Search results for: classification methods
15845 Finding the Theory of Riba Avoidance: A Scoping Review to Set the Research Agenda
Authors: Randa Ismail Sharafeddine
Abstract:
The Islamic economic system is distinctive in that it implicitly recognizes money as a separate, independent component of production capable of assuming risk and so entitled to the same reward as other Entrepreneurial Factors of Production (EFP). Conventional theory does not identify money capital explicitly as a component of production; rather, interest is recognized as a reward for capital, the interest rate is the cost of money capital, and it is also seen as a cost of physical capital. The conventional theory of production examines how diverse non-entrepreneurial resources (Land, Labor, and Capital) are selected; however, the economic theory community is largely unaware of the reasons why these resources choose to remain as non-entrepreneurial resources as opposed to becoming entrepreneurial resources. Should land, labor, and financial asset owners choose to work for others in return for rent, income, or interest, or should they engage in entrepreneurial risk-taking in order to profit. This is a decision made often in the actual world, but it has never been effectively treated in economic theory. This article will conduct a critical analysis of the conventional classification of factors of production and propose a classification for resource allocation and income distribution (Rent, Wages, Interest, and Profits) that is more rational, even within the conventional theoretical framework for evaluating and developing production and distribution theories. Money is an essential component of production in an Islamic economy, and it must be used to sustain economic activity.Keywords: financial capital, production theory, distribution theory, economic activity, riba avoidance, institution of participation
Procedia PDF Downloads 9015844 Improving Short-Term Forecast of Solar Irradiance
Authors: Kwa-Sur Tam, Byung O. Kang
Abstract:
By using different ranges of daily sky clearness index defined in this paper, any day can be classified as a clear sky day, a partly cloudy day or a cloudy day. This paper demonstrates how short-term forecasting of solar irradiation can be improved by taking into consideration the type of day so defined. The source of day type dependency has been identified. Forecasting methods that take into consideration of day type have been developed and their efficacy have been established. While all methods that implement some form of adjustment to the cloud cover forecast provided by the U.S. National Weather Service provide accuracy improvement, methods that incorporate day type dependency provides even further improvement in forecast accuracy.Keywords: day types, forecast methods, National Weather Service, sky cover, solar energy
Procedia PDF Downloads 46415843 Schedule a New Production Plan by Heuristic Methods
Authors: Hanife Merve Öztürk, Sıdıka Dalgan
Abstract:
In this project, a capacity analysis study is done at TAT A. Ş. Maret Plant. Production capacity of products which generate 80% of sales amount are determined. Obtained data entered the LEKIN Scheduling Program and we get production schedules by using heuristic methods. Besides heuristic methods, as mathematical model, disjunctive programming formulation is adapted to flexible job shop problems by adding a new constraint to find optimal schedule solution.Keywords: scheduling, flexible job shop problem, shifting bottleneck heuristic, mathematical modelling
Procedia PDF Downloads 39915842 Multi-Temporal Urban Land Cover Mapping Using Spectral Indices
Authors: Mst Ilme Faridatul, Bo Wu
Abstract:
Multi-temporal urban land cover mapping is of paramount importance for monitoring urban sprawl and managing the ecological environment. For diversified urban activities, it is challenging to map land covers in a complex urban environment. Spectral indices have proved to be effective for mapping urban land covers. To improve multi-temporal urban land cover classification and mapping, we evaluate the performance of three spectral indices, e.g. modified normalized difference bare-land index (MNDBI), tasseled cap water and vegetation index (TCWVI) and shadow index (ShDI). The MNDBI is developed to evaluate its performance of enhancing urban impervious areas by separating bare lands. A tasseled cap index, TCWVI is developed to evaluate its competence to detect vegetation and water simultaneously. The ShDI is developed to maximize the spectral difference between shadows of skyscrapers and water and enhance water detection. First, this paper presents a comparative analysis of three spectral indices using Landsat Enhanced Thematic Mapper (ETM), Thematic Mapper (TM) and Operational Land Imager (OLI) data. Second, optimized thresholds of the spectral indices are imputed to classify land covers, and finally, their performance of enhancing multi-temporal urban land cover mapping is assessed. The results indicate that the spectral indices are competent to enhance multi-temporal urban land cover mapping and achieves an overall classification accuracy of 93-96%.Keywords: land cover, mapping, multi-temporal, spectral indices
Procedia PDF Downloads 15115841 Optimizing Agricultural Packaging in Fiji: Strategic Barrier Analysis Using Interpretive Structural Modeling and Cross-Impact Matrix Multiplication Applied to Classification
Authors: R. Ananthanarayanan, S. B. Nakula, D. R. Seenivasagam, J. Naua, B. Sharma
Abstract:
Product packaging is a critical component of production, trade, and marketing, playing numerous vital roles that often go unnoticed by consumers. Packaging is essential for maintaining the shelf life, quality assurance, and safety of both manufactured and agricultural products. For example, harvested produce or processed foods can quickly lose quality and freshness, making secure packaging crucial for preservation and safety throughout the food supply chain. In Fiji, agricultural packaging has primarily been managed by local companies for international trade, with gradual advancements in these practices. To further enhance the industry’s performance, this study examines the challenges and constraints hindering the optimization of agricultural packaging practices in Fiji. The study utilizes Multi-Criteria Decision Making (MCDM) tools, specifically Interpretive Structural Modeling (ISM) and Cross-Impact Matrix Multiplication Applied to Classification (MICMAC). ISM analyzes the hierarchical structure of barriers, categorizing them from the least to the most influential, while MICMAC classifies barriers based on their driving and dependence power. This approach helps identify the interrelationships between barriers, providing valuable insights for policymakers and decision-makers to propose innovative solutions for sustainable development in the agricultural packaging sector, ultimately shaping the future of packaging practices in Fiji.Keywords: agricultural packaging, barriers, ISM, MICMAC
Procedia PDF Downloads 2615840 Comprehensive Feature Extraction for Optimized Condition Assessment of Fuel Pumps
Authors: Ugochukwu Ejike Akpudo, Jank-Wook Hur
Abstract:
The increasing demand for improved productivity, maintainability, and reliability has prompted rapidly increasing research studies on the emerging condition-based maintenance concept- Prognostics and health management (PHM). Varieties of fuel pumps serve critical functions in several hydraulic systems; hence, their failure can have daunting effects on productivity, safety, etc. The need for condition monitoring and assessment of these pumps cannot be overemphasized, and this has led to the uproar in research studies on standard feature extraction techniques for optimized condition assessment of fuel pumps. By extracting time-based, frequency-based and the more robust time-frequency based features from these vibrational signals, a more comprehensive feature assessment (and selection) can be achieved for a more accurate and reliable condition assessment of these pumps. With the aid of emerging deep classification and regression algorithms like the locally linear embedding (LLE), we propose a method for comprehensive condition assessment of electromagnetic fuel pumps (EMFPs). Results show that the LLE as a comprehensive feature extraction technique yields better feature fusion/dimensionality reduction results for condition assessment of EMFPs against the use of single features. Also, unlike other feature fusion techniques, its capabilities as a fault classification technique were explored, and the results show an acceptable accuracy level using standard performance metrics for evaluation.Keywords: electromagnetic fuel pumps, comprehensive feature extraction, condition assessment, locally linear embedding, feature fusion
Procedia PDF Downloads 11515839 Comparison of Soil Test Extractants for Determination of Available Soil Phosphorus
Authors: Violina Angelova, Stefan Krustev
Abstract:
The aim of this work was to evaluate the effectiveness of different soil test extractants for the determination of available soil phosphorus in five internationally certified standard soils, sludge and clay (NCS DC 85104, NCS DC 85106, ISE 859, ISE 952, ISE 998). The certified samples were extracted with the following methods/extractants: CaCl₂, CaCl₂ and DTPA (CAT), double lactate (DL), ammonium lactate (AL), calcium acetate lactate (CAL), Olsen, Mehlich 3, Bray and Kurtz I, and Morgan, which are commonly used in soil testing laboratories. The phosphorus in soil extracts was measured colorimetrically using Spectroquant Pharo 100 spectrometer. The methods used in the study were evaluated according to the recovery of available phosphorus, facility of application and rapidity of performance. The relationships between methods are examined statistically. A good agreement of the results from different soil test was established for all certified samples. In general, the P values extracted by the nine extraction methods significantly correlated with each other. When grouping the soils according to pH, organic carbon content and clay content, weaker extraction methods showed analogous trends; also among the stronger extraction methods, common tendencies were found. Other factors influencing the extraction force of the different methods include soil: solution ratio, as well as the duration and power of shaking the samples. The mean extractable P in certified samples was found to be in the order of CaCl₂ < CAT < Morgan < Bray and Kurtz I < Olsen < CAL < DL < Mehlich 3 < AL. Although the nine methods extracted different amounts of P from the certified samples, values of P extracted by the different methods were strongly correlated among themselves. Acknowledgment: The financial support by the Bulgarian National Science Fund Projects DFNI Н04/9 and DFNI Н06/21 are greatly appreciated.Keywords: available soil phosphorus, certified samples, determination, soil test extractants
Procedia PDF Downloads 14915838 Strategic Management Methods in Non-Profit Making Organization
Authors: P. Řehoř, D. Holátová, V. Doležalová
Abstract:
Paper deals with analysis of strategic management methods in non-profit making organization in the Czech Republic. Strategic management represents an aggregate of methods and approaches that can be applied for managing organizations - in this article the organizations which associate owners and keepers of non-state forest properties. Authors use these methods of strategic management: analysis of stakeholders, SWOT analysis and questionnaire inquiries. The questionnaire was distributed electronically via e-mail. In October 2013 we obtained data from a total of 84 questionnaires. Based on the results the authors recommend the using of confrontation strategy which improves the competitiveness of non-profit making organizations.Keywords: strategic management, non-profit making organization, strategy analysis, SWOT analysis, strategy, competitiveness
Procedia PDF Downloads 48215837 Methods Used to Perform Requirements Elicitation for Healthcare Software Development
Authors: Tang Jiacheng, Fang Tianyu, Liu Yicen, Xiang Xingzhou
Abstract:
The proportion of healthcare services is increasing throughout the globe. The convergence of mobile technology is driving new business opportunities, innovations in healthcare service delivery and the promise of a better life tomorrow for different populations with various healthcare needs. One of the most important phases for the combination of health care and mobile applications is to elicit requirements correctly. In this paper, four articles from different research directions with four topics on healthcare were detailed analyzed and summarized. We identified the underlying problems in guidance to develop mobile applications to provide healthcare service for Older adults, Women in menopause, Patients undergoing covid. These case studies cover several elicitation methods: survey, prototyping, focus group interview and questionnaire. And the effectiveness of these methods was analyzed along with the advantages and limitations of these methods, which is beneficial to adapt the elicitation methods for future software development process.Keywords: healthcare, software requirement elicitation, mobile applications, prototyping, focus group interview
Procedia PDF Downloads 14515836 Rangeland Monitoring by Computerized Technologies
Abstract:
Every piece of rangeland has a different set of physical and biological characteristics. This requires the manager to synthesis various information for regular monitoring to define changes trend to get wright decision for sustainable management. So range managers need to use computerized technologies to monitor rangeland, and select. The best management practices. There are four examples of computerized technologies that can benefit sustainable management: (1) Photographic method for cover measurement: The method was tested in different vegetation communities in semi humid and arid regions. Interpretation of pictures of quadrats was done using Arc View software. Data analysis was done by SPSS software using paired t test. Based on the results, generally, photographic method can be used to measure ground cover in most vegetation communities. (2) GPS application for corresponding ground samples and satellite pixels: In two provinces of Tehran and Markazi, six reference points were selected and in each point, eight GPS models were tested. Significant relation among GPS model, time and location with accuracy of estimated coordinates was found. After selection of suitable method, in Markazi province coordinates of plots along four transects in each 6 sites of rangelands was recorded. The best time of GPS application was in the morning hours, Etrex Vista had less error than other models, and a significant relation among GPS model, time and location with accuracy of estimated coordinates was found. (3) Application of satellite data for rangeland monitoring: Focusing on the long term variation of vegetation parameters such as vegetation cover and production is essential. Our study in grass and shrub lands showed that there were significant correlations between quantitative vegetation characteristics and satellite data. So it is possible to monitor rangeland vegetation using digital data for sustainable utilization. (4) Rangeland suitability classification with GIS: Range suitability assessment can facilitate sustainable management planning. Three sub-models of sensitivity to erosion, water suitability and forage production out puts were entered to final range suitability classification model. GIS was facilitate classification of range suitability and produced suitability maps for sheep grazing. Generally digital computers assist range managers to interpret, modify, calibrate or integrating information for correct management.Keywords: computer, GPS, GIS, remote sensing, photographic method, monitoring, rangeland ecosystem, management, suitability, sheep grazing
Procedia PDF Downloads 36515835 Post-Soviet LULC Analysis of Tbilisi, Batumi and Kutaisi Using of Remote Sensing and Geo Information System
Authors: Lela Gadrani, Mariam Tsitsagi
Abstract:
Human is a part of the urban landscape and responsible for it. Urbanization of cities includes the longest phase; thus none of the environment ever undergoes such anthropogenic impact as the area of large cities. The post-Soviet period is very interesting in terms of scientific research. The changes that have occurred in the cities since the collapse of the Soviet Union have not yet been analyzed best to our knowledge. In this context, the aim of this paper is to analyze the changes in the land use of the three large cities of Georgia (Tbilisi, Kutaisi, Batumi). Tbilisi as a capital city, Batumi as a port city, and Kutaisi as a former industrial center. Data used during the research process are conventionally divided into satellite and supporting materials. For this purpose, the largest topographic maps (1:10 000) of all three cities were analyzed, Tbilisi General Plans (1896, 1924), Tbilisi and Kutaisi historical maps. The main emphasis was placed on the classification of Landsat images. In this case, we have classified the images LULC (LandUse / LandCover) of all three cities taken in 1987 and 2016 using the supervised and unsupervised methods. All the procedures were performed in the programs: Arc GIS 10.3.1 and ENVI 5.0. In each classification we have singled out the following classes: built-up area, water bodies, agricultural lands, green cover and bare soil, and calculated the areas occupied by them. In order to check the validity of the obtained results, additionally we used the higher resolution images of CORONA and Sentinel. Ultimately we identified the changes that took place in the land use in the post-Soviet period in the above cities. According to the results, a large wave of changes touched Tbilisi and Batumi, though in different periods. It turned out that in the case of Tbilisi, the area of developed territory has increased by 13.9% compared to the 1987 data, which is certainly happening at the expense of agricultural land and green cover, in particular, the area of agricultural lands has decreased by 4.97%; and the green cover by 5.67%. It should be noted that Batumi has obviously overtaken the country's capital in terms of development. With the unaided eye it is clear that in comparison with other regions of Georgia, everything is different in Batumi. In fact, Batumi is an unofficial summer capital of Georgia. Undoubtedly, Batumi’s development is very important both in economic and social terms. However, there is a danger that in the uneven conditions of urban development, we will eventually get a developed center - Batumi, and multiple underdeveloped peripheries around it. Analysis of the changes in the land use is of utmost importance not only for quantitative evaluation of the changes already implemented, but for future modeling and prognosis of urban development. Raster data containing the classes of land use is an integral part of the city's prognostic models.Keywords: analysis, geo information system, remote sensing, LULC
Procedia PDF Downloads 44915834 Stabilization of Spent Engine Oil Contaminated Lateritic Soil Admixed with Cement Kiln Dust for Use as Road Construction Materials
Authors: Johnson Rotimi Oluremi, A. Adedayo Adegbola, A. Samson Adediran, O. Solomon Oladapo
Abstract:
Spent engine oil contains heavy metals and polycyclic aromatic hydrocarbons which contribute to chronic health hazards, poor soil aeration, immobilisation of nutrients and lowering of pH in soil. It affects geotechnical properties of lateritic soil thereby constituting geotechnical and foundation problems. This study is therefore based on the stabilization of spent engine oil (SEO) contaminated lateritic soil using cement kiln dust (CKD) as a mean of restoring it to its pristine state. Geotechnical tests which include sieve analysis, atterberg limit, compaction, California bearing ratio and unconfined compressive strength tests were carried out on the natural, SEO contaminated and CKD stabilized SEO contaminated lateritic soil samples. The natural soil classified as A-2-7 (2) by AASHTO classification and GC according to the Unified Soil Classification System changed to A-4 non-plastic soil due to SEO contaminated even under the influence of CKD it remained unchanged. However, the maximum dry density (MDD) of the SEO contaminated soil increased while the optimum moisture content (OMC) behaved vice versa with the increase in the percentages of CKD. Similarly, the bearing strength of the stabilized SEO contaminated soil measured by California Bearing Ratio (CBR) increased with percentage increment in CKD. In conclusion, spent engine oil has a detrimental effect on the geotechnical properties of the lateritic soil sample but which can be remediated using 10% CKD as a stand alone admixture in stabilizing spent engine oil contaminated soil.Keywords: spent engine oil, lateritic soil, cement kiln dust, stabilization, compaction, unconfined compressive strength
Procedia PDF Downloads 38715833 Image Recognition and Anomaly Detection Powered by GANs: A Systematic Review
Authors: Agastya Pratap Singh
Abstract:
Generative Adversarial Networks (GANs) have emerged as powerful tools in the fields of image recognition and anomaly detection due to their ability to model complex data distributions and generate realistic images. This systematic review explores recent advancements and applications of GANs in both image recognition and anomaly detection tasks. We discuss various GAN architectures, such as DCGAN, CycleGAN, and StyleGAN, which have been tailored to improve accuracy, robustness, and efficiency in visual data analysis. In image recognition, GANs have been used to enhance data augmentation, improve classification models, and generate high-quality synthetic images. In anomaly detection, GANs have proven effective in identifying rare and subtle abnormalities across various domains, including medical imaging, cybersecurity, and industrial inspection. The review also highlights the challenges and limitations associated with GAN-based methods, such as instability during training and mode collapse, and suggests future research directions to overcome these issues. Through this review, we aim to provide researchers with a comprehensive understanding of the capabilities and potential of GANs in transforming image recognition and anomaly detection practices.Keywords: generative adversarial networks, image recognition, anomaly detection, DCGAN, CycleGAN, StyleGAN, data augmentation
Procedia PDF Downloads 1915832 [Keynote Talk]: sEMG Interface Design for Locomotion Identification
Authors: Rohit Gupta, Ravinder Agarwal
Abstract:
Surface electromyographic (sEMG) signal has the potential to identify the human activities and intention. This potential is further exploited to control the artificial limbs using the sEMG signal from residual limbs of amputees. The paper deals with the development of multichannel cost efficient sEMG signal interface for research application, along with evaluation of proposed class dependent statistical approach of the feature selection method. The sEMG signal acquisition interface was developed using ADS1298 of Texas Instruments, which is a front-end interface integrated circuit for ECG application. Further, the sEMG signal is recorded from two lower limb muscles for three locomotions namely: Plane Walk (PW), Stair Ascending (SA), Stair Descending (SD). A class dependent statistical approach is proposed for feature selection and also its performance is compared with 12 preexisting feature vectors. To make the study more extensive, performance of five different types of classifiers are compared. The outcome of the current piece of work proves the suitability of the proposed feature selection algorithm for locomotion recognition, as compared to other existing feature vectors. The SVM Classifier is found as the outperformed classifier among compared classifiers with an average recognition accuracy of 97.40%. Feature vector selection emerges as the most dominant factor affecting the classification performance as it holds 51.51% of the total variance in classification accuracy. The results demonstrate the potentials of the developed sEMG signal acquisition interface along with the proposed feature selection algorithm.Keywords: classifiers, feature selection, locomotion, sEMG
Procedia PDF Downloads 29115831 Convergence of Sinc Methods Applied to Kuramoto-Sivashinsky Equation
Authors: Kamel Al-Khaled
Abstract:
A comparative study of the Sinc-Galerkin and Sinc-Collocation methods for solving the Kuramoto-Sivashinsky equation is given. Both approaches depend on using Sinc basis functions. Firstly, a numerical scheme using Sinc-Galerkin method is developed to approximate the solution of Kuramoto-Sivashinsky equation. Sinc approximations to both derivatives and indefinite integrals reduces the solution to an explicit system of algebraic equations. The error in the solution is shown to converge to the exact solution at an exponential. The convergence proof of the solution for the discrete system is given using fixed-point iteration. Secondly, a combination of a Crank-Nicolson formula in the time direction, with the Sinc-collocation in the space direction is presented, where the derivatives in the space variable are replaced by the necessary matrices to produce a system of algebraic equations. The methods are tested on two examples. The demonstrated results show that both of the presented methods more or less have the same accuracy.Keywords: Sinc-Collocation, nonlinear PDEs, numerical methods, fixed-point
Procedia PDF Downloads 47015830 Assessment of Slope Stability by Continuum and Discontinuum Methods
Authors: Taleb Hosni Abderrahmane, Berga Abdelmadjid
Abstract:
The development of numerical analysis and its application to geomechanics problems have provided geotechnical engineers with extremely powerful tools. One of the most important problems in geotechnical engineering is the slope stability assessment. It is a very difficult task due to several aspects such the nature of the problem, experimental consideration, monitoring, controlling, and assessment. The main objective of this paper is to perform a comparative numerical study between the following methods: The Limit Equilibrium (LEM), Finite Element (FEM), Limit Analysis (LAM) and Distinct Element (DEM). The comparison is conducted in terms of the safety factors and the critical slip surfaces. Through the results, we see the feasibility to analyse slope stability by many methods.Keywords: comparison, factor of safety, geomechanics, numerical methods, slope analysis, slip surfaces
Procedia PDF Downloads 53115829 Impacts of Aquaculture Farms on the Mangroves Forests of Sundarbans, India (2010-2018): Temporal Changes of NDVI
Authors: Sandeep Thakur, Ismail Mondal, Phani Bhusan Ghosh, Papita Das, Tarun Kumar De
Abstract:
Sundarbans Reserve forest of India has been undergoing major transformations in the recent past owing to population pressure and related changes. This has brought about major changes in the spatial landscape of the region especially in the western parts. This study attempts to assess the impacts of the Landcover changes on the mangrove habitats. Time series imageries of Landsat were used to analyze the Normalized Differential Vegetation Index (NDVI) patterns over the western parts of Indian Sundarbans forest in order to assess the heath of the mangroves in the region. The images were subjected to Land use Land cover (LULC) classification using sub-pixel classification techniques in ERDAS Imagine software and the changes were mapped. The spatial proliferation of aquaculture farms during the study period was also mapped. A multivariate regression analysis was carried out between the obtained NDVI values and the LULC classes. Similarly, the observed meteorological data sets (time series rainfall and minimum and maximum temperature) were also statistically correlated for regression. The study demonstrated the application of NDVI in assessing the environmental status of mangroves as the relationship between the changes in the environmental variables and the remote sensing based indices felicitate an efficient evaluation of environmental variables, which can be used in the coastal zone monitoring and development processes.Keywords: aquaculture farms, LULC, Mangrove, NDVI
Procedia PDF Downloads 18015828 Recovery of Metals from Electronic Waste by Physical and Chemical Recycling Processes
Authors: Muammer Kaya
Abstract:
The main purpose of this article is to provide a comprehensive review of various physical and chemical processes for electronic waste (e-waste) recycling, their advantages and shortfalls towards achieving a cleaner process of waste utilization, with especial attention towards extraction of metallic values. Current status and future perspectives of waste printed circuit boards (PCBs) recycling are described. E-waste characterization, dismantling/ disassembly methods, liberation and classification processes, composition determination techniques are covered. Manual selective dismantling and metal-nonmetal liberation at – 150 µm at two step crushing are found to be the best. After size reduction, mainly physical separation/concentration processes employing gravity, electrostatic, magnetic separators, froth floatation etc., which are commonly used in mineral processing, have been critically reviewed here for separation of metals and non-metals, along with useful utilizations of the non-metallic materials. The recovery of metals from e-waste material after physical separation through pyrometallurgical, hydrometallurgical or biohydrometallurgical routes is also discussed along with purification and refining and some suitable flowsheets are also given. It seems that hydrometallurgical route will be a key player in the base and precious metals recoveries from e-waste. E-waste recycling will be a very important sector in the near future from economic and environmental perspectives.Keywords: e-waste, WEEE, recycling, metal recovery, hydrometallurgy, pirometallurgy, biometallurgy
Procedia PDF Downloads 35415827 Reliability Analysis of Steel Columns under Buckling Load in Second-Order Theory
Authors: Hamed Abshari, M. Reza Emami Azadi, Madjid Sadegh Azar
Abstract:
For studying the overall instability of members of steel structures, there are several methods in which overall buckling and geometrical imperfection effects are considered in analysis. In first section, these methods are compared and ability of software to apply these methods is studied. Buckling loads determined from theoretical methods and software is compared for 2D one bay, one and two stories steel frames. To consider actual condition, buckling loads of three steel frames that have various dimensions are calculated and compared. Also, uncertainties that exist in loading and modeling of structures such as geometrical imperfection, yield stress, and modulus of elasticity in buckling load of 2D framed steel structures have been studied. By performing these uncertainties to each reliability analysis procedures (first-order, second-order, and simulation methods of reliability), one index of reliability from each procedure is determined. These values are studied and compared.Keywords: buckling, second-order theory, reliability index, steel columns
Procedia PDF Downloads 49115826 Iranian Sexual Health Needs in Viewpoint of Policy Makers: A Qualitative Study
Authors: Mahnaz Motamedi, Mohammad Shahbazi, Shahrzad Rahimi-Naghani, Mehrdad Salehi
Abstract:
Introduction: Identifying sexual health needs, developing appropriate plans, and delivering services to meet those needs is an essential component of health programs for women, men, and children all over the world, especially in poor countries. Main Subject: The aim of this study was to describe the needs of sexual health from the viewpoint of health policymakers in Iran. Methods: A qualitative study using thematic content analysis was designed and conducted. Data gathering was conducted through semi-structured, in-depth interviews with 25 key informants within the healthcare system. Key informants were selected through both purposive and snowball sampling. MAXQUDA software (version 10) was used to facilitate transcription, classification of codes, and conversion of data into meaningful units, by the process of reduction and compression. Results: The analysis of narratives and information categorized sexual health needs into five categories: culturalization of sexual health discourse, sexual health care services, sexual health educational needs, sexual health research needs, and organizational needs. Conclusion: Identifying and explaining sexual health needs is an important factor in determining the priority of sexual health programs and identification of barriers to meet these needs. This can help other policymakers and health planners to develop appropriate programs to promote sexual and reproductive health.Keywords: sexual health, sexual health needs, policy makers, health system, qualitative study
Procedia PDF Downloads 21815825 A Novel Breast Cancer Detection Algorithm Using Point Region Growing Segmentation and Pseudo-Zernike Moments
Authors: Aileen F. Wang
Abstract:
Mammography has been one of the most reliable methods for early detection and diagnosis of breast cancer. However, mammography misses about 17% and up to 30% of breast cancers due to the subtle and unstable appearances of breast cancer in their early stages. Recent computer-aided diagnosis (CADx) technology using Zernike moments has improved detection accuracy. However, it has several drawbacks: it uses manual segmentation, Zernike moments are not robust, and it still has a relatively high false negative rate (FNR)–17.6%. This project will focus on the development of a novel breast cancer detection algorithm to automatically segment the breast mass and further reduce FNR. The algorithm consists of automatic segmentation of a single breast mass using Point Region Growing Segmentation, reconstruction of the segmented breast mass using Pseudo-Zernike moments, and classification of the breast mass using the root mean square (RMS). A comparative study among the various algorithms on the segmentation and reconstruction of breast masses was performed on randomly selected mammographic images. The results demonstrated that the newly developed algorithm is the best in terms of accuracy and cost effectiveness. More importantly, the new classifier RMS has the lowest FNR–6%.Keywords: computer aided diagnosis, mammography, point region growing segmentation, pseudo-zernike moments, root mean square
Procedia PDF Downloads 45115824 Isolation Preserving Medical Conclusion Hold Structure via C5 Algorithm
Authors: Swati Kishor Zode, Rahul Ambekar
Abstract:
Data mining is the extraction of fascinating examples on the other hand information from enormous measure of information and choice is made as indicated by the applicable information extracted. As of late, with the dangerous advancement in internet, stockpiling of information and handling procedures, privacy preservation has been one of the major (higher) concerns in data mining. Various techniques and methods have been produced for protection saving data mining. In the situation of Clinical Decision Support System, the choice is to be made on the premise of the data separated from the remote servers by means of Internet to diagnose the patient. In this paper, the fundamental thought is to build the precision of Decision Support System for multiple diseases for different maladies and in addition protect persistent information while correspondence between Clinician side (Client side) also, the Server side. A privacy preserving protocol for clinical decision support network is proposed so that patients information dependably stay scrambled amid diagnose prepare by looking after the accuracy. To enhance the precision of Decision Support System for various malady C5.0 classifiers and to save security, a Homomorphism encryption algorithm Paillier cryptosystem is being utilized.Keywords: classification, homomorphic encryption, clinical decision support, privacy
Procedia PDF Downloads 32915823 Methods of Interpolating Temperature and Rainfall Distribution in Northern Vietnam
Authors: Thanh Van Hoang, Tien Yin Chou, Yao Min Fang, Yi Min Huang, Xuan Linh Nguyen
Abstract:
Reliable information on the spatial distribution of annual rainfall and temperature is essential in research projects relating to urban and regional planning. This research presents results of a classification of temperature and rainfall in the Red River Delta of northern Vietnam based on measurements from seven meteorological stations (Ha Nam, Hung Yen, Lang, Nam Dinh, Ninh Binh, Phu Lien, Thai Binh) in the river basin over a thirty-years period from 1982-2011. The average accumulated rainfall trends in the delta are analysed and form the basis of research essential to weather and climate forecasting. This study employs interpolation based on the Kriging Method for daily rainfall (min and max) and daily temperature (min and max) in order to improve the understanding of sources of variation and uncertainly in these important meteorological parameters. To the Kriging method, the results will show the different models and the different parameters based on the various precipitation series. The results provide a useful reference to assist decision makers in developing smart agriculture strategies for the Red River Delta in Vietnam.Keywords: spatial interpolation method, ArcGIS, temperature variability, rainfall variability, Red River Delta, Vietnam
Procedia PDF Downloads 32715822 Research Methodology and Mixed Methods (Qualitative and Quantitative) for Ph.D. Construction Management – Post-Disaster Reconstruction
Authors: Samuel Quashie
Abstract:
Ph.D. Construction Management methodology and mixed methods are organized to guide the researcher to assemble and assess data in the research activities. Construction management research is close to business management and social science research. It also contributes to researching the phenomenon and answering the research question, generating an integrated management system for post-disaster reconstruction in construction and related industries. Research methodology and methods drive the research to achieve the goal or goals, contribute to knowledge, or increase knowledge. This statement means the research methodology, mixed methods, aim, objectives, and processes address the research question, facilitate its achievement and foundation to conduct the study. Mixed methods use project-based case studies, interviews, observations, literature and archival document reviews, research questionnaires, and surveys, and evaluation of integrated systems used in the construction industry and related industries to address the research work. The research mixed methods (qualitative, quantitative) define the research topic and establish a more in-depth study. The research methodology is action research, which involves the collaboration of participants and service users to collect and evaluate data, studying the phenomenon, research question(s) to improve the situation in post-disaster reconstruction phase management.Keywords: methodology, Ph.D. research, post-disaster reconstruction, mixed-methods qualitative and quantitative
Procedia PDF Downloads 22815821 Recent Advances of Isolated Microspore Culture Response in Durum Wheat
Authors: Zelikha Labbani
Abstract:
Many biotechnology methods have been used in plant breeding programs. The in vitro isolated microspore culture is the one of these methods. For durum wheat, the use of this technology has been limited for a long time due to the low number of embryos produced and also most regeneration plants are albina. The objective of this paper is to show that using isolated microspores culture on durum wheat is possible due to the development of the new methods using the new pretreatment of the microspores before their isolation and cultivation.Keywords: isolated microspore culture, pretreatments, in vitro embryogenesis, plant breeding program
Procedia PDF Downloads 53015820 Assessment of the Use of Participatory Research Methods among Researchers in Federal University of Agriculture Abeokuta, Nigeria
Authors: Samson Olusegun Apantaku, Adetayo K. Aromolaran, Giyatt Hammed
Abstract:
The study assessed the use of participatory research methods among Federal University of Agriculture Abeokuta, Nigeria (FUNAAB) researchers. Simple random sampling technique was used to select one hundred and twenty respondents from the study area. Data were collected using a questionnaire. Data collected were subjected to descriptive and inferential statistical analyses. Results showed that 75.8% of the respondents were males while only 21.3% were female. The mean age of the respondents was 38.8 years and most (77.5%) of them were married. 15% of the respondents were in professorial cadre, 21.7% and 20% of the respondents were senior lecturers/fellow and lecturer/research fellow I&II respectively. The results further revealed that 93.3% of the respondents were aware of participatory research methods and 82.5% of the respondents have utilized it before. The average period of usage was 2.7 years and participation by consultation (86.7%) and interactive participation (76.7%) were mostly used. Most (94.2%) indicated that fund was the major hindrance to the use of participatory research methods. The result of correlation analysis showed that there was significant relationship between the years of research experience, designation post (status) of the respondents and usage of participatory research methods (r = 0.034, 0.031, p < 0.05). The study concluded that most of the researchers were aware of and used participatory research methods, which could influence the quality of their research or make it acceptable to the end users. It was recommended that more funds should be made available and accessible for participatory research. All researchers should be trained and encouraged to make use of participatory research methods in their research activities so as to achieve effective research and capacity building that could enhance adoption of technologies and increase agricultural production in the country. Farmers’ capacity to participate in agricultural research should also be enhanced.Keywords: participatory research, participatory research methods, awareness, utilization
Procedia PDF Downloads 41915819 Landslide Susceptibility Mapping Using Soft Computing in Amhara Saint
Authors: Semachew M. Kassa, Africa M Geremew, Tezera F. Azmatch, Nandyala Darga Kumar
Abstract:
Frequency ratio (FR) and analytical hierarchy process (AHP) methods are developed based on past landslide failure points to identify the landslide susceptibility mapping because landslides can seriously harm both the environment and society. However, it is still difficult to select the most efficient method and correctly identify the main driving factors for particular regions. In this study, we used fourteen landslide conditioning factors (LCFs) and five soft computing algorithms, including Random Forest (RF), Support Vector Machine (SVM), Logistic Regression (LR), Artificial Neural Network (ANN), and Naïve Bayes (NB), to predict the landslide susceptibility at 12.5 m spatial scale. The performance of the RF (F1-score: 0.88, AUC: 0.94), ANN (F1-score: 0.85, AUC: 0.92), and SVM (F1-score: 0.82, AUC: 0.86) methods was significantly better than the LR (F1-score: 0.75, AUC: 0.76) and NB (F1-score: 0.73, AUC: 0.75) method, according to the classification results based on inventory landslide points. The findings also showed that around 35% of the study region was made up of places with high and very high landslide risk (susceptibility greater than 0.5). The very high-risk locations were primarily found in the western and southeastern regions, and all five models showed good agreement and similar geographic distribution patterns in landslide susceptibility. The towns with the highest landslide risk include Amhara Saint Town's western part, the Northern part, and St. Gebreal Church villages, with mean susceptibility values greater than 0.5. However, rainfall, distance to road, and slope were typically among the top leading factors for most villages. The primary contributing factors to landslide vulnerability were slightly varied for the five models. Decision-makers and policy planners can use the information from our study to make informed decisions and establish policies. It also suggests that various places should take different safeguards to reduce or prevent serious damage from landslide events.Keywords: artificial neural network, logistic regression, landslide susceptibility, naïve Bayes, random forest, support vector machine
Procedia PDF Downloads 7915818 Open Source Knowledge Management Approach to Manage and Disseminate Distributed Content in a Global Enterprise
Authors: Rahul Thakur, Onkar Chandel
Abstract:
Red Hat is the world leader in providing open source software and solutions. A global enterprise, like Red Hat, has unique issues of connecting employees with content because of distributed offices, multiple teams spread across geographies, multiple languages, and different cultures. Employees, of a global company, create content that is distributed across departments, teams, regions, and countries. This makes finding the best content difficult since owners keep iterating on the existing content. When employees are unable to find the content, they end up creating it once again and in the process duplicating existing material and effort. Also, employees may not find the relevant content and spend time reviewing obsolete duplicate, or irrelevant content. On an average, a person spends 15 minutes/day in failed searches that might result in missed business opportunities, employee frustration, and substandard deliverables. Red Hat Knowledge Management Office (KMO) applied 'open source strategy' to solve the above problems. Under the Open Source Strategy, decisions are taken collectively. The strategy aims at accomplishing common goals with the help of communities. The objectives of this initiative were to save employees' time, get them authentic content, improve their content search experience, avoid duplicate content creation, provide context based search, improve analytics, improve content management workflows, automate content classification, and automate content upload. This session will describe open source strategy, its applicability in content management, challenges, recommended solutions, and outcome.Keywords: content classification, content management, knowledge management, open source
Procedia PDF Downloads 21015817 A Hybrid Feature Selection Algorithm with Neural Network for Software Fault Prediction
Authors: Khalaf Khatatneh, Nabeel Al-Milli, Amjad Hudaib, Monther Ali Tarawneh
Abstract:
Software fault prediction identify potential faults in software modules during the development process. In this paper, we present a novel approach for software fault prediction by combining a feedforward neural network with particle swarm optimization (PSO). The PSO algorithm is employed as a feature selection technique to identify the most relevant metrics as inputs to the neural network. Which enhances the quality of feature selection and subsequently improves the performance of the neural network model. Through comprehensive experiments on software fault prediction datasets, the proposed hybrid approach achieves better results, outperforming traditional classification methods. The integration of PSO-based feature selection with the neural network enables the identification of critical metrics that provide more accurate fault prediction. Results shows the effectiveness of the proposed approach and its potential for reducing development costs and effort by detecting faults early in the software development lifecycle. Further research and validation on diverse datasets will help solidify the practical applicability of the new approach in real-world software engineering scenarios.Keywords: feature selection, neural network, particle swarm optimization, software fault prediction
Procedia PDF Downloads 9315816 Deep Learning for Qualitative and Quantitative Grain Quality Analysis Using Hyperspectral Imaging
Authors: Ole-Christian Galbo Engstrøm, Erik Schou Dreier, Birthe Møller Jespersen, Kim Steenstrup Pedersen
Abstract:
Grain quality analysis is a multi-parameterized problem that includes a variety of qualitative and quantitative parameters such as grain type classification, damage type classification, and nutrient regression. Currently, these parameters require human inspection, a multitude of instruments employing a variety of sensor technologies, and predictive model types or destructive and slow chemical analysis. This paper investigates the feasibility of applying near-infrared hyperspectral imaging (NIR-HSI) to grain quality analysis. For this study two datasets of NIR hyperspectral images in the wavelength range of 900 nm - 1700 nm have been used. Both datasets contain images of sparsely and densely packed grain kernels. The first dataset contains ~87,000 image crops of bulk wheat samples from 63 harvests where protein value has been determined by the FOSS Infratec NOVA which is the golden industry standard for protein content estimation in bulk samples of cereal grain. The second dataset consists of ~28,000 image crops of bulk grain kernels from seven different wheat varieties and a single rye variety. In the first dataset, protein regression analysis is the problem to solve while variety classification analysis is the problem to solve in the second dataset. Deep convolutional neural networks (CNNs) have the potential to utilize spatio-spectral correlations within a hyperspectral image to simultaneously estimate the qualitative and quantitative parameters. CNNs can autonomously derive meaningful representations of the input data reducing the need for advanced preprocessing techniques required for classical chemometric model types such as artificial neural networks (ANNs) and partial least-squares regression (PLS-R). A comparison between different CNN architectures utilizing 2D and 3D convolution is conducted. These results are compared to the performance of ANNs and PLS-R. Additionally, a variety of preprocessing techniques from image analysis and chemometrics are tested. These include centering, scaling, standard normal variate (SNV), Savitzky-Golay (SG) filtering, and detrending. The results indicate that the combination of NIR-HSI and CNNs has the potential to be the foundation for an automatic system unifying qualitative and quantitative grain quality analysis within a single sensor technology and predictive model type.Keywords: deep learning, grain analysis, hyperspectral imaging, preprocessing techniques
Procedia PDF Downloads 98