Search results for: heating capability
1370 Geographic Information System for District Level Energy Performance Simulations
Authors: Avichal Malhotra, Jerome Frisch, Christoph van Treeck
Abstract:
The utilization of semantic, cadastral and topological data from geographic information systems (GIS) has exponentially increased for building and urban-scale energy performance simulations. Urban planners, simulation scientists, and researchers use virtual 3D city models for energy analysis, algorithms and simulation tools. For dynamic energy simulations at city and district level, this paper provides an overview of the available GIS data models and their levels of detail. Adhering to different norms and standards, these models also intend to describe building and construction industry data. For further investigations, CityGML data models are considered for simulations. Though geographical information modelling has considerably many different implementations, extensions of virtual city data can also be made for domain specific applications. Highlighting the use of the extended CityGML models for energy researches, a brief introduction to the Energy Application Domain Extension (ADE) along with its significance is made. Consequently, addressing specific input simulation data, a workflow using Modelica underlining the usage of GIS information and the quantification of its significance over annual heating energy demand is presented in this paper.Keywords: CityGML, EnergyADE, energy performance simulation, GIS
Procedia PDF Downloads 1681369 VTOL-Fw Mode-Transitioning UAV Design and Analysis
Authors: Feri̇t Çakici, M. Kemal Leblebi̇ci̇oğlu
Abstract:
In this study, an unmanned aerial vehicle (UAV) with level flight, vertical take-off and landing (VTOL) and mode-transitioning capability is designed and analyzed. The platform design combines both multirotor and fixed-wing (FW) conventional airplane structures and control surfaces; therefore named as VTOL-FW. The aircraft is modeled using aerodynamical principles and linear models are constructed utilizing small perturbation theory for trim conditions. The proposed method of control includes implementation of multirotor and airplane mode controllers and design of an algorithm to transition between modes in achieving smooth switching maneuvers between VTOL and FW flight. Thus, VTOL-FW UAV’s flight characteristics are expected to be improved by enlarging operational flight envelope through enabling mode-transitioning, agile maneuvers and increasing survivability. Experiments conducted in simulation and real world environments shows that VTOL-FW UAV has both multirotor and airplane characteristics with extra benefits in an enlarged flight envelope.Keywords: aircraft design, linear analysis, mode transitioning control, UAV
Procedia PDF Downloads 3951368 Performance Optimization of Low-Cost Solar Dryer Using Modified PI Controller
Authors: Rajesh Kondareddy, Prakash Kumar Nayak, Maunash Das, Vrinatri Velentina Boro
Abstract:
Today, there is a huge global concern for sustainable development which would include minimizing the consumption of non-renewable energies without affecting the basic global economy. Solar drying is one of the important processes used for extending the shelf life of agricultural products. The performance of a low cost automated solar dryer fitted with cascade control scheme and modified PI controller for drying chilli was investigated. The dryer was composed of designed solar collector (air heater) fitted with cylindrical pipes to improve the air velocity and a solar drying chamber containing rack of two cheese cloth (net) trays both being integrated together. The air allowed in through air inlet is heated up in the solar collector and channelled through the drying chamber where it is utilized in drying (removing the moisture content from the food substance or agricultural produce loaded). Here, to maintain the temperature in the heating chambers and to improve performance, a modified PI (Proportional–Integral) controller was used due its simplicity and robustness. Drying time for drying chilli from the initial moisture content of 88.5% (wb) to 7.3% (wb) was estimated to be 14 hours in solar dryer whereas 32 h was observed in the open sun drying.Keywords: cascade control, chilli, PI controller, solar dryer
Procedia PDF Downloads 2881367 Numerical Simulation of Unsteady Natural Convective Nanofluid Flow within a Trapezoidal Enclosure Using Meshfree Method
Authors: S. Nandal, R. Bhargava
Abstract:
The paper contains a numerical study of the unsteady magneto-hydrodynamic natural convection flow of nanofluids within a symmetrical wavy walled trapezoidal enclosure. The length and height of enclosure are both considered equal to L. Two-phase nanofluid model is employed. The governing equations of nanofluid flow along with boundary conditions are non-dimensionalized and are solved using one of Meshfree technique (EFGM method). Meshfree numerical technique does not require a predefined mesh for discretization purpose. The bottom wavy wall of the enclosure is defined using a cosine function. Element free Galerkin method (EFGM) does not require the domain. The effects of various parameters namely time t, amplitude of bottom wavy wall a, Brownian motion parameter Nb and thermophoresis parameter Nt is examined on rate of heat and mass transfer to get a visualization of cooling and heating effects. Such problems have important applications in heat exchangers or solar collectors, as wavy walled enclosures enhance heat transfer in comparison to flat walled enclosures.Keywords: heat transfer, meshfree methods, nanofluid, trapezoidal enclosure
Procedia PDF Downloads 1581366 Green Delivery Systems for Fruit Polyphenols
Authors: Boris M. Popović, Tatjana Jurić, Bojana Blagojević, Denis Uka, Ružica Ždero Pavlović
Abstract:
Green solvents are environmentally friendly and greatly improve the sustainability of chemical processes. There is a growing interest in the green extraction of polyphenols from fruits. In this study, we consider three Natural Deep Eutectic Solvents (NADES) systems based on choline chloride as a hydrogen bond acceptor and malic acid, urea, and fructose as hydrogen bond donors. NADES systems were prepared by heating and stirring, ultrasound, and microwave (MW) methods. Sour cherry pomace was used as a natural source of polyphenols. Polyphenol extraction from cherry pomace was performed by ultrasound-assisted extraction and microwave-assisted extraction and compared with conventional heat and stirring method extraction. It was found that MW-assisted preparation of NADES was the fastest, requiring less than 30 s. Also, MW extraction of polyphenols was the most rapid, with less than 5 min necessary for the extract preparation. All three NADES systems were highly efficient for anthocyanin extraction, but the most efficient was the system with malic acid as a hydrogen bond donor (yield of anthocyanin content was enhanced by 62.33% after MW extraction with NADES compared with the conventional solvent).Keywords: anthocyanins, green extraction, NADES, polyphenols
Procedia PDF Downloads 921365 Thermal Behavior of Green Roof: Case Study at Seoul National University Retentive Green Roof
Authors: Theresia Gita Hapsari
Abstract:
There has been major concern about urban heating as urban clusters emerge and population migration from rural to urban areas continues. Green roof has been one of the main practice for urban heat island mitigation for the past decades, thus, this study was conducted to predict the cooling potential of retentive green roof in mitigating urban heat island. Retentive green roof was developed by Han in 2010. It has 320 mm height of retention wall surrounding the vegetation and 65mm depth of retention board underneath the soil, while most conventional green roof doesn’t have any retention wall and only maximum of 25 mm depth of drainage board. Seoul National University retentive green roof significantly reduced sensible heat movement towards the air by 0.5 kWh/m2, and highly enhanced the evaporation process as much as 0.5 – 5.4 kg/m2 which equals to 0.3 – 3.6 kWh/m2 of latent heat flux. These results indicate that with design enhancement, serving as a viable alternate for conventional green roof, retentive green roof contributes to overcome the limitation of conventional green roof which is the main solution for mitigating urban heat island.Keywords: green roof, low impact development, retention board, thermal behavior, urban heat island
Procedia PDF Downloads 2771364 The Usage of Thermal Regions as a Air Navigation Rule for Unmanned Aircraft Systems
Authors: Resul Fikir
Abstract:
Unmanned Aircraft Systems (UAS) become indispensable parts of modern airpower as force multiplier .One of the main advantages of UAS is long endurance. UAS have to take extra payloads to accomplish different missions but these payloads decrease endurance of aircraft because of increasing drug. There are continuing researches to increase the capability of UAS. There are some vertical thermal air currents, which can cause climb and increase endurance, in nature. Birds and gliders use thermals to gain altitude with no effort. UAS have wide wing which can use of thermals like birds and gliders. Thermal regions, which is area of 2-3 NM, exist all around the world. It is free and clean source. This study analyses if thermal regions can be adopted and implemented as an assistant tool for UAS route planning. First and second part of study will contain information about the thermal regions and current applications about UAS in aviation and climbing performance with a real example. Continuing parts will analyze the contribution of thermal regions to UAS endurance. Contribution is important because planning declaration of UAS navigation rules will be in 2015.Keywords: unmanned aircraft systems, Air4All, thermals, gliders
Procedia PDF Downloads 4001363 A Socio-Technical Approach to Cyber-Risk Assessment
Authors: Kitty Kioskli, Nineta Polemi
Abstract:
Evaluating the levels of cyber-security risks within an enterprise is most important in protecting its information system, services and all its digital assets against security incidents (e.g. accidents, malicious acts, massive cyber-attacks). The existing risk assessment methodologies (e.g. eBIOS, OCTAVE, CRAMM, NIST-800) adopt a technical approach considering as attack factors only the capability, intention and target of the attacker, and not paying attention to the attacker’s psychological profile and personality traits. In this paper, a socio-technical approach is proposed in cyber risk assessment, in order to achieve more realistic risk estimates by considering the personality traits of the attackers. In particular, based upon principles from investigative psychology and behavioural science, a multi-dimensional, extended, quantifiable model for an attacker’s profile is developed, which becomes an additional factor in the cyber risk level calculation.Keywords: attacker, behavioural models, cyber risk assessment, cybersecurity, human factors, investigative psychology, ISO27001, ISO27005
Procedia PDF Downloads 1651362 Binding of Avian Excreta-Derived Enteroccoci to a Streptococcocus mutans: Implications for Avian to Human Transmission
Authors: Richard K. Jolley, Jonathan A. Coffman
Abstract:
Since Enterococci has been implicated in oral disease, we hypothesized the transmission of avian Enterococci to humans via fecal-oral transmission facilitated by adherence to dental plaque. To demonstrate the capability of Enterococci to bind to a dental plaque we filtered avian excreta and incubated the filtrate on a sucrose-induced, Streptococcus mutans biofilm. The biofilm was washed several times with a detergent to remove bacteria binding non-specifically to the biofilm, DNA was isolated from the biofilm, 16S rDNA was amplified, sequenced by Ion Torrent DNA sequencing and analyzed with bioinformatics. Enterococci and other known bacterial pathogens were shown to adhere to the biofilm. Culturing the washed biofilm with Bile Esculin Azide (BEA) agar also confirmed the presence of Enterococci as verified with Sanger sequencing. The results suggest that Enteroccoci in avian excreta has the ability to adhere to human dental plaque and may be a mechanism of entry when humans encounter contaminated aerosols, water or food.Keywords: Enterococci, avian excreta, dental plaque, NGS
Procedia PDF Downloads 1601361 A Non-parametric Clustering Approach for Multivariate Geostatistical Data
Authors: Francky Fouedjio
Abstract:
Multivariate geostatistical data have become omnipresent in the geosciences and pose substantial analysis challenges. One of them is the grouping of data locations into spatially contiguous clusters so that data locations within the same cluster are more similar while clusters are different from each other, in some sense. Spatially contiguous clusters can significantly improve the interpretation that turns the resulting clusters into meaningful geographical subregions. In this paper, we develop an agglomerative hierarchical clustering approach that takes into account the spatial dependency between observations. It relies on a dissimilarity matrix built from a non-parametric kernel estimator of the spatial dependence structure of data. It integrates existing methods to find the optimal cluster number and to evaluate the contribution of variables to the clustering. The capability of the proposed approach to provide spatially compact, connected and meaningful clusters is assessed using bivariate synthetic dataset and multivariate geochemical dataset. The proposed clustering method gives satisfactory results compared to other similar geostatistical clustering methods.Keywords: clustering, geostatistics, multivariate data, non-parametric
Procedia PDF Downloads 4771360 Performance of Partially Covered N Number of Photovoltaic Thermal (PVT) - Compound Parabolic Concentrator (CPC) Series Connected Water Heating System
Authors: Rohit Tripathi, Sumit Tiwari, G. N. Tiwari
Abstract:
In present study, an approach is adopted where photovoltaic thermal flat plate collector is integrated with compound parabolic concentrator. Analytical expression of temperature dependent electrical efficiency of N number of partially covered Photovoltaic Thermal (PVT) - Compound Parabolic Concentrator (CPC) water collector connected in series has been derived with the help of basic thermal energy balance equations. Analysis has been carried for winter weather condition at Delhi location, India. Energy and exergy performance of N - partially covered Photovoltaic Thermal (PVT) - Compound Parabolic Concentrator (CPC) Water collector system has been compared for two cases: (i) 25% area of water collector covered by PV module, (ii) 75% area of water collector covered by PV module. It is observed that case (i) has been best suited for thermal performance and case (ii) for electrical energy as well as overall exergy.Keywords: compound parabolic concentrator, energy, photovoltaic thermal, temperature dependent electrical efficiency
Procedia PDF Downloads 4051359 Realization Mode and Theory for Extensible Music Cognition Education: Taking Children's Music Education as an Example
Authors: Yumeng He
Abstract:
The purpose of this paper is to establish the “extenics” of children music education, the “extenics” thought and methods are introduced into the children music education field. Discussions are made from the perspective of children music education on how to generate new music cognitive from music cognitive, how to generate new music education from music education and how to generate music learning from music learning. The research methods including the extensibility of music art, extensibility of music education, extensibility of music capability and extensibility of music learning. Results of this study indicate that the thought and research methods of children’s extended music education not only have developed the “extenics” concept and ideological methods, meanwhile, the brand-new thought and innovative research perspective have been employed in discussing the children music education. As indicated in research, the children’s extended music education has extended the horizon of children music education, and has endowed the children music education field with a new thought and research method.Keywords: comprehensive evaluations, extension thought, extension cognition music education, extensibility
Procedia PDF Downloads 2251358 Investigating the Thermal Characteristics of Reclaimed Solid Waste from a Landfill Site Using Thermogravimetry
Authors: S. M. Al-Salem, G.A. Leeke, H. J. Karam, R. Al-Enzi, A. T. Al-Dhafeeri, J. Wang
Abstract:
Thermogravimetry has been popularized as a thermal characterization technique since the 1950s. It aims at investigating the weight loss against both reaction time and temperature, whilst being able to characterize the evolved gases from the volatile components of the organic material being tested using an appropriate hyphenated analytical technique. In an effort to characterize and identify the reclaimed waste from an unsanitary landfill site, this approach was initiated. Solid waste (SW) reclaimed from an active landfill site in the State of Kuwait was collected and prepared for characterization in accordance with international protocols. The SW was segregated and its major components were identified after washing and air drying. Shredding and cryomilling was conducted on the plastic solid waste (PSW) component to yield a material that is representative for further testing and characterization. The material was subjected to five heating rates (b) with minimal repeatable weight for high accuracy thermogravimetric analysis (TGA) following the recommendation of the International Confederation for Thermal Analysis and Calorimetry (ICTAC). The TGA yielded thermograms that showed an off-set from typical behavior of commercial grade resin which was attributed to contact of material with soil and thermal/photo-degradation.Keywords: polymer, TGA, pollution, landfill, waste, plastic
Procedia PDF Downloads 1291357 Iranian Refinery Vacuum Residue Upgrading Using Microwave Irradiation: Effects of Catalyst Type and Amount
Authors: Zarrin Nasri
Abstract:
Microwave irradiation is an innovative technology in the petroleum industry. This kind of energy has been considered to convert vacuum residue of oil refineries into useful products. The advantages of microwaves energy are short time, fast heating, high energy efficiency, and precise process control. In this paper, the effects of catalyst type and amount have been investigated on upgrading of vacuum residue using microwave irradiation. The vacuum residue used in this research is from Tehran oil refinery, Iran. Additives include different catalysts, active carbon as sensitizer, and sodium borohydride as a solid hydrogen donor. Various catalysts contain iron, nickel, molybdenum disulfide, iron oxide and copper. The amount of catalysts in two cases of presence and absence of sodium borohydride have been evaluated. The objective parameters include temperature, asphaltene, viscosity, and API. The specifications of vacuum residue are API, 8.79, viscosity, 16391 cSt (60°C), asphaltene, 13.3 wt %. The results show that there is a significant difference between the effects of catalysts. Among the used catalysts, Fe powder is the best catalyst for upgrading vacuum residue using microwave irradiation and resulted in asphaltene reduction, 31.3 %; viscosity reduction, 76.43 %; and 23.43 % in API increase.Keywords: asphaltene, microwave, upgrading, vacuum residue, viscosity
Procedia PDF Downloads 2551356 Design Of High Sensitivity Transceiver for WSN
Authors: A. Anitha, M. Aishwariya
Abstract:
The realization of truly ubiquitous wireless sensor networks (WSN) demands Ultra-low power wireless communication capability. Because the radio transceiver in a wireless sensor node consumes more power when compared to the computation part it is necessary to reduce the power consumption. Hence, a low power transceiver is designed and implemented in a 120 nm CMOS technology for wireless sensor nodes. The power consumption of the transceiver is reduced still by maintaining the sensitivity. The transceiver designed combines the blocks including differential oscillator, mixer, envelope detector, power amplifiers, and LNA. RF signal modulation and demodulation is carried by On-Off keying method at 2.4 GHz which is said as ISM band. The transmitter demonstrates an output power of 2.075 mW while consuming a supply voltage of range 1.2 V-5.0 V. Here the comparison of LNA and power amplifier is done to obtain an amplifier which produces a high gain of 1.608 dB at receiver which is suitable to produce a desired sensitivity. The multistage RF amplifier is used to improve the gain at the receiver side. The power dissipation of the circuit is in the range of 0.183-0.323 mW. The receiver achieves a sensitivity of about -95 dBm with data rate of 1 Mbps.Keywords: CMOS, envelope detector, ISM band, LNA, low power electronics, PA, wireless transceiver
Procedia PDF Downloads 5191355 Coastal Hydraulic Modelling to Ascertain Stability of Rubble Mound Breakwater
Authors: Safari Mat Desa, Othman A. Karim, Mohd Kamarulhuda Samion, Saiful Bahri Hamzah
Abstract:
Rubble mound breakwater was one of the most popular designs in Malaysia, constructed at the river mouth to dissipate the incoming wave energy from the seaward. Geometrically characteristics in trapezoid, crest width, and bottom width will determine the hypotonus stability, whilst structural height was designed for wave overtopping consideration. Physical hydraulic modelling in two-dimensional facilities was instigated in the flume to test the stability as well as the overtopping rate complied with the method of similarity, namely kinematic, dynamic, and geometric. Scaling effects of wave characteristics were carried out in order to acquire significant interaction of wave height, wave period, and water depth. Results showed two-dimensional physical modelling has proven reliable capability to ascertain breakwater stability significantly.Keywords: breakwater, geometrical characteristic, wave overtopping, physical hydraulic modelling, method of similarity, wave characteristic
Procedia PDF Downloads 1161354 Application of Artificial Neural Network for Prediction of High Tensile Steel Strands in Post-Tensioned Slabs
Authors: Gaurav Sancheti
Abstract:
This study presents an impacting approach of Artificial Neural Networks (ANNs) in determining the quantity of High Tensile Steel (HTS) strands required in post-tensioned (PT) slabs. Various PT slab configurations were generated by varying the span and depth of the slab. For each of these slab configurations, quantity of required HTS strands were recorded. ANNs with backpropagation algorithm and varying architectures were developed and their performance was evaluated in terms of Mean Square Error (MSE). The recorded data for the quantity of HTS strands was used as a feeder database for training the developed ANNs. The networks were validated using various validation techniques. The results show that the proposed ANNs have a great potential with good prediction and generalization capability.Keywords: artificial neural networks, back propagation, conceptual design, high tensile steel strands, post tensioned slabs, validation techniques
Procedia PDF Downloads 2211353 Effect of Temperature on Adsorption of Nano Ca-DTPMP Scale Inhibitor
Authors: Radhiyatul Hikmah Binti Abu, Zukhairi Bin Md Rahim, Siti Ujila Binti Masuri, Nur Ismarrubie Binti Zahari, Mohd Zobir Hussein
Abstract:
This paper describes the synthesis of Calcium Diethylenetriamine-penta (Ca-DTPMP) Scale Inhibitor (SI) and the effect of temperature on its adsorption onto the mineral surfaces. Nanosized particles of Ca-DTPMP SI were synthesized and TEM result shows that the sizes of the synthesized particles are ranged from 10 nm to 30 nm. This synthesized nano SI was then used in static adsorption/precipitation test with various temperatures (37°C, 60°C and 100°C) to determine the effect of temperature on its adsorption ability. The performance of the SI was measured by their diffusion capability, which can be inferred by weighing the metal-SI that successfully adsorbed onto the kaolinite (mineral) surface. The kaolinite samples were analyzed using Scanning Electron Microscope (SEM) and the results show the reduction of pores on kaolinite surface as temperature increases. This indicates higher adsorption of the SI particles onto the mineral surface. Furthermore, EDX analysis shows the presence of Phosphorus (P) and Magnesium (Mg2+) on kaolinite particle surface, hence reaffirming the fact that adsorption took place on the kaolinite surface.Keywords: adsorption, diffusivity, scale, scale inhibitor
Procedia PDF Downloads 4421352 Thermal End Effect on the Isotachophoretic Separation of Analytes
Authors: Partha P. Gopmandal, S. Bhattacharyya
Abstract:
We investigate the thermal end effect on the pseudo-steady state behavior of the isotachophoretic transport of ionic species in a 2-D microchannel. Both ends of the channel are kept at a constant temperature which may lead to significant changes in electrophoretic migration speed. A mathematical model based on Nernst-Planck equations for transport of ions coupled with the equation for temperature field is considered. In addition, the charge conservation equations govern the potential field due to the external electric field. We have computed the equations for ion transport, potential and temperature in a coupled manner through the finite volume method. The diffusive terms are discretized via central difference scheme, while QUICK (Quadratic Upwind Interpolation Convection Kinematics) scheme is used to discretize the convective terms. We find that the thermal end effect has significant effect on the isotachophoretic (ITP) migration speed of the analyte. Our result shows that the ITP velocity for temperature dependent case no longer varies linearly with the applied electric field. A detailed analysis has been made to provide a range of the key parameters to minimize the Joule heating effect on ITP transport of analytes.Keywords: finite volume method, isotachophoresis, QUICK scheme, thermal effect
Procedia PDF Downloads 2721351 Assessment of Energy Use and Energy Efficiency in Two Portuguese Slaughterhouses
Authors: M. Feliciano, F. Rodrigues, A. Gonçalves, J. M. R. C. A. Santos, V. Leite
Abstract:
With the objective of characterizing the profile and performance of energy use by slaughterhouses, surveys and audits were performed in two different facilities located in the northeastern region of Portugal. Energy consumption from multiple energy sources was assessed monthly, along with production and costs, for the same reference year. Gathered data was analyzed to identify and quantify the main consuming processes and to estimate energy efficiency indicators for benchmarking purposes. Main results show differences between the two slaughterhouses concerning energy sources, consumption by source and sector, and global energy efficiency. Electricity is the most used source in both slaughterhouses with a contribution of around 50%, being essentially used for meat processing and refrigeration. Natural gas, in slaughterhouse A, and pellets, in slaughterhouse B, used for heating water take the second place, with a mean contribution of about 45%. On average, a 62 kgoe/t specific energy consumption (SEC) was found, although with differences between slaughterhouses. A prominent negative correlation between SEC and carcass production was found specially in slaughterhouse A. Estimated Specific Energy Cost and Greenhouse Gases Intensity (GHGI) show mean values of about 50 €/t and 1.8 tCO2e/toe, respectively. Main results show that there is a significant margin for improving energy efficiency and therefore lowering costs in this type of non-energy intensive industries.Keywords: meat industry, energy intensity, energy efficiency, GHG emissions
Procedia PDF Downloads 3741350 Thermomechanical Simulation of Equipment Subjected to an Oxygen Pressure and Heated Locally by the Ignition of Small Particles
Authors: Khaled Ayfi
Abstract:
In industrial oxygen systems at high temperature and high pressure, contamination by solid particles is one of the principal causes of ignition hazards. Indeed, gas can sweep away particles, generated by corrosion inside the pipes or during maintenance operations (welding residues, careless disassembly, etc.) and produce accumulations at places where the gas velocity decrease. Moreover, in such an environment rich in oxygen (oxidant), particles are highly reactive and can ignite system walls more actively and at higher temperatures. Oxidation based thermal effects are responsible for mechanical properties lost, leading to the destruction of the pressure equipment wall. To deal with this problem, a numerical analysis is done regarding a sample representative of a wall subjected to pressure and temperature. The validation and analysis are done comparing the numerical simulations results to experimental measurements. More precisely, in this work, we propose a numerical model that describes the thermomechanical behavior of thin metal disks under pressure and subjected to laser heating. This model takes into account the geometric and material nonlinearity and has been validated by the comparison of simulation results with experimental measurements.Keywords: ignition, oxygen, numerical simulation, thermomechanical behavior
Procedia PDF Downloads 1051349 Lifting Body Concepts for Unmanned Fixed-Wing Transport Aircrafts
Authors: Anand R. Nair, Markus Trenker
Abstract:
Lifting body concepts were conceived as early as 1917 and patented by Roy Scroggs. It was an idea of using the fuselage as a lift producing body with no or small wings. Many of these designs were developed and even flight tested between 1920’s to 1970’s, but it was not pursued further for commercial flight as at lower airspeeds, such a configuration was incapable to produce sufficient lift for the entire aircraft. The concept presented in this contribution is combining the lifting body design along with a fixed wing to maximise the lift produced by the aircraft. Conventional aircraft fuselages are designed to be aerodynamically efficient, which is to minimise the drag; however, these fuselages produce very minimal or negligible lift. For the design of an unmanned fixed wing transport aircraft, many of the restrictions which are present for commercial aircraft in terms of fuselage design can be excluded, such as windows for the passengers/pilots, cabin-environment systems, emergency exits, and pressurization systems. This gives new flexibility to design fuselages which are unconventionally shaped to contribute to the lift of the aircraft. The two lifting body concepts presented in this contribution are targeting different applications: For a fast cargo delivery drone, the fuselage is based on a scaled airfoil shape with a cargo capacity of 500 kg for euro pallets. The aircraft has a span of 14 m and reaches 1500 km at a cruising speed of 90 m/s. The aircraft could also easily be adapted to accommodate pilot and passengers with modifications to the internal structures, but pressurization is not included as the service ceiling envisioned for this type of aircraft is limited to 10,000 ft. The next concept to be investigated is called a multi-purpose drone, which incorporates a different type of lifting body and is a much more versatile aircraft as it will have a VTOL capability. The aircraft will have a wingspan of approximately 6 m and flight speeds of 60 m/s within the same service ceiling as the fast cargo delivery drone. The multi-purpose drone can be easily adapted for various applications such as firefighting, agricultural purposes, surveillance, and even passenger transport. Lifting body designs are not a new concept, but their effectiveness in terms of cargo transportation has not been widely investigated. Due to their enhanced lift producing capability, lifting body designs enable the reduction of the wing area and the overall weight of the aircraft. This will, in turn, reduce the thrust requirement and ultimately the fuel consumption. The various designs proposed in this contribution will be based on the general aviation category of aircrafts and will be focussed on unmanned methods of operation. These unmanned fixed-wing transport drones will feature appropriate cargo loading/unloading concepts which can accommodate large size cargo for efficient time management and ease of operation. The various designs will be compared in performance to their conventional counterpart to understand their benefits/shortcomings in terms of design, performance, complexity, and ease of operation. The majority of the performance analysis will be carried out using industry relevant standards in computational fluid dynamics software packages.Keywords: lifting body concept, computational fluid dynamics, unmanned fixed-wing aircraft, cargo drone
Procedia PDF Downloads 2461348 Damping Function and Dynamic Simulation of GUPFC Using IC-HS Algorithm
Authors: Galu Papy Yuma
Abstract:
This paper presents a new dynamic simulation of a power system consisting of four machines equipped with the Generalized Unified Power Flow Controller (GUPFC) to improve power system stability. The dynamic simulation of the GUPFC consists of one shunt converter and two series converters based on voltage source converter, and DC link capacitor installed in the power system. MATLAB/Simulink is used to arrange the dynamic simulation of the GUPFC, where the power system is simulated in order to investigate the impact of the controller on power system oscillation damping and to show the simulation program reliability. The Improved Chaotic- Harmony Search (IC-HS) Algorithm is used to provide the parameter controller in order to lead-lag compensation design. The results obtained by simulation show that the power system with four machines is suitable for stability analysis. The use of GUPFC and IC-HS Algorithm provides the excellent capability in fast damping of power system oscillations and improve greatly the dynamic stability of the power system.Keywords: GUPFC, IC-HS algorithm, Matlab/Simulink, damping oscillation
Procedia PDF Downloads 4481347 The U.S. Missile Defense Shield and Global Security Destabilization: An Inconclusive Link
Authors: Michael A. Unbehauen, Gregory D. Sloan, Alberto J. Squatrito
Abstract:
Missile proliferation and global stability are intrinsically linked. Missile threats continually appear at the forefront of global security issues. North Korea’s recently demonstrated nuclear and intercontinental ballistic missile (ICBM) capabilities, for the first time since the Cold War, renewed public interest in strategic missile defense capabilities. To protect from limited ICBM attacks from so-called rogue actors, the United States developed the Ground-based Midcourse Defense (GMD) system. This study examines if the GMD missile defense shield has contributed to a safer world or triggered a new arms race. Based upon increased missile-related developments and the lack of adherence to international missile treaties, it is generally perceived that the GMD system is a destabilizing factor for global security. By examining the current state of arms control treaties as well as existing missile arsenals and ongoing efforts in technologies to overcome U.S. missile defenses, this study seeks to analyze the contribution of GMD to global stability. A thorough investigation cannot ignore that, through the establishment of this limited capability, the U.S. violated longstanding, successful weapons treaties and caused concern among states that possess ICBMs. GMD capability contributes to the perception that ICBM arsenals could become ineffective, creating an imbalance in favor of the United States, leading to increased global instability and tension. While blame for the deterioration of global stability and non-adherence to arms control treaties is often placed on U.S. missile defense, the facts do not necessarily support this view. The notion of a renewed arms race due to GMD is supported neither by current missile arsenals nor by the inevitable development of new and enhanced missile technology, to include multiple independently targeted reentry vehicles (MIRVs), maneuverable reentry vehicles (MaRVs), and hypersonic glide vehicles (HGVs). The methodology in this study encapsulates a period of time, pre- and post-GMD introduction, while analyzing international treaty adherence, missile counts and types, and research in new missile technologies. The decline in international treaty adherence, coupled with a measurable increase in the number and types of missiles or research in new missile technologies during the period after the introduction of GMD, could be perceived as a clear indicator of GMD contributing to global instability. However, research into improved technology (MIRV, MaRV and HGV) prior to GMD, as well as a decline of various global missile inventories and testing of systems during this same period, would seem to invalidate this theory. U.S. adversaries have exploited the perception of the U.S. missile defense shield as a destabilizing factor as a pretext to strengthen and modernize their militaries and justify their policies. As a result, it can be concluded that global stability has not significantly decreased due to GMD; but rather, the natural progression of technological and missile development would inherently include innovative and dynamic approaches to target engagement, deterrence, and national defense.Keywords: arms control, arms race, global security, GMD, ICBM, missile defense, proliferation
Procedia PDF Downloads 1431346 Daylightophil Approach towards High-Performance Architecture for Hybrid-Optimization of Visual Comfort and Daylight Factor in BSk
Authors: Mohammadjavad Mahdavinejad, Hadi Yazdi
Abstract:
The greatest influence we have from the world is shaped through the visual form, thus light is an inseparable element in human life. The use of daylight in visual perception and environment readability is an important issue for users. With regard to the hazards of greenhouse gas emissions from fossil fuels, and in line with the attitudes on the reduction of energy consumption, the correct use of daylight results in lower levels of energy consumed by artificial lighting, heating and cooling systems. Windows are usually the starting points for analysis and simulations to achieve visual comfort and energy optimization; therefore, attention should be paid to the orientation of buildings to minimize electrical energy and maximize the use of daylight. In this paper, by using the Design Builder Software, the effect of the orientation of an 18m2(3m*6m) room with 3m height in city of Tehran has been investigated considering the design constraint limitations. In these simulations, the dimensions of the building have been changed with one degree and the window is located on the smaller face (3m*3m) of the building with 80% ratio. The results indicate that the orientation of building has a lot to do with energy efficiency to meet high-performance architecture and planning goals and objectives.Keywords: daylight, window, orientation, energy consumption, design builder
Procedia PDF Downloads 2331345 UWB Open Spectrum Access for a Smart Software Radio
Authors: Hemalatha Rallapalli, K. Lal Kishore
Abstract:
In comparison to systems that are typically designed to provide capabilities over a narrow frequency range through hardware elements, the next generation cognitive radios are intended to implement a broader range of capabilities through efficient spectrum exploitation. This offers the user the promise of greater flexibility, seamless roaming possible on different networks, countries, frequencies, etc. It requires true paradigm shift i.e., liberalization over a wide band of spectrum as well as a growth path to more and greater capability. This work contributes towards the design and implementation of an open spectrum access (OSA) feature to unlicensed users thus offering a frequency agile radio platform that is capable of performing spectrum sensing over a wideband. Thus, an ultra-wideband (UWB) radio, which has the intelligence of spectrum sensing only, unlike the cognitive radio with complete intelligence, is named as a Smart Software Radio (SSR). The spectrum sensing mechanism is implemented based on energy detection. Simulation results show the accuracy and validity of this method.Keywords: cognitive radio, energy detection, software radio, spectrum sensing
Procedia PDF Downloads 4281344 Health Percentage Evaluation for Satellite Electrical Power System Based on Linear Stresses Accumulation Damage Theory
Authors: Lin Wenli, Fu Linchun, Zhang Yi, Wu Ming
Abstract:
To meet the demands of long-life and high-intelligence for satellites, the electrical power system should be provided with self-health condition evaluation capability. Any over-stress events in operations should be recorded. Based on Linear stresses accumulation damage theory, accumulative damage analysis was performed on thermal-mechanical-electrical united stresses for three components including the solar array, the batteries and the power conditioning unit. Then an overall health percentage evaluation model for satellite electrical power system was built. To obtain the accurate quantity for system health percentage, an automatic feedback closed-loop correction method for all coefficients in the evaluation model was present. The evaluation outputs could be referred as taking earlier fault-forecast and interventions for Ground Control Center or Satellites self.Keywords: satellite electrical power system, health percentage, linear stresses accumulation damage, evaluation model
Procedia PDF Downloads 4111343 Phytopathology Prediction in Dry Soil Using Artificial Neural Networks Modeling
Authors: F. Allag, S. Bouharati, M. Belmahdi, R. Zegadi
Abstract:
The rapid expansion of deserts in recent decades as a result of human actions combined with climatic changes has highlighted the necessity to understand biological processes in arid environments. Whereas physical processes and the biology of flora and fauna have been relatively well studied in marginally used arid areas, knowledge of desert soil micro-organisms remains fragmentary. The objective of this study is to conduct a diversity analysis of bacterial communities in unvegetated arid soils. Several biological phenomena in hot deserts related to microbial populations and the potential use of micro-organisms for restoring hot desert environments. Dry land ecosystems have a highly heterogeneous distribution of resources, with greater nutrient concentrations and microbial densities occurring in vegetated than in bare soils. In this work, we found it useful to use techniques of artificial intelligence in their treatment especially artificial neural networks (ANN). The use of the ANN model, demonstrate his capability for addressing the complex problems of uncertainty data.Keywords: desert soil, climatic changes, bacteria, vegetation, artificial neural networks
Procedia PDF Downloads 3951342 The Proactive Approach of Digital Forensics Methodology against Targeted Attack Malware
Authors: Mohamed Fadzlee Sulaiman, Mohd Zabri Adil Talib, Aswami Fadillah Mohd Ariffin
Abstract:
Each individual organization has their own mechanism to build up cyber defense capability in protecting their information infrastructures from data breaches and cyber espionage. But, we can not deny the possibility of failing to detect and stop cyber attacks especially for those targeting credential information and intellectual property (IP). In this paper, we would like to share the modern approach of effective digital forensic methodology in order to identify the artifacts in tracing the trails of evidence while mitigating the infection from the target machine/s. This proposed approach will suit the digital forensic investigation to be conducted while resuming the business critical operation after mitigating the infection and minimizing the risk from the identified attack to transpire. Therefore, traditional digital forensics methodology has to be improvised to be proactive which not only focusing to discover the root caused and the threat actor but to develop the relevant mitigation plan in order to prevent from the same attack.Keywords: digital forensic, detection, eradication, targeted attack, malware
Procedia PDF Downloads 2751341 A Reconfigurable Microstrip Patch Antenna with Polyphase Filter for Polarization Diversity and Cross Polarization Filtering Operation
Authors: Lakhdar Zaid, Albane Sangiovanni
Abstract:
A reconfigurable microstrip patch antenna with polyphase filter for polarization diversity and cross polarization filtering operation is presented in this paper. In our approach, a polyphase filter is used to obtain the four 90° phase shift outputs to feed a square microstrip patch antenna. The antenna can be switched between four states of polarization in transmission as well as in receiving mode. Switches are interconnected with the polyphase filter network to produce left-hand circular polarization, right-hand circular polarization, horizontal linear polarization, and vertical linear polarization. Additional advantage of using polyphase filter is its filtering capability for cross polarization filtering in right-hand circular polarization and left-hand circular polarization operation. The theoretical and simulated results demonstrated that polyphase filter is a good candidate to drive microstrip patch antenna to accomplish polarization diversity and cross polarization filtering operation.Keywords: active antenna, polarization diversity, patch antenna, polyphase filter
Procedia PDF Downloads 411