves also contain borneol. The aromatic content in this section opens opportunities for the supply of borneol through the distillation process. Vegetative propagation technology is needed to overcome the limitations of available seeds. This breeding strategy for vulnerable species starts with gathering genetic material from various provenances which are then used to support the provision of basic populations, breeding populations, multiplication populations and production populations for extensive development of camphor tree plantations

Keywords: camphor, conservation, natural borneol, productivity, vulnerable species

Procedia PDF Downloads 126
8593 Finite Element Analysis for Earing Prediction Incorporating the BBC2003 Material Model with Fully Implicit Integration Method: Derivation and Numerical Algorithm

Authors: Sajjad Izadpanah, Seyed Hadi Ghaderi, Morteza Sayah Irani, Mahdi Gerdooei

Abstract:

In this research work, a sophisticated yield criterion known as BBC2003, capable of describing planar anisotropic behaviors of aluminum alloy sheets, was integrated into the commercial finite element code ABAQUS/Standard via a user subroutine. The complete formulation of the implementation process using a fully implicit integration scheme, i.e., the classic backward Euler method, is presented, and relevant aspects of the yield criterion are introduced. In order to solve nonlinear differential and algebraic equations, the line-search algorithm was adopted in the user-defined material subroutine (UMAT) to expand the convergence domain of the iterative Newton-Raphson method. The developed subroutine was used to simulate a challenging computational problem with complex stress states, i.e., deep drawing of an anisotropic aluminum alloy AA3105. The accuracy and stability of the developed subroutine were confirmed by comparing the numerically predicted earing and thickness variation profiles with the experimental results, which showed an excellent agreement between numerical and experimental earing and thickness profiles. The integration of the BBC2003 yield criterion into ABAQUS/Standard represents a significant contribution to the field of computational mechanics and provides a useful tool for analyzing the mechanical behavior of anisotropic materials subjected to complex loading conditions.

Keywords: BBC2003 yield function, plastic anisotropy, fully implicit integration scheme, line search algorithm, explicit and implicit integration schemes

Procedia PDF Downloads 75
8592 Sparse Principal Component Analysis: A Least Squares Approximation Approach

Authors: Giovanni Merola

Abstract:

Sparse Principal Components Analysis aims to find principal components with few non-zero loadings. We derive such sparse solutions by adding a genuine sparsity requirement to the original Principal Components Analysis (PCA) objective function. This approach differs from others because it preserves PCA's original optimality: uncorrelatedness of the components and least squares approximation of the data. To identify the best subset of non-zero loadings we propose a branch-and-bound search and an iterative elimination algorithm. This last algorithm finds sparse solutions with large loadings and can be run without specifying the cardinality of the loadings and the number of components to compute in advance. We give thorough comparisons with the existing sparse PCA methods and several examples on real datasets.

Keywords: SPCA, uncorrelated components, branch-and-bound, backward elimination

Procedia PDF Downloads 384
8591 Optimal Design of Multimachine Power System Stabilizers Using Improved Multi-Objective Particle Swarm Optimization Algorithm

Authors: Badr M. Alshammari, T. Guesmi

Abstract:

In this paper, the concept of a non-dominated sorting multi-objective particle swarm optimization with local search (NSPSO-LS) is presented for the optimal design of multimachine power system stabilizers (PSSs). The controller design is formulated as an optimization problem in order to shift the system electromechanical modes in a pre-specified region in the s-plan. A composite set of objective functions comprising the damping factor and the damping ratio of the undamped and lightly damped electromechanical modes is considered. The performance of the proposed optimization algorithm is verified for the 3-machine 9-bus system. Simulation results based on eigenvalue analysis and nonlinear time-domain simulation show the potential and superiority of the NSPSO-LS algorithm in tuning PSSs over a wide range of loading conditions and large disturbance compared to the classic PSO technique and genetic algorithms.

Keywords: multi-objective optimization, particle swarm optimization, power system stabilizer, low frequency oscillations

Procedia PDF Downloads 431
8590 Processing and Economic Analysis of Rain Tree (Samanea saman) Pods for Village Level Hydrous Bioethanol Production

Authors: Dharell B. Siano, Wendy C. Mateo, Victorino T. Taylan, Francisco D. Cuaresma

Abstract:

Biofuel is one of the renewable energy sources adapted by the Philippine government in order to lessen the dependency on foreign fuel and to reduce carbon dioxide emissions. Rain tree pods were seen to be a promising source of bioethanol since it contains significant amount of fermentable sugars. The study was conducted to establish the complete procedure in processing rain tree pods for village level hydrous bioethanol production. Production processes were done for village level hydrous bioethanol production from collection, drying, storage, shredding, dilution, extraction, fermentation, and distillation. The feedstock was sundried, and moisture content was determined at a range of 20% to 26% prior to storage. Dilution ratio was 1:1.25 (1 kg of pods = 1.25 L of water) and after extraction process yielded a sugar concentration of 22 0Bx to 24 0Bx. The dilution period was three hours. After three hours of diluting the samples, the juice was extracted using extractor with a capacity of 64.10 L/hour. 150 L of rain tree pods juice was extracted and subjected to fermentation process using a village level anaerobic bioreactor. Fermentation with yeast (Saccharomyces cerevisiae) can fasten up the process, thus producing more ethanol at a shorter period of time; however, without yeast fermentation, it also produces ethanol at lower volume with slower fermentation process. Distillation of 150 L of fermented broth was done for six hours at 85 °C to 95 °C temperature (feedstock) and 74 °C to 95 °C temperature of the column head (vapor state of ethanol). The highest volume of ethanol recovered was established at with yeast fermentation at five-day duration with a value of 14.89 L and lowest actual ethanol content was found at without yeast fermentation at three-day duration having a value of 11.63 L. In general, the results suggested that rain tree pods had a very good potential as feedstock for bioethanol production. Fermentation of rain tree pods juice can be done with yeast and without yeast.

Keywords: fermentation, hydrous bioethanol, fermentation, rain tree pods, village level

Procedia PDF Downloads 296
8589 Mean Shift-Based Preprocessing Methodology for Improved 3D Buildings Reconstruction

Authors: Nikolaos Vassilas, Theocharis Tsenoglou, Djamchid Ghazanfarpour

Abstract:

In this work we explore the capability of the mean shift algorithm as a powerful preprocessing tool for improving the quality of spatial data, acquired from airborne scanners, from densely built urban areas. On one hand, high resolution image data corrupted by noise caused by lossy compression techniques are appropriately smoothed while at the same time preserving the optical edges and, on the other, low resolution LiDAR data in the form of normalized Digital Surface Map (nDSM) is upsampled through the joint mean shift algorithm. Experiments on both the edge-preserving smoothing and upsampling capabilities using synthetic RGB-z data show that the mean shift algorithm is superior to bilateral filtering as well as to other classical smoothing and upsampling algorithms. Application of the proposed methodology for 3D reconstruction of buildings of a pilot region of Athens, Greece results in a significant visual improvement of the 3D building block model.

Keywords: 3D buildings reconstruction, data fusion, data upsampling, mean shift

Procedia PDF Downloads 316
8588 UniFi: Universal Filter Model for Image Enhancement

Authors: Aleksei Samarin, Artyom Nazarenko, Valentin Malykh

Abstract:

Image enhancement is becoming more and more popular, especially on mobile devices. Nowadays, it is a common approach to enhance an image using a convolutional neural network (CNN). Such a network should be of significant size; otherwise, a possibility for the artifacts to occur is overgrowing. The existing large CNNs are computationally expensive, which could be crucial for mobile devices. Another important flaw of such models is they are poorly interpretable. There is another approach to image enhancement, namely, the usage of predefined filters in combination with the prediction of their applicability. We present an approach following this paradigm, which outperforms both existing CNN-based and filter-based approaches in the image enhancement task. It is easily adaptable for mobile devices since it has only 47 thousand parameters. It shows the best SSIM 0.919 on RANDOM250 (MIT Adobe FiveK) among small models and is thrice faster than previous models.

Keywords: universal filter, image enhancement, neural networks, computer vision

Procedia PDF Downloads 102
8587 Evaluation of the Effect of Learning Disabilities and Accommodations on the Prediction of the Exam Performance: Ordinal Decision-Tree Algorithm

Authors: G. Singer, M. Golan

Abstract:

Providing students with learning disabilities (LD) with extra time to grant them equal access to the exam is a necessary but insufficient condition to compensate for their LD; there should also be a clear indication that the additional time was actually used. For example, if students with LD use more time than students without LD and yet receive lower grades, this may indicate that a different accommodation is required. If they achieve higher grades but use the same amount of time, then the effectiveness of the accommodation has not been demonstrated. The main goal of this study is to evaluate the effect of including parameters related to LD and extended exam time, along with other commonly-used characteristics (e.g., student background and ability measures such as high-school grades), on the ability of ordinal decision-tree algorithms to predict exam performance. We use naturally-occurring data collected from hundreds of undergraduate engineering students. The sub-goals are i) to examine the improvement in prediction accuracy when the indicator of exam performance includes 'actual time used' in addition to the conventional indicator (exam grade) employed in most research; ii) to explore the effectiveness of extended exam time on exam performance for different courses and for LD students with different profiles (i.e., sets of characteristics). This is achieved by using the patterns (i.e., subgroups) generated by the algorithms to identify pairs of subgroups that differ in just one characteristic (e.g., course or type of LD) but have different outcomes in terms of exam performance (grade and time used). Since grade and time used to exhibit an ordering form, we propose a method based on ordinal decision-trees, which applies a weighted information-gain ratio (WIGR) measure for selecting the classifying attributes. Unlike other known ordinal algorithms, our method does not assume monotonicity in the data. The proposed WIGR is an extension of an information-theoretic measure, in the sense that it adjusts to the case of an ordinal target and takes into account the error severity between two different target classes. Specifically, we use ordinal C4.5, random-forest, and AdaBoost algorithms, as well as an ensemble technique composed of ordinal and non-ordinal classifiers. Firstly, we find that the inclusion of LD and extended exam-time parameters improves prediction of exam performance (compared to specifications of the algorithms that do not include these variables). Secondly, when the indicator of exam performance includes 'actual time used' together with grade (as opposed to grade only), the prediction accuracy improves. Thirdly, our subgroup analyses show clear differences in the effect of extended exam time on exam performance among different courses and different student profiles. From a methodological perspective, we find that the ordinal decision-tree based algorithms outperform their conventional, non-ordinal counterparts. Further, we demonstrate that the ensemble-based approach leverages the strengths of each type of classifier (ordinal and non-ordinal) and yields better performance than each classifier individually.

Keywords: actual exam time usage, ensemble learning, learning disabilities, ordinal classification, time extension

Procedia PDF Downloads 101
8586 Automatic Staging and Subtype Determination for Non-Small Cell Lung Carcinoma Using PET Image Texture Analysis

Authors: Seyhan Karaçavuş, Bülent Yılmaz, Ömer Kayaaltı, Semra İçer, Arzu Taşdemir, Oğuzhan Ayyıldız, Kübra Eset, Eser Kaya

Abstract:

In this study, our goal was to perform tumor staging and subtype determination automatically using different texture analysis approaches for a very common cancer type, i.e., non-small cell lung carcinoma (NSCLC). Especially, we introduced a texture analysis approach, called Law’s texture filter, to be used in this context for the first time. The 18F-FDG PET images of 42 patients with NSCLC were evaluated. The number of patients for each tumor stage, i.e., I-II, III or IV, was 14. The patients had ~45% adenocarcinoma (ADC) and ~55% squamous cell carcinoma (SqCCs). MATLAB technical computing language was employed in the extraction of 51 features by using first order statistics (FOS), gray-level co-occurrence matrix (GLCM), gray-level run-length matrix (GLRLM), and Laws’ texture filters. The feature selection method employed was the sequential forward selection (SFS). Selected textural features were used in the automatic classification by k-nearest neighbors (k-NN) and support vector machines (SVM). In the automatic classification of tumor stage, the accuracy was approximately 59.5% with k-NN classifier (k=3) and 69% with SVM (with one versus one paradigm), using 5 features. In the automatic classification of tumor subtype, the accuracy was around 92.7% with SVM one vs. one. Texture analysis of FDG-PET images might be used, in addition to metabolic parameters as an objective tool to assess tumor histopathological characteristics and in automatic classification of tumor stage and subtype.

Keywords: cancer stage, cancer cell type, non-small cell lung carcinoma, PET, texture analysis

Procedia PDF Downloads 327
8585 Radial Variation of Anatomical Characteristics in Three Native Fast-Growing Species Growing in South Kalimantan, Indonesia

Authors: Wiwin Tyas Istikowati, Futoshi Ishiguri, Haruna Aisho, Budi Sutiya, Imam Wahyudi, Kazuya Iizuka, Shinso Yokota

Abstract:

The objective of this study was to investigate the anatomical characteristics of three native fast-growing species, terap (Artocarpus elasticus Reinw. ex Blume), medang (Neolitsea latifolia (Blume) S. Moore), and balik angin (Alphitonia excelsa (Fenzel) Reissek ex Benth) growing in the secondary forest in South Kalimantan, Indonesia for evaluating the possibility of tree breeding for wood quality. Cell lengths were investigated for 5 trees in each species at several different height positions (1.0, 3.0, 5.0, 7.0, 9.0, and 11.0 m above the ground). The mean values of fiber and vessel element lengths in terap, medang, and balik angin were 1.52 and 0.44, 1.16 and 0.53, and 1.02 and 0.49 mm, respectively. Fiber length in terap and balik angin gradually increased from pith to bark, whereas it increased up to 2 cm and then became nearly constant to the bark in medang. Vessel element length was almost constant from pith to bark in terap and balik angin, while slightly increased from pith to bark in medang. Fiber length in terap has a fluctuation pattern from ground level to top of the tree. It decreased up to 3 m above the ground, increased up to 5 m, and then decreased to the top of the tree. On the other hand, vessel element length slightly increased up to 5 m above the ground, and then decreased to the top of the tree. Both fiber and vessel element lengths in medang were almost constant from ground level to top of the tree, whereas decreased from ground level to top of the tree in balik angin. Significant difference at 1% level among trees was found in both fiber and vessel element length in both radial and longitudinal directions for terap and medang. Based on obtained results, it is concluded that the wood quality in fiber and vessel element lengths of terap and medang can be improved by tree breeding programs.

Keywords: anatomical properties, fiber length, vessel elements length, fast-growing species

Procedia PDF Downloads 353
8584 Investigation of the Speckle Pattern Effect for Displacement Assessments by Digital Image Correlation

Authors: Salim Çalışkan, Hakan Akyüz

Abstract:

Digital image correlation has been accustomed as a versatile and efficient method for measuring displacements on the article surfaces by comparing reference subsets in undeformed images with the define target subset in the distorted image. The theoretical model points out that the accuracy of the digital image correlation displacement data can be exactly anticipated based on the divergence of the image noise and the sum of the squares of the subset intensity gradients. The digital image correlation procedure locates each subset of the original image in the distorted image. The software then determines the displacement values of the centers of the subassemblies, providing the complete displacement measures. In this paper, the effect of the speckle distribution and its effect on displacements measured out plane displacement data as a function of the size of the subset was investigated. Nine groups of speckle patterns were used in this study: samples are sprayed randomly by pre-manufactured patterns of three different hole diameters, each with three coverage ratios, on a computer numerical control punch press. The resulting displacement values, referenced at the center of the subset, are evaluated based on the average of the displacements of the pixel’s interior the subset.

Keywords: digital image correlation, speckle pattern, experimental mechanics, tensile test, aluminum alloy

Procedia PDF Downloads 75
8583 Implementation of Invisible Digital Watermarking

Authors: V. Monisha, D. Sindhuja, M. Sowmiya

Abstract:

Over the decade, the applications about multimedia have been developed rapidly. The advancement in the communication field at the faster pace, it is necessary to protect the data during transmission. Thus, security of multimedia contents becomes a vital issue, and it is a need for protecting the digital content against malfunctions. Digital watermarking becomes the solution for the copyright protection and authentication of data in the network. In multimedia applications, embedded watermarks should be robust, and imperceptible. For improving robustness, the discrete wavelet transform is used. Both encoding and extraction algorithm can be done using MATLAB R2012a. In this Discrete wavelet transform (DWT) domain of digital image, watermarking algorithm is used, and hardware implementation can be done on Xilinx based FPGA.

Keywords: digital watermarking, DWT, robustness, FPGA

Procedia PDF Downloads 414
8582 Reinforcement Learning for Classification of Low-Resolution Satellite Images

Authors: Khadija Bouzaachane, El Mahdi El Guarmah

Abstract:

The classification of low-resolution satellite images has been a worthwhile and fertile field that attracts plenty of researchers due to its importance in monitoring geographical areas. It could be used for several purposes such as disaster management, military surveillance, agricultural monitoring. The main objective of this work is to classify efficiently and accurately low-resolution satellite images by using novel technics of deep learning and reinforcement learning. The images include roads, residential areas, industrial areas, rivers, sea lakes, and vegetation. To achieve that goal, we carried out experiments on the sentinel-2 images considering both high accuracy and efficiency classification. Our proposed model achieved a 91% accuracy on the testing dataset besides a good classification for land cover. Focus on the parameter precision; we have obtained 93% for the river, 92% for residential, 97% for residential, 96% for the forest, 87% for annual crop, 84% for herbaceous vegetation, 85% for pasture, 78% highway and 100% for Sea Lake.

Keywords: classification, deep learning, reinforcement learning, satellite imagery

Procedia PDF Downloads 214
8581 Early Detection of Breast Cancer in Digital Mammograms Based on Image Processing and Artificial Intelligence

Authors: Sehreen Moorat, Mussarat Lakho

Abstract:

A method of artificial intelligence using digital mammograms data has been proposed in this paper for detection of breast cancer. Many researchers have developed techniques for the early detection of breast cancer; the early diagnosis helps to save many lives. The detection of breast cancer through mammography is effective method which detects the cancer before it is felt and increases the survival rate. In this paper, we have purposed image processing technique for enhancing the image to detect the graphical table data and markings. Texture features based on Gray-Level Co-Occurrence Matrix and intensity based features are extracted from the selected region. For classification purpose, neural network based supervised classifier system has been used which can discriminate between benign and malignant. Hence, 68 digital mammograms have been used to train the classifier. The obtained result proved that automated detection of breast cancer is beneficial for early diagnosis and increases the survival rates of breast cancer patients. The proposed system will help radiologist in the better interpretation of breast cancer.

Keywords: medical imaging, cancer, processing, neural network

Procedia PDF Downloads 260
8580 Analyzing Impacts of Road Network on Vegetation Using Geographic Information System and Remote Sensing Techniques

Authors: Elizabeth Malebogo Mosepele

Abstract:

Road transport has become increasingly common in the world; people rely on road networks for transportation purpose on a daily basis. However, environmental impact of roads on surrounding landscapes extends their potential effects even further. This study investigates the impact of road network on natural vegetation. The study will provide baseline knowledge regarding roadside vegetation and would be helpful in future for conservation of biodiversity along the road verges and improvements of road verges. The general hypothesis of this study is that the amount and condition of road side vegetation could be explained by road network conditions. Remote sensing techniques were used to analyze vegetation conditions. Landsat 8 OLI image was used to assess vegetation cover condition. NDVI image was generated and used as a base from which land cover classes were extracted, comprising four categories viz. healthy vegetation, degraded vegetation, bare surface, and water. The classification of the image was achieved using the supervised classification technique. Road networks were digitized from Google Earth. For observed data, transect based quadrats of 50*50 m were conducted next to road segments for vegetation assessment. Vegetation condition was related to road network, with the multinomial logistic regression confirming a significant relationship between vegetation condition and road network. The null hypothesis formulated was that 'there is no variation in vegetation condition as we move away from the road.' Analysis of vegetation condition revealed degraded vegetation within close proximity of a road segment and healthy vegetation as the distance increase away from the road. The Chi Squared value was compared with critical value of 3.84, at the significance level of 0.05 to determine the significance of relationship. Given that the Chi squared value was 395, 5004, the null hypothesis was therefore rejected; there is significant variation in vegetation the distance increases away from the road. The conclusion is that the road network plays an important role in the condition of vegetation.

Keywords: Chi squared, geographic information system, multinomial logistic regression, remote sensing, road side vegetation

Procedia PDF Downloads 433
8579 Encryption and Decryption of Nucleic Acid Using Deoxyribonucleic Acid Algorithm

Authors: Iftikhar A. Tayubi, Aabdulrahman Alsubhi, Abdullah Althrwi

Abstract:

The deoxyribonucleic acid text provides a single source of high-quality Cryptography about Deoxyribonucleic acid sequence for structural biologists. We will provide an intuitive, well-organized and user-friendly web interface that allows users to encrypt and decrypt Deoxy Ribonucleic Acid sequence text. It includes complex, securing by using Algorithm to encrypt and decrypt Deoxy Ribonucleic Acid sequence. The utility of this Deoxy Ribonucleic Acid Sequence Text is that, it can provide a user-friendly interface for users to Encrypt and Decrypt store the information about Deoxy Ribonucleic Acid sequence. These interfaces created in this project will satisfy the demands of the scientific community by providing fully encrypt of Deoxy Ribonucleic Acid sequence during this website. We have adopted a methodology by using C# and Active Server Page.NET for programming which is smart and secure. Deoxy Ribonucleic Acid sequence text is a wonderful piece of equipment for encrypting large quantities of data, efficiently. The users can thus navigate from one encoding and store orange text, depending on the field for user’s interest. Algorithm classification allows a user to Protect the deoxy ribonucleic acid sequence from change, whether an alteration or error occurred during the Deoxy Ribonucleic Acid sequence data transfer. It will check the integrity of the Deoxy Ribonucleic Acid sequence data during the access.

Keywords: algorithm, ASP.NET, DNA, encrypt, decrypt

Procedia PDF Downloads 235