Search results for: highly scalable programming model
20111 Electronic Payment Recording with Payment History Retrieval Module: A System Software
Authors: Adrian Forca, Simeon Cainday III
Abstract:
The Electronic Payment Recording with Payment History Retrieval Module is developed intendedly for the College of Science and Technology. This system software innovates the manual process of recording the payments done in the department through the development of electronic payment recording system software shifting from the slow and time-consuming procedure to quick yet reliable and accurate way of recording payments because it immediately generates receipts for every transaction. As an added feature to its software process, generation of recorded payment report is integrated eliminating the manual reporting to a more easy and consolidated report. As an added feature to the system, all recorded payments of the students can be retrieved immediately making the system transparent and reliable payment recording software. Viewing the whole process, the system software will shift from the manual process to an organized software technology because the information will be stored in a logically correct and normalized database. Further, the software will be developed using the modern programming language and implement strict programming methods to validate all users accessing the system, evaluate all data passed into the system and information retrieved to ensure data accuracy and reliability. In addition, the system will identify the user and limit its access privilege to establish boundaries of the specific access to information allowed for the store, modify, and update making the information secure against unauthorized data manipulation. As a result, the System software will eliminate the manual procedure and replace with an innovative modern information technology resulting to the improvement of the whole process of payment recording fast, secure, accurate and reliable software innovations.Keywords: collection, information system, manual procedure, payment
Procedia PDF Downloads 16620110 Optimizing the Elevated Nitritation for Autotrophic/Heterotrophic Denitritation in CSTR by Treating Livestock Wastewater
Authors: Hammad Khan, Wookeun Bae
Abstract:
The objective of this study was to optimize and control the highly loaded and efficient nitrite production having suitability for autotrophic and heterotrophic denitritation. A lab scale CSTR for partial and full nitritation was operated to treat the livestock manure digester liquor having an ammonium concentration of ~2000 mg-NH4+-N/L and biodegradable contents of ~0.8 g-COD/L. The experiments were performed at 30°C, pH: 8.0 DO: 1.5 mg/L and SRT ranging from 7-20 days. After 125 days operation, >95% nitrite buildup having the ammonium loading rate of ~3.2 kg-NH4+-N/m3-day was seen with almost complete ammonium conversion. On increasing the loading rate further (i.e. from 3.2-6.2 kg-NH4+-N/m3-day), stability of the system remained unaffected. On decreasing the pH from 8 to7.5 and further 7.2, removal rate can be easily controlled as 95%, 75% and even 50%. Results demonstrated that nitritation stability and desired removal rates are controlled by a balance of simultaneous inhibition by FA and FNA, pH affect and DO limitation. These parameters proved to be effective even to produce an appropriate influent for anammox. In addition, a mathematical model, identified through the occurring biological reactions, is proposed to optimize the full and partial nitritation process. The proposed model presents relationship between pH, ammonium and produced nitrite for full and partial nitritation under the varying concentrations of DO, and simultaneous inhibition by FA and FNA.Keywords: stable nitritation, high loading, autrophic denitritation, hetrotrophic denitritation
Procedia PDF Downloads 32720109 Coherencing a Diametrical Interests between the State, Adat Community and Private Interests in Utilising the Land for Investment in Indonesia
Authors: L. M. Hayyan ul Haq, Lalu Sabardi
Abstract:
This research is aimed at exploring an appropriate regulatory model in coherencing a diametrical interest between the state, Adat legal community, and private interests in utilising and optimizing land in Indonesia. This work is also highly relevant to coherencing the obligation of the state to respect, to fulfill and to protect the fundamental rights of people, especially to protect the communal or adat community rights to the land. In visualizing those ideas, this research will use the normative legal research to elaborate the normative problem in land use, as well as redesigning and creating an appropriate regulatory model in bridging and protecting all interest parties, especially, the state, Adat legal community, and private parties. In addition, it will also employ an empirical legal research for identifying some operational problems in protecting and optimising the land. In detail, this research will not only identify the problems at the normative level, such as conflicted norms, the absence of the norms, and the unclear norm in land law, but also the problems at operational level, such as institutional relationship in managing the land use. At the end, this work offers an appropriate regulatory model at the systems level, which covers value and norms in land use, as well as the appropriate mechanism in managing the utilization of the land for the state, Adat legal community, and private sector. By manifesting this objective, the government will not only fulfill its obligation to regulate the land for people and private, but also to protect the fundamental rights of people, as mandated by the Indonesian 1945 Constitution.Keywords: adat community rights, fundamental rights, investment, land law, private sector
Procedia PDF Downloads 51420108 The Relationship between Dispositional Mindfulness, Adult Attachment Orientations, and Emotion Regulation
Authors: Jodie Stevenson, Lisa-Marie Emerson, Abigail Millings
Abstract:
Mindfulness has been conceptualized as a dispositional trait, which is different across individuals. Previous research has independently identified both adult attachment orientations and emotion regulation abilities as correlates of dispositional mindfulness. Research has also presented a two-factor model of the relationship between these three constructs. The present study aimed to further develop this model and investigated theses relationships in a sample of 186 participants. Participants completed the Five Factor Mindfulness Questionnaire Short Form (FFMQ-SF), the Experiences in Close Relationships Scale for global attachment (ECR), the Emotion Regulation Questionnaire (ERC), and the Adult Disorganized Attachment scale (ADA). Exploratory factor analysis revealed a 3-factor solution accounting for 59% of the variance across scores on these measures. The first factor accounted for 32% of the variance and loaded highly on attachment and mindfulness subscales. The second factor accounted for 15% of the variance with strong loadings on emotion regulation subscales. The third factor accounted for 12% of the variance with strong loadings on disorganized attachment, and the mindfulness observes subscale. The results further confirm the relationship between attachment, mindfulness, and emotion regulation along with the unique addition of disorganized attachment. The extracted factors will then be used to predict well-being outcomes for an undergraduate student population.Keywords: adult attachment, emotion regulation, mindfulness, well-being
Procedia PDF Downloads 38120107 Application of Grey Theory in the Forecast of Facility Maintenance Hours for Office Building Tenants and Public Areas
Authors: Yen Chia-Ju, Cheng Ding-Ruei
Abstract:
This study took case office building as subject and explored the responsive work order repair request of facilities and equipment in offices and public areas by gray theory, with the purpose of providing for future related office building owners, executive managers, property management companies, mechanical and electrical companies as reference for deciding and assessing forecast model. Important conclusions of this study are summarized as follows according to the study findings: 1. Grey Relational Analysis discusses the importance of facilities repair number of six categories, namely, power systems, building systems, water systems, air conditioning systems, fire systems and manpower dispatch in order. In terms of facilities maintenance importance are power systems, building systems, water systems, air conditioning systems, manpower dispatch and fire systems in order. 2. GM (1,N) and regression method took maintenance hours as dependent variables and repair number, leased area and tenants number as independent variables and conducted single month forecast based on 12 data from January to December 2011. The mean absolute error and average accuracy of GM (1,N) from verification results were 6.41% and 93.59%; the mean absolute error and average accuracy of regression model were 4.66% and 95.34%, indicating that they have highly accurate forecast capability.Keywords: rey theory, forecast model, Taipei 101, office buildings, property management, facilities, equipment
Procedia PDF Downloads 44420106 Optimization Modeling of the Hybrid Antenna Array for the DoA Estimation
Authors: Somayeh Komeylian
Abstract:
The direction of arrival (DoA) estimation is the crucial aspect of the radar technologies for detecting and dividing several signal sources. In this scenario, the antenna array output modeling involves numerous parameters including noise samples, signal waveform, signal directions, signal number, and signal to noise ratio (SNR), and thereby the methods of the DoA estimation rely heavily on the generalization characteristic for establishing a large number of the training data sets. Hence, we have analogously represented the two different optimization models of the DoA estimation; (1) the implementation of the decision directed acyclic graph (DDAG) for the multiclass least-squares support vector machine (LS-SVM), and (2) the optimization method of the deep neural network (DNN) radial basis function (RBF). We have rigorously verified that the LS-SVM DDAG algorithm is capable of accurately classifying DoAs for the three classes. However, the accuracy and robustness of the DoA estimation are still highly sensitive to technological imperfections of the antenna arrays such as non-ideal array design and manufacture, array implementation, mutual coupling effect, and background radiation and thereby the method may fail in representing high precision for the DoA estimation. Therefore, this work has a further contribution on developing the DNN-RBF model for the DoA estimation for overcoming the limitations of the non-parametric and data-driven methods in terms of array imperfection and generalization. The numerical results of implementing the DNN-RBF model have confirmed the better performance of the DoA estimation compared with the LS-SVM algorithm. Consequently, we have analogously evaluated the performance of utilizing the two aforementioned optimization methods for the DoA estimation using the concept of the mean squared error (MSE).Keywords: DoA estimation, Adaptive antenna array, Deep Neural Network, LS-SVM optimization model, Radial basis function, and MSE
Procedia PDF Downloads 10020105 Validation of a Fluid-Structure Interaction Model of an Aortic Dissection versus a Bench Top Model
Authors: K. Khanafer
Abstract:
The aim of this investigation was to validate the fluid-structure interaction (FSI) model of type B aortic dissection with our experimental results from a bench-top-model. Another objective was to study the relationship between the size of a septectomy that increases the outflow of the false lumen and its effect on the values of the differential of pressure between true lumen and false lumen. FSI analysis based on Galerkin’s formulation was used in this investigation to study flow pattern and hemodynamics within a flexible type B aortic dissection model using boundary conditions from our experimental data. The numerical results of our model were verified against the experimental data for various tear size and location. Thus, CFD tools have a potential role in evaluating different scenarios and aortic dissection configurations.Keywords: aortic dissection, fluid-structure interaction, in vitro model, numerical
Procedia PDF Downloads 27120104 Cycads Bark Harvest in Limpopo Province in South Africa: A Negative Practice Contributing to Biodiversity Loss
Authors: S. O. Bamigboye, P. M. Tshisikhawe, P. J. Taylor
Abstract:
Cycads are the most threatened plant species in the world. In South Africa over 70% of cycads are threatened with extinction with 60% of them as a result of bark harvest of these highly endangered species for medicinal purposes. 3 cycads species in South Africa have gone extinct due to bark harvest for medicinal purpose. This practice keeps increasing biodiversity loss within the nation and this has generated concern for conservationists on different way to discover how people go about this practices and how it can be discouraged. Studies have revealed this practice to be common practice in provinces like Kwazulu natal, Eastern cape, Gauteng, Mpumalanga, but studies in the past have not really focused on cycads bark harvest in Limpopo province. In this study we use the indigenous knowledge to discover a particular location within the Soutpansberg Montane (a major biodiversity hotspot in Limpopo Province in South Africa) in Vhembe district in Limpopo province not yet conserved where we have a highly disturbed population of cycads. Several individuals of cycads species have been highly damaged due to bark harvest in this location. We are about proposing that such areas needs attention for conservation to prevent the loss of these species endemic to this particular location. Our study hereby reveals that cycads bark harvest which is a major threat to African cycads is also a common practice in Limpopo Province in South Africa. Rigorous conservation action is required to discourage this practice in order to prevent further biodiversity loss in this region.Keywords: bark harvest, Cycads, conservation, extinction, Limpopo
Procedia PDF Downloads 34220103 Oil Reservoir Asphalting Precipitation Estimating during CO2 Injection
Authors: I. Alhajri, G. Zahedi, R. Alazmi, A. Akbari
Abstract:
In this paper, an Artificial Neural Network (ANN) was developed to predict Asphaltene Precipitation (AP) during the injection of carbon dioxide into crude oil reservoirs. In this study, the experimental data from six different oil fields were collected. Seventy percent of the data was used to develop the ANN model, and different ANN architectures were examined. A network with the Trainlm training algorithm was found to be the best network to estimate the AP. To check the validity of the proposed model, the model was used to predict the AP for the thirty percent of the data that was unevaluated. The Mean Square Error (MSE) of the prediction was 0.0018, which confirms the excellent prediction capability of the proposed model. In the second part of this study, the ANN model predictions were compared with modified Hirschberg model predictions. The ANN was found to provide more accurate estimates compared to the modified Hirschberg model. Finally, the proposed model was employed to examine the effect of different operating parameters during gas injection on the AP. It was found that the AP is mostly sensitive to the reservoir temperature. Furthermore, the carbon dioxide concentration in liquid phase increases the AP.Keywords: artificial neural network, asphaltene, CO2 injection, Hirschberg model, oil reservoirs
Procedia PDF Downloads 36520102 A Sustainable Training and Feedback Model for Developing the Teaching Capabilities of Sessional Academic Staff
Authors: Nirmani Wijenayake, Louise Lutze-Mann, Lucy Jo, John Wilson, Vivian Yeung, Dean Lovett, Kim Snepvangers
Abstract:
Sessional academic staff at universities have the most influence and impact on student learning, engagement, and experience as they have the most direct contact with undergraduate students. A blended technology-enhanced program was created for the development and support of sessional staff to ensure adequate training is provided to deliver quality educational outcomes for the students. This program combines innovative mixed media educational modules, a peer-driven support forum, and face-to-face workshops to provide a comprehensive training and support package for staff. Additionally, the program encourages the development of learning communities and peer mentoring among the sessional staff to enhance their support system. In 2018, the program was piloted on 100 sessional staff in the School of Biotechnology and Biomolecular Sciences to evaluate the effectiveness of this model. As part of the program, rotoscope animations were developed to showcase ‘typical’ interactions between staff and students. These were designed around communication, confidence building, consistency in grading, feedback, diversity awareness, and mental health and wellbeing. When surveyed, 86% of sessional staff found these animations to be helpful in their teaching. An online platform (Moodle) was set up to disseminate educational resources and teaching tips, to host a discussion forum for peer-to-peer communication and to increase critical thinking and problem-solving skills through scenario-based lessons. The learning analytics from these lessons were essential in identifying difficulties faced by sessional staff to further develop supporting workshops to improve outcomes related to teaching. The face-to-face professional development workshops were run by expert guest speakers on topics such as cultural diversity, stress and anxiety, LGBTIQ and student engagement. All the attendees of the workshops found them to be useful and 88% said they felt these workshops increase interaction with their peers and built a sense of community. The final component of the program was to use an adaptive e-learning platform to gather feedback from the students on sessional staff teaching twice during the semester. The initial feedback provides sessional staff with enough time to reflect on their teaching and adjust their performance if necessary, to improve the student experience. The feedback from students and the sessional staff on this model has been extremely positive. The training equips the sessional staff with knowledge and insights which can provide students with an exceptional learning environment. This program is designed in a flexible and scalable manner so that other faculties or institutions could adapt components for their own training. It is anticipated that the training and support would help to build the next generation of educators who will directly impact the educational experience of students.Keywords: designing effective instruction, enhancing student learning, implementing effective strategies, professional development
Procedia PDF Downloads 12820101 Toward a Risk Assessment Model Based on Multi-Agent System for Cloud Consumer
Authors: Saadia Drissi
Abstract:
The cloud computing is an innovative paradigm that introduces several changes in technology that have resulted a new ways for cloud providers to deliver their services to cloud consumers mainly in term of security risk assessment, thus, adapting a current risk assessment tools to cloud computing is a very difficult task due to its several characteristics that challenge the effectiveness of risk assessment approaches. As consequence, there is a need of risk assessment model adapted to cloud computing. This paper requires a new risk assessment model based on multi-agent system and AHP model as fundamental steps towards the development of flexible risk assessment approach regarding cloud consumers.Keywords: cloud computing, risk assessment model, multi-agent system, AHP model, cloud consumer
Procedia PDF Downloads 54520100 Multiphase Equilibrium Characterization Model For Hydrate-Containing Systems Based On Trust-Region Method Non-Iterative Solving Approach
Authors: Zhuoran Li, Guan Qin
Abstract:
A robust and efficient compositional equilibrium characterization model for hydrate-containing systems is required, especially for time-critical simulations such as subsea pipeline flow assurance analysis, compositional simulation in hydrate reservoirs etc. A multiphase flash calculation framework, which combines Gibbs energy minimization function and cubic plus association (CPA) EoS, is developed to describe the highly non-ideal phase behavior of hydrate-containing systems. A non-iterative eigenvalue problem-solving approach for the trust-region sub-problem is selected to guarantee efficiency. The developed flash model is based on the state-of-the-art objective function proposed by Michelsen to minimize the Gibbs energy of the multiphase system. It is conceivable that a hydrate-containing system always contains polar components (such as water and hydrate inhibitors), introducing hydrogen bonds to influence phase behavior. Thus, the cubic plus associating (CPA) EoS is utilized to compute the thermodynamic parameters. The solid solution theory proposed by van der Waals and Platteeuw is applied to represent hydrate phase parameters. The trust-region method combined with the trust-region sub-problem non-iterative eigenvalue problem-solving approach is utilized to ensure fast convergence. The developed multiphase flash model's accuracy performance is validated by three available models (one published and two commercial models). Hundreds of published hydrate-containing system equilibrium experimental data are collected to act as the standard group for the accuracy test. The accuracy comparing results show that our model has superior performances over two models and comparable calculation accuracy to CSMGem. Efficiency performance test also has been carried out. Because the trust-region method can determine the optimization step's direction and size simultaneously, fast solution progress can be obtained. The comparison results show that less iteration number is needed to optimize the objective function by utilizing trust-region methods than applying line search methods. The non-iterative eigenvalue problem approach also performs faster computation speed than the conventional iterative solving algorithm for the trust-region sub-problem, further improving the calculation efficiency. A new thermodynamic framework of the multiphase flash model for the hydrate-containing system has been constructed in this work. Sensitive analysis and numerical experiments have been carried out to prove the accuracy and efficiency of this model. Furthermore, based on the current thermodynamic model in the oil and gas industry, implementing this model is simple.Keywords: equation of state, hydrates, multiphase equilibrium, trust-region method
Procedia PDF Downloads 17220099 Modelling of Reactive Methodologies in Auto-Scaling Time-Sensitive Services With a MAPE-K Architecture
Authors: Óscar Muñoz Garrigós, José Manuel Bernabeu Aubán
Abstract:
Time-sensitive services are the base of the cloud services industry. Keeping low service saturation is essential for controlling response time. All auto-scalable services make use of reactive auto-scaling. However, reactive auto-scaling has few in-depth studies. This presentation shows a model for reactive auto-scaling methodologies with a MAPE-k architecture. Queuing theory can compute different properties of static services but lacks some parameters related to the transition between models. Our model uses queuing theory parameters to relate the transition between models. It associates MAPE-k related times, the sampling frequency, the cooldown period, the number of requests that an instance can handle per unit of time, the number of incoming requests at a time instant, and a function that describes the acceleration in the service's ability to handle more requests. This model is later used as a solution to horizontally auto-scale time-sensitive services composed of microservices, reevaluating the model’s parameters periodically to allocate resources. The solution requires limiting the acceleration of the growth in the number of incoming requests to keep a constrained response time. Business benefits determine such limits. The solution can add a dynamic number of instances and remains valid under different system sizes. The study includes performance recommendations to improve results according to the incoming load shape and business benefits. The exposed methodology is tested in a simulation. The simulator contains a load generator and a service composed of two microservices, where the frontend microservice depends on a backend microservice with a 1:1 request relation ratio. A common request takes 2.3 seconds to be computed by the service and is discarded if it takes more than 7 seconds. Both microservices contain a load balancer that assigns requests to the less loaded instance and preemptively discards requests if they are not finished in time to prevent resource saturation. When load decreases, instances with lower load are kept in the backlog where no more requests are assigned. If the load grows and an instance in the backlog is required, it returns to the running state, but if it finishes the computation of all requests and is no longer required, it is permanently deallocated. A few load patterns are required to represent the worst-case scenario for reactive systems: the following scenarios test response times, resource consumption and business costs. The first scenario is a burst-load scenario. All methodologies will discard requests if the rapidness of the burst is high enough. This scenario focuses on the number of discarded requests and the variance of the response time. The second scenario contains sudden load drops followed by bursts to observe how the methodology behaves when releasing resources that are lately required. The third scenario contains diverse growth accelerations in the number of incoming requests to observe how approaches that add a different number of instances can handle the load with less business cost. The exposed methodology is compared against a multiple threshold CPU methodology allocating/deallocating 10 or 20 instances, outperforming the competitor in all studied metrics.Keywords: reactive auto-scaling, auto-scaling, microservices, cloud computing
Procedia PDF Downloads 9320098 Numerical Analysis of Real-Scale Polymer Electrolyte Fuel Cells with Cathode Metal Foam Design
Authors: Jaeseung Lee, Muhammad Faizan Chinannai, Mohamed Hassan Gundu, Hyunchul Ju
Abstract:
In this paper, we numerically investigated the effect of metal foams on a real scale 242.57cm2 (19.1 cm × 12.7 cm) polymer electrolyte membrane fuel cell (PEFCs) using a three-dimensional two-phase PEFC model to substantiate design approach for PEFCs using metal foam as the flow distributor. The simulations were conducted under the practical low humidity hydrogen, and air gases conditions in order to observe the detailed operation result in the PEFCs using the serpentine flow channel in the anode and metal foam design in the cathode. The three-dimensional contours of flow distribution in the channel, current density distribution in the membrane and hydrogen and oxygen concentration distribution are provided. The simulation results revealed that the use of highly porous and permeable metal foam can be beneficial to achieve a more uniform current density distribution and better hydration in the membrane under low inlet humidity conditions. This study offers basic directions to design channel for optimal water management of PEFCs.Keywords: polymer electrolyte fuel cells, metal foam, real-scale, numerical model
Procedia PDF Downloads 24020097 Co-Hydrothermal Gasification of Microalgae Biomass and Solid Biofuel for Biogas Production
Authors: Daniel Fozer
Abstract:
Limiting global warming to 1.5°C to the pre-industrial levels urges the application of efficient and sustainable carbon dioxide removal (CDR) technologies. Microalgae based biorefineries offer scalable solutions for the biofixation of CO2, where the produced biomass can be transformed into value added products by applying thermochemical processes. In this paper we report on the utilization of hydrochar as a blending component in hydrothermal gasification (HTG) process. The effects of blending ratio and hydrochar quality were investigated on the biogas yield and and composition. It is found that co-gasifying the hydrochar and the algae biomass can increase significantly the total gas yield and influence the biogas (H2, CH4, CO2, CO, C2H4, C2H6) composition. It is determined that the carbon conversion ratio, hydrogen and methane selectivity can be increased by influencing the fuel ratio of hydrochar via hydrothermal carbonization. In conclusion, it is found that increasing the synergy between hydrothermal technologies result in elevated conversion efficiency.Keywords: biogas, CDR, Co-HTG, hydrochar, microalgae
Procedia PDF Downloads 14920096 Achieving the Elevated Nitritation for Autotrophic/Heterotrophic Denitritation in CSTR by Treating Livestock Wastewater
Authors: Hammad Khan, Wookeun Bae
Abstract:
The objective of this study was to achieve, optimize and control the highly loaded and efficient nitrite production having suitability for autotrophic and heterotrophic denitritation. A lab scale CSTR for partial and full nitritation was operated to treat the livestock manure digester liquor having an ammonium concentration of ~2000 mg-NH4+-N/L and biodegradable contents of ~0.8 g-COD/L. The experiments were performed at 30°C, pH: 8.0, DO: 1.5 mg/L and SRT ranging from 7-20 days. After 125 days operation, >95% nitrite buildup having the ammonium loading rate of ~3.2 kg-NH4+-N/m3-day was seen with almost complete ammonium conversion. On increasing the loading rate further (i-e, from 3.2-6.2 kg-NH4+-N/m3-day), stability of the system remained unaffected. On decreasing the pH from 8 to 7.5 and further 7.2, removal rate can be easily controlled as 95%, 75% and even 50%. Results demonstrated that nitritation stability and desired removal rates are controlled by a balance of simultaneous inhibition by FA & FNA, pH affect and DO limitation. These parameters proved to be effective even to produce an appropriate influent for anammox. In addition, a mathematical model, identified through the occurring biological reactions, is proposed to optimize the full and partial nitritation process. The proposed model present relationship between pH, ammonium and produced nitrite for full and partial nitritation under the varying concentrations of DO, and simultaneous inhibition by FA and FNA.Keywords: stable nitritation, high loading, autrophic denitritation, hetrotrophic denitritation
Procedia PDF Downloads 27420095 Stability Analysis of Rabies Model with Vaccination Effect and Culling in Dogs
Authors: Eti Dwi Wiraningsih, Folashade Agusto, Lina Aryati, Syamsuddin Toaha, Suzanne Lenhart, Widodo, Willy Govaerts
Abstract:
This paper considers a deterministic model for the transmission dynamics of rabies virus in the wild dogs-domestic dogs-human zoonotic cycle. The effect of vaccination and culling in dogs is considered on the model, then the stability was analysed to get basic reproduction number. We use the next generation matrix method and Routh-Hurwitz test to analyze the stability of the Disease-Free Equilibrium and Endemic Equilibrium of this model.Keywords: stability analysis, rabies model, vaccination effect, culling in dogs
Procedia PDF Downloads 63020094 Highly Selective Polymeric Fluorescence Sensor for Cd(II) Ions
Authors: Soner Cubuk, Ozge Yilmaz, Ece Kok Yetimoglu, M. Vezir Kahraman
Abstract:
In this work, a polymer based highly selective fluorescence sensor membrane was prepared by the photopolymerization technique for the determination Cd(II) ion. Sensor characteristics such as effects of pH, response time and foreign ions on the fluorescence intensity of the sensor were also studied. Under optimized conditions, the polymeric sensor shows a rapid, stable and linear response for 4.45x10-⁹ mol L-¹ - 4.45x10-⁸ mol L-¹ Cd(II) ion with the detection limit of 6.23x10-¹⁰ mol L-¹. In addition, sensor membrane was selective which is not affected by common foreign metal ions. The concentrations of the foreign ions such as Pb²+, Co²+, Ag+, Zn²+, Cu²+, Cr³+ are 1000-fold higher than Cd(II) ions. Moreover, the developed polymeric sensor was successfully applied to the determination of cadmium ions in food and water samples. This work was supported by Marmara University, Commission of Scientific Research Project.Keywords: cadmium(II), fluorescence, photopolymerization, polymeric sensor
Procedia PDF Downloads 56620093 Asset Pricing Puzzle and GDP-Growth: Pre and Post Covid-19 Pandemic Effect on Pakistan Stock Exchange
Authors: Mohammad Azam
Abstract:
This work is an endeavor to empirically investigate the Gross Domestic Product-Growth as mediating variable between various factors and portfolio returns using a broad sample of 522 financial and non-financial firms enlisted on Pakistan Stock Exchange between January-1993 and June-2022. The study employs the Structural Equation modeling and Ordinary Least Square regression to determine the findings before and during the Covid-19 epidemiological situation, which has not received due attention by researchers. The analysis reveals that market and investment factors are redundant, whereas size and value show significant results, whereas Gross Domestic Product-Growth performs significant mediating impact for the whole time frame. Using before Covid-19 period, the results reveal that market, value, and investment are redundant, but size, profitability, and Gross Domestic Product-Growth are significant. During the Covid-19, the statistics indicate that market and investment are redundant, though size and Gross Domestic Product-Growth are highly significant, but value and profitability are moderately significant. The Ordinary Least Square regression shows that market and investment are statistically insignificant, whereas size is highly significant but value and profitability are marginally significant. Using the Gross Domestic Product-Growth augmented model, a slight growth in R-square is observed. The size, value and profitability factors are recommended to the investors for Pakistan Stock Exchange. Conclusively, in the Pakistani market, the Gross Domestic Product-Growth indicates a feeble moderating effect between risk-premia and portfolio returns.Keywords: asset pricing puzzle, mediating role of GDP-growth, structural equation modeling, COVID-19 pandemic, Pakistan stock exchange
Procedia PDF Downloads 7320092 Integer Programming: Domain Transformation in Nurse Scheduling Problem.
Authors: Geetha Baskaran, Andrzej Barjiela, Rong Qu
Abstract:
Motivation: Nurse scheduling is a complex combinatorial optimization problem. It is also known as NP-hard. It needs an efficient re-scheduling to minimize some trade-off of the measures of violation by reducing selected constraints to soft constraints with measurements of their violations. Problem Statement: In this paper, we extend our novel approach to solve the nurse scheduling problem by transforming it through Information Granulation. Approach: This approach satisfies the rules of a typical hospital environment based on a standard benchmark problem. Generating good work schedules has a great influence on nurses' working conditions which are strongly related to the level of a quality health care. Domain transformation that combines the strengths of operation research and artificial intelligence was proposed for the solution of the problem. Compared to conventional methods, our approach involves judicious grouping (information granulation) of shifts types’ that transforms the original problem into a smaller solution domain. Later these schedules from the smaller problem domain are converted back into the original problem domain by taking into account the constraints that could not be represented in the smaller domain. An Integer Programming (IP) package is used to solve the transformed scheduling problem by expending the branch and bound algorithm. We have used the GNU Octave for Windows to solve this problem. Results: The scheduling problem has been solved in the proposed formalism resulting in a high quality schedule. Conclusion: Domain transformation represents departure from a conventional one-shift-at-a-time scheduling approach. It offers an advantage of efficient and easily understandable solutions as well as offering deterministic reproducibility of the results. We note, however, that it does not guarantee the global optimum.Keywords: domain transformation, nurse scheduling, information granulation, artificial intelligence, simulation
Procedia PDF Downloads 39720091 Numinous Luminosity: A Mixed Methods Study of Mystical Light Experiences
Authors: J. R. Dinsmore, R. W. Hood
Abstract:
Experiences of a divine or mystical light are frequently reported in religious/spiritual experiences today, most notably in the context of mystical and near-death experiences. Light of a transcendental nature and its experiences of it are also widely present and highly valued in many religious and mystical traditions. Despite the significance of this luminosity to the topic of religious experience, efforts to study the phenomenon empirically have been minimal and scattered. This mixed methods study developed and validated a questionnaire for the measurement of numinous luminosity experience and investigated the dimensions and effects of this novel construct using both quantitative and qualitative methodologies. A sequential explanatory design (participant selection model) was used, which involved a scale development phase, followed by a correlational study testing hypotheses about its effects on beliefs and well-being derived from the literature, and lastly, a phenomenological study of a sample selected from the correlational phase results. The outcomes of the study are a unified theoretical model of numinous luminosity experience across multiple experiential contexts, initial correlational findings regarding the possible mechanism of its reported positive transformational effects, and a valid and reliable instrument for its further empirical study.Keywords: religious experience, mystical experience, near-death experience, scale development, questionnaire, divine light, mystical light, mystical luminosity
Procedia PDF Downloads 9520090 The DC Behavioural Electrothermal Model of Silicon Carbide Power MOSFETs under SPICE
Authors: Lakrim Abderrazak, Tahri Driss
Abstract:
This paper presents a new behavioural electrothermal model of power Silicon Carbide (SiC) MOSFET under SPICE. This model is based on the MOS model level 1 of SPICE, in which phenomena such as Drain Leakage Current IDSS, On-State Resistance RDSon, gate Threshold voltage VGSth, the transconductance (gfs), I-V Characteristics Body diode, temperature-dependent and self-heating are included and represented using behavioural blocks ABM (Analog Behavioural Models) of Spice library. This ultimately makes this model flexible and easily can be integrated into the various Spice -based simulation softwares. The internal junction temperature of the component is calculated on the basis of the thermal model through the electric power dissipated inside and its thermal impedance in the form of the localized Foster canonical network. The model parameters are extracted from manufacturers' data (curves data sheets) using polynomial interpolation with the method of simulated annealing (S A) and weighted least squares (WLS). This model takes into account the various important phenomena within transistor. The effectiveness of the presented model has been verified by Spice simulation results and as well as by data measurement for SiC MOS transistor C2M0025120D CREE (1200V, 90A).Keywords: SiC power MOSFET, DC electro-thermal model, ABM Spice library, SPICE modelling, behavioural model, C2M0025120D CREE.
Procedia PDF Downloads 58120089 On Hyperbolic Gompertz Growth Model (HGGM)
Authors: S. O. Oyamakin, A. U. Chukwu,
Abstract:
We proposed a Hyperbolic Gompertz Growth Model (HGGM), which was developed by introducing a stabilizing parameter called θ using hyperbolic sine function into the classical gompertz growth equation. The resulting integral solution obtained deterministically was reprogrammed into a statistical model and used in modeling the height and diameter of Pines (Pinus caribaea). Its ability in model prediction was compared with the classical gompertz growth model, an approach which mimicked the natural variability of height/diameter increment with respect to age and therefore provides a more realistic height/diameter predictions using goodness of fit tests and model selection criteria. The Kolmogorov-Smirnov test and Shapiro-Wilk test was also used to test the compliance of the error term to normality assumptions while using testing the independence of the error term using the runs test. The mean function of top height/Dbh over age using the two models under study predicted closely the observed values of top height/Dbh in the hyperbolic gompertz growth models better than the source model (classical gompertz growth model) while the results of R2, Adj. R2, MSE, and AIC confirmed the predictive power of the Hyperbolic Monomolecular growth models over its source model.Keywords: height, Dbh, forest, Pinus caribaea, hyperbolic, gompertz
Procedia PDF Downloads 44120088 Bioclimatic Niches of Endangered Garcinia indica Species on the Western Ghats: Predicting Habitat Suitability under Current and Future Climate
Authors: Malay K. Pramanik
Abstract:
In recent years, climate change has become a major threat and has been widely documented in the geographic distribution of many plant species. However, the impacts of climate change on the distribution of ecologically vulnerable medicinal species remain largely unknown. The identification of a suitable habitat for a species under climate change scenario is a significant step towards the mitigation of biodiversity decline. The study, therefore, aims to predict the impact of current, and future climatic scenarios on the distribution of the threatened Garcinia indica across the northern Western Ghats using Maximum Entropy (MaxEnt) modelling. The future projections were made for the year 2050 and 2070 with all Representative Concentration Pathways (RCPs) scenario (2.6, 4.5, 6.0, and 8.5) using 56 species occurrence data, and 19 bioclimatic predictors from the BCC-CSM1.1 model of the Intergovernmental Panel for Climate Change’s (IPCC) 5th assessment. The bioclimatic variables were minimised to a smaller number of variables after a multicollinearity test, and their contributions were assessed using jackknife test. The AUC value of 0.956 ± 0.023 indicates that the model performs with excellent accuracy. The study identified that temperature seasonality (39.5 ± 3.1%), isothermality (19.2 ± 1.6%), and annual precipitation (12.7 ± 1.7%) would be the major influencing variables in the current and future distribution. The model predicted 10.5% (19318.7 sq. km) of the study area as moderately to very highly suitable, while 82.60% (151904 sq. km) of the study area was identified as ‘unsuitable’ or ‘very low suitable’. Our predictions of climate change impact on habitat suitability suggest that there will be a drastic reduction in the suitability by 5.29% and 5.69% under RCP 8.5 for 2050 and 2070, respectively. Finally, the results signify that the model might be an effective tool for biodiversity protection, ecosystem management, and species re-habitation planning under future climate change scenarios.Keywords: Garcinia Indica, maximum entropy modelling, climate change, MaxEnt, Western Ghats, medicinal plants
Procedia PDF Downloads 15720087 Highly Transparent, Hydrophobic and Self-Cleaning ZnO-Durazane Based Hybrid Organic-Inorganic Coatings
Authors: Abderrahmane Hamdi, Julie Chalon, Benoit Dodin, Philippe Champagne
Abstract:
In this report, we present a simple route to realize robust, hydrophobic, and highly transparent coatings using organic polysilazane (durazane) and zinc oxide nanoparticles (ZnO). These coatings were deposited by spraying the mixture solution on glass slides. Thus, the properties of the films were characterized by scanning electron microscopy (SEM), Fourier transform infrared spectroscopy (FT-IR), UV–vis-NIR spectrophotometer, and water contact angle method. This sprayable polymer mixed with ZnO nanoparticles shows high transparency for visible light > 90%, a hydrophobic character (CA > 90°), and good mechanical and chemical stability. The coating also demonstrates excellent self-cleaning properties, which makes it a promising candidate for commercial use.Keywords: coatings, durability, hydrophobicity, organic polysilazane, self-cleaning, transparence, zinc oxide nanoparticles
Procedia PDF Downloads 17020086 Integrated Mathematical Modeling and Advance Visualization of Magnetic Nanoparticle for Drug Delivery, Drug Release and Effects to Cancer Cell Treatment
Authors: Norma Binti Alias, Che Rahim Che The, Norfarizan Mohd Said, Sakinah Abdul Hanan, Akhtar Ali
Abstract:
This paper discusses on the transportation of magnetic drug targeting through blood within vessels, tissues and cells. There are three integrated mathematical models to be discussed and analyze the concentration of drug and blood flow through magnetic nanoparticles. The cell therapy brought advancement in the field of nanotechnology to fight against the tumors. The systematic therapeutic effect of Single Cells can reduce the growth of cancer tissue. The process of this nanoscale phenomena system is able to measure and to model, by identifying some parameters and applying fundamental principles of mathematical modeling and simulation. The mathematical modeling of single cell growth depends on three types of cell densities such as proliferative, quiescent and necrotic cells. The aim of this paper is to enhance the simulation of three types of models. The first model represents the transport of drugs by coupled partial differential equations (PDEs) with 3D parabolic type in a cylindrical coordinate system. This model is integrated by Non-Newtonian flow equations, leading to blood liquid flow as the medium for transportation system and the magnetic force on the magnetic nanoparticles. The interaction between the magnetic force on drug with magnetic properties produces induced currents and the applied magnetic field yields forces with tend to move slowly the movement of blood and bring the drug to the cancer cells. The devices of nanoscale allow the drug to discharge the blood vessels and even spread out through the tissue and access to the cancer cells. The second model is the transport of drug nanoparticles from the vascular system to a single cell. The treatment of the vascular system encounters some parameter identification such as magnetic nanoparticle targeted delivery, blood flow, momentum transport, density and viscosity for drug and blood medium, intensity of magnetic fields and the radius of the capillary. Based on two discretization techniques, finite difference method (FDM) and finite element method (FEM), the set of integrated models are transformed into a series of grid points to get a large system of equations. The third model is a single cell density model involving the three sets of first order PDEs equations for proliferating, quiescent and necrotic cells change over time and space in Cartesian coordinate which regulates under different rates of nutrients consumptions. The model presents the proliferative and quiescent cell growth depends on some parameter changes and the necrotic cells emerged as the tumor core. Some numerical schemes for solving the system of equations are compared and analyzed. Simulation and computation of the discretized model are supported by Matlab and C programming languages on a single processing unit. Some numerical results and analysis of the algorithms are presented in terms of informative presentation of tables, multiple graph and multidimensional visualization. As a conclusion, the integrated of three types mathematical modeling and the comparison of numerical performance indicates that the superior tool and analysis for solving the complete set of magnetic drug delivery system which give significant effects on the growth of the targeted cancer cell.Keywords: mathematical modeling, visualization, PDE models, magnetic nanoparticle drug delivery model, drug release model, single cell effects, avascular tumor growth, numerical analysis
Procedia PDF Downloads 42820085 An Automatic Model Transformation Methodology Based on Semantic and Syntactic Comparisons and the Granularity Issue Involved
Authors: Tiexin Wang, Sebastien Truptil, Frederick Benaben
Abstract:
Model transformation, as a pivotal aspect of Model-driven engineering, attracts more and more attentions both from researchers and practitioners. Many domains (enterprise engineering, software engineering, knowledge engineering, etc.) use model transformation principles and practices to serve to their domain specific problems; furthermore, model transformation could also be used to fulfill the gap between different domains: by sharing and exchanging knowledge. Since model transformation has been widely used, there comes new requirement on it: effectively and efficiently define the transformation process and reduce manual effort that involved in. This paper presents an automatic model transformation methodology based on semantic and syntactic comparisons, and focuses particularly on granularity issue that existed in transformation process. Comparing to the traditional model transformation methodologies, this methodology serves to a general purpose: cross-domain methodology. Semantic and syntactic checking measurements are combined into a refined transformation process, which solves the granularity issue. Moreover, semantic and syntactic comparisons are supported by software tool; manual effort is replaced in this way.Keywords: automatic model transformation, granularity issue, model-driven engineering, semantic and syntactic comparisons
Procedia PDF Downloads 39520084 Constructing a Physics Guided Machine Learning Neural Network to Predict Tonal Noise Emitted by a Propeller
Authors: Arthur D. Wiedemann, Christopher Fuller, Kyle A. Pascioni
Abstract:
With the introduction of electric motors, small unmanned aerial vehicle designers have to consider trade-offs between acoustic noise and thrust generated. Currently, there are few low-computational tools available for predicting acoustic noise emitted by a propeller into the far-field. Artificial neural networks offer a highly non-linear and adaptive model for predicting isolated and interactive tonal noise. But neural networks require large data sets, exceeding practical considerations in modeling experimental results. A methodology known as physics guided machine learning has been applied in this study to reduce the required data set to train the network. After building and evaluating several neural networks, the best model is investigated to determine how the network successfully predicts the acoustic waveform. Lastly, a post-network transfer function is developed to remove discontinuity from the predicted waveform. Overall, methodologies from physics guided machine learning show a notable improvement in prediction performance, but additional loss functions are necessary for constructing predictive networks on small datasets.Keywords: aeroacoustics, machine learning, propeller, rotor, neural network, physics guided machine learning
Procedia PDF Downloads 22820083 Partial Differential Equation-Based Modeling of Brain Response to Stimuli
Authors: Razieh Khalafi
Abstract:
The brain is the information processing centre of the human body. Stimuli in the form of information are transferred to the brain and then brain makes the decision on how to respond to them. In this research, we propose a new partial differential equation which analyses the EEG signals and make a relationship between the incoming stimuli and the brain response to them. In order to test the proposed model, a set of external stimuli applied to the model and the model’s outputs were checked versus the real EEG data. The results show that this model can model the EEG signal well. The proposed model is useful not only for modelling of EEG signal in case external stimuli but it can be used for modelling of brain response in case of internal stimuli.Keywords: brain, stimuli, partial differential equation, response, EEG signal
Procedia PDF Downloads 55420082 MPC of Single Phase Inverter for PV System
Authors: Irtaza M. Syed, Kaamran Raahemifar
Abstract:
This paper presents a model predictive control (MPC) of a utility interactive (UI) single phase inverter (SPI) for a photovoltaic (PV) system at residential/distribution level. The proposed model uses single-phase phase locked loop (PLL) to synchronize SPI with the grid and performs MPC control in a dq reference frame. SPI model consists of boost converter (BC), maximum power point tracking (MPPT) control, and a full bridge (FB) voltage source inverter (VSI). No PI regulators to tune and carrier and modulating waves are required to produce switching sequence. Instead, the operational model of VSI is used to synthesize sinusoidal current and track the reference. Model is validated using a three kW PV system at the input of UI-SPI in Matlab/Simulink. Implementation and results demonstrate simplicity and accuracy, as well as reliability of the model.Keywords: phase locked loop, voltage source inverter, single phase inverter, model predictive control, Matlab/Simulink
Procedia PDF Downloads 532