Search results for: Total Electron Content (TEC)
15120 Enhanced Dielectric and Ferroelectric Properties in Holmium Substituted Stoichiometric and Non-Stoichiometric SBT Ferroelectric Ceramics
Authors: Sugandha Gupta, Arun Kumar Jha
Abstract:
A large number of ferroelectric materials have been intensely investigated for applications in non-volatile ferroelectric random access memories (FeRAMs), piezoelectric transducers, actuators, pyroelectric sensors, high dielectric constant capacitors, etc. Bismuth layered ferroelectric materials such as Strontium Bismuth Tantalate (SBT) has attracted a lot of attention due to low leakage current, high remnant polarization and high fatigue endurance up to 1012 switching cycles. However, pure SBT suffers from various major limitations such as high dielectric loss, low remnant polarization values, high processing temperature, bismuth volatilization, etc. Significant efforts have been made to improve the dielectric and ferroelectric properties of this compound. Firstly, it has been reported that electrical properties vary with the Sr/ Bi content ratio in the SrBi2Ta2O9 compsition i.e. non-stoichiometric compositions with Sr-deficient / Bi excess content have higher remnant polarization values than stoichiometic SBT compositions. With the objective to improve structural, dielectric, ferroelectric and piezoelectric properties of SBT compound, rare earth holmium (Ho3+) was chosen as a donor cation for substitution onto the Bi2O2 layer. Moreover, hardly any report on holmium substitution in stoichiometric SrBi2Ta2O9 and non-stoichiometric Sr0.8Bi2.2Ta2O9 compositions were available in the literature. The holmium substituted SrBi2-xHoxTa2O9 (x= 0.00-2.0) and Sr0.8Bi2.2Ta2O9 (x=0.0 and 0.01) compositions were synthesized by the solid state reaction method. The synthesized specimens were characterized for their structural and electrical properties. X-ray diffractograms reveal single phase layered perovskite structure formation for holmium content in stoichiometric SBT samples up to x ≤ 0.1. The granular morphology of the samples was investigated using scanning electron microscope (Hitachi, S-3700 N). The dielectric measurements were carried out using a precision LCR meter (Agilent 4284A) operating at oscillation amplitude of 1V. The variation of dielectric constant with temperature shows that the Curie temperature (Tc) decreases on increasing the holmium content. The specimen with x=2.0 i.e. the bismuth free specimen, has very low dielectric constant and does not show any appreciable variation with temperature. The dielectric loss reduces significantly with holmium substitution. The polarization–electric field (P–E) hysteresis loops were recorded using a P–E loop tracer based on Sawyer–Tower circuit. It is observed that the ferroelectric property improve with Ho substitution. Holmium substituted specimen exhibits enhanced value of remnant polarization (Pr= 9.22 μC/cm²) as compared to holmium free specimen (Pr= 2.55 μC/cm²). Piezoelectric co-efficient (d33 values) was measured using a piezo meter system (Piezo Test PM300). It is observed that holmium substitution enhances piezoelectric coefficient. Further, the optimized holmium content (x=0.01) in stoichiometric SrBi2-xHoxTa2O9 composition has been substituted in non-stoichiometric Sr0.8Bi2.2Ta2O9 composition to obtain further enhanced structural and electrical characteristics. It is expected that a new class of ferroelectric materials i.e. Rare Earth Layered Structured Ferroelectrics (RLSF) derived from Bismuth Layered Structured Ferroelectrics (BLSF) will generate which can be used to replace static (SRAM) and dynamic (DRAM) random access memories with ferroelectric random access memories (FeRAMS).Keywords: dielectrics, ferroelectrics, piezoelectrics, strontium bismuth tantalate
Procedia PDF Downloads 20915119 Gamification Teacher Professional Development: Engaging Language Learners in STEMS through Game-Based Learning
Authors: Karen Guerrero
Abstract:
Kindergarten-12th grade teachers engaged in teacher professional development (PD) on game-based learning techniques and strategies to support teaching STEMSS (STEM + Social Studies with an emphasis on geography across the curriculum) to language learners. Ten effective strategies have supported teaching content and language in tandem. To provide exiting teacher PD on summer and spring breaks, gamification has integrated these strategies to engage linguistically diverse student populations to provide informal language practice while students engage in the content. Teachers brought a STEMSS lesson to the PD, engaged in a wide variety of games (dice, cards, board, physical, digital, etc.), critiqued the games based on gaming elements, then developed, brainstormed, presented, piloted, and published their game-based STEMSS lessons to share with their colleagues. Pre and post-surveys and focus groups were conducted to demonstrate an increase in knowledge, skills, and self-efficacy in using gamification to teach content in the classroom. Provide an engaging strategy (gamification) to support teaching content and language to linguistically diverse students in the K-12 classroom. Game-based learning supports informal language practice while developing academic vocabulary utilized in the game elements/content focus, building both content knowledge through play and language development through practice. The study also investigated teacher's increase in knowledge, skills, and self-efficacy in using games to teach language learners. Mixed methods were used to investigate knowledge, skills, and self-efficacy prior to and after the gamification teacher training (pre/post) and to understand the content and application of developing and utilizing game-based learning to teach. This study will contribute to the body of knowledge in applying game-based learning theories to the K-12 classroom to support English learners in developing English skills and STEMSS content knowledge.Keywords: gamification, teacher professional development, STEM, English learners, game-based learning
Procedia PDF Downloads 9115118 The Chemical Transport Mechanism of Emitter Micro-Particles in Tungsten Electrode: A Metallurgical Study
Authors: G. Singh, H.Schuster, U. Füssel
Abstract:
The stability of electric arc and durability of electrode tip used in Tungsten Inert Gas (TIG) welding demand a metallurgical study about the chemical transport mechanism of emitter oxide particles in tungsten electrode during its real welding conditions. The tungsten electrodes doped with emitter oxides of rare earth oxides such as La₂O₃, Th₂O₃, Y₂O₃, CeO₂ and ZrO₂ feature a comparatively lower work function than tungsten and thus have superior emission characteristics due to lesser surface temperature of the cathode. The local change in concentration of these emitter particles in tungsten electrode due to high temperature diffusion (chemical transport) can change its functional properties like electrode temperature, work function, electron emission, and stability of the electrode tip shape. The resulting increment in tip surface temperature results in the electrode material loss. It was also observed that the tungsten recrystallizes to large grains at high temperature. When the shape of grain boundaries are granular in shape, the intergranular diffusion of oxide emitter particles takes more time to reach the electrode surface. In the experimental work, the microstructure of the used electrode's tip surface will be studied by scanning electron microscope and reflective X-ray technique in order to gauge the extent of the diffusion and chemical reaction of emitter particles. Besides, a simulated model is proposed to explain the effect of oxide particles diffusion on the electrode’s microstructure, electron emission characteristics, and electrode tip erosion. This model suggests metallurgical modifications in tungsten electrode to enhance its erosion resistance.Keywords: rare-earth emitter particles, temperature-dependent diffusion, TIG welding, Tungsten electrode
Procedia PDF Downloads 18615117 Harmonic Distortion Caused by Electric Bus Battery Charger in Alexandria Distribution System
Authors: Mohamed Elhosieny Aly Ismail
Abstract:
The paper illustrates the total voltage and current harmonic distortion impact caused by fast-charging an electric bus and maintaining standard limit compliance. Measuring the current harmonic level in the range of 2 kHz-9 kHz. Also, the impact of the total demand distortions current caused by fast charger electric bus on the utility by measuring at the point of common coupling and comparing the measurement with IEEE519 -2014 standard. The results show that the total harmonic current distortion for the charger is within the limits of IEC 61000-3-12 and the fifth harmonic current was the most dominant frequency then the seventh harmonic current. The harmonic current in the range of 2 kHz- 9 kHz shows the frequency 5.1kHz is the most dominant frequency.Keywords: electric vehicle, total harmonic distortion, IEEE519-2014, IEC 61000-3-12, super harmonic distortion
Procedia PDF Downloads 10115116 In vitro Assessment of Bioactive Properties and Dose-Dependent Antioxidant Activities of Commercial Grape Cultivars in Taiwan
Authors: Kandi Sridhar, Charles Albert Linton
Abstract:
Grapes are excellent sources of bioactive compounds, which have been suggested to be responsible for lowering the risk of chronic diseases. Fresh and freeze-dried extracts of Kyoho and Jubilee, commercial grape varieties available in Taiwan and attractive for their quality berries, were investigated for their total phenolics and total flavonoids contents and related dose-dependent antioxidants properties using various in vitro assays. The efficiency of the extraction yield ranged from 7.10 % to 25.53 % (w/w), depending on solvent used. Fresh samples of Kyoho and Jubilee exhibited total polyphenolic contents (351.56 ± 23.08 and 328.67 ± 16.54 µg GAE/mL, respectively), whereas Kyoho freeze-dried methanol: water extracts contains the good levels of total flavonoids (4767.82 ± 22.20 µg QE/mL). Kyoho and Jubilee freeze-dried extracts exhibited the highest total flavonoid contents. There was a weak correlation between total phenolic and flavonoid assays (r= -0.05, R2 = 0.02, p > 0.05). Kyoho fresh and freeze-dried samples showed the DPPH (11.51 – 77.82 %), superoxide scavenging activity (33.61 – 81.95 %), and total antioxidant inhibition (92.01 – 99.28 %), respectively. Total flavonoids were statistically correlated with EC50 DPPH scavenging radicals (r =0.91, p < 0.01), EC50 nitric oxide (r = 0.25, p > 0.05), and EC50 lipid peroxidation radicals (r = 0.38, p > 0.05). These results suggested that the two commercial grape cultivars in Taiwan could be used as a good source of natural antioxidants. Thus, consumption of grapes as a source antioxidant might lower the risk of chronic diseases. Moreover, future studies will investigate and develop phenolic acid profile for the cultivars in Taiwan.Keywords: antioxidants, EC50 radical scavenging activity, grape cultivars, total phenolics
Procedia PDF Downloads 17815115 Saccharification and Bioethanol Production from Banana Pseudostem
Authors: Elias L. Souza, Noeli Sellin, Cintia Marangoni, Ozair Souza
Abstract:
Among the different forms of reuse and recovery of agro-residual waste is the production of biofuels. The production of second-generation ethanol has been evaluated and proposed as one of the technically viable alternatives for this purpose. This research work employed the banana pseudostem as biomass. Two different chemical pre-treatment methods (acid hydrolisis with H2SO4 2% w/w and alkaline hydrolysis with NaOH 3% w/w) of dry and milled biomass (70 g/L of dry matter, ms) were assessed, and the corresponding reducing sugars yield, AR, (YAR), after enzymatic saccharification, were determined. The effect on YAR by increasing the dry matter (ms) from 70 to 100 g/L, in dry and milled biomass and also fresh, were analyzed. Changes in cellulose crystallinity and in biomass surface morphology due to the different chemical pre-treatments were analyzed by X-ray diffraction and scanning electron microscopy. The acid pre-treatment resulted in higher YAR values, whether related to the cellulose content under saccharification (RAR = 79,48) or to the biomass concentration employed (YAR/ms = 32,8%). In a comparison between alkaline and acid pre-treatments, the latter led to an increase in the cellulose content of the reaction mixture from 52,8 to 59,8%; also, to a reduction of the cellulose crystallinity index from 51,19 to 33,34% and increases in RAR (43,1%) and YAR/ms (39,5%). The increase of dry matter (ms) bran from 70 to 100 g/L in the acid pre-treatment, resulted in a decrease of average yields in RAR (43,1%) and YAR/ms (18,2%). Using the pseudostem fresh with broth removed, whether for 70 g/L concentration or 100 g/L in dry matter (ms), similarly to the alkaline pre-treatment, has led to lower average values in RAR (67,2% and 42,2%) and in YAR/ms (28,4% e 17,8%), respectively. The acid pre-treated and saccharificated biomass broth was detoxificated with different activated carbon contents (1,2 and 4% w/v), concentrated up to AR = 100 g/L and fermented by Saccharomyces cerevisiae. The yield values (YP/AR) and productivity (QP) in ethanol were determined and compared to those values obtained from the fermentation of non-concentrated/non-detoxificated broth (AR = 18 g/L) and concentrated/non-detoxificated broth (AR = 100 g/L). The highest average value for YP/AR (0,46 g/g) was obtained from the fermentation of non-concentrated broth. This value did not present a significant difference (p<0,05) when compared to the YP/RS related to the broth concentrated and detoxificated by activated carbon 1% w/v (YP/AR = 0,41 g/g). However, a higher ethanol productivity (QP = 1,44 g/L.h) was achieved through broth detoxification. This value was 75% higher than the average QP determined using concentrated and non-detoxificated broth (QP = 0,82 g/L.h), and 22% higher than the QP found in the non-concentrated broth (QP = 1,18 g/L.h).Keywords: biofuels, biomass, saccharification, bioethanol
Procedia PDF Downloads 34315114 Effects of Learner-Content Interaction Activities on the Context of Verbal Learning Outcomes in Interactive Courses
Authors: Alper Tolga Kumtepe, Erdem Erdogdu, M. Recep Okur, Eda Kaypak, Ozlem Kaya, Serap Ugur, Deniz Dincer, Hakan Yildirim
Abstract:
Interaction is one of the most important components of open and distance learning. According to Moore, who proposed one of the keystones on interaction types, there are three basic types of interaction: learner-teacher, learner-content, and learner-learner. From these interaction types, learner-content interaction, without doubt, can be identified as the most fundamental one on which all education is based. Efficacy, efficiency, and attraction of open and distance learning systems can be achieved by the practice of effective learner-content interaction. With the development of new technologies, interactive e-learning materials have been commonly used as a resource in open and distance learning, along with the printed books. The intellectual engagement of the learners with the content that is course materials may also affect their satisfaction for the open and distance learning practices in general. Learner satisfaction holds an important place in open and distance learning since it will eventually contribute to the achievement of learning outcomes. Using the learner-content interaction activities in course materials, Anadolu University, by its Open Education system, tries to involve learners in deep and meaningful learning practices. Especially, during the e-learning material design and production processes, identifying appropriate learner-content interaction activities within the context of learning outcomes holds a big importance. Considering the lack of studies adopting this approach, as well as its being a study on the use of e-learning materials in Open Education system, this research holds a big value in open and distance learning literature. In this respect, the present study aimed to investigate a) which learner-content interaction activities included in interactive courses are the most effective in learners’ achievement of verbal information learning outcomes and b) to what extent distance learners are satisfied with these learner-content interaction activities. For this study, the quasi-experimental research design was adopted. The 120 participants of the study were from Anadolu University Open Education Faculty students living in Eskişehir. The students were divided into 6 groups randomly. While 5 of these groups received different learner-content interaction activities as a part of the experiment, the other group served as the control group. The data were collected mainly through two instruments: pre-test and post-test. In addition to those tests, learners’ perceived learning was assessed with an item at the end of the program. The data collected from pre-test and post-test were analyzed by ANOVA, and in the light of the findings of this approximately 24-month study, suggestions for the further design of e-learning materials within the context of learner-content interaction activities will be provided at the conference. The current study is planned to be an antecedent for the following studies that will examine the effects of activities on other learning domains.Keywords: interaction, distance education, interactivity, online courses
Procedia PDF Downloads 19415113 Utilization of Sorghum and White Bean Flour for the Production of Gluten Free and Iron Rich Cookies
Authors: Tahra Elobeid, Emmerich Berghofer
Abstract:
The aim of this study is to find innovative approaches for the production of iron rich foods using natural iron sources. The vehicle used for fortification was sorghum whereas the iron fortificant was white bean. Fortified sorghum cookies were produced from five different mixtures; iron content, iron bioavailability, cookie texture and acceptability were measured. Cookies were prepared from the three fortified flours; 90% sorghum + 10% white bean (S9WB1), 75% sorghum + 25% white bean (S3WB1), 50% sorghum + 50% white bean (S1WB1) and 100% sorghum and 100% white bean. The functional properties gave good results in all the formulations. Statistical analysis of the iron content in the five different cookies showed that there was significant difference at the 95% confidence level (ANOVA). The iron content in all the recipes including the 100% sorghum improved, the increase ranging from 112% in 100% sorghum cookies to 476% in 100% white bean cookies. This shows that the increase in the amount of white bean used for fortification leads to the improvement of the iron content of cookies. The bioavailability of iron ranged from 21.3% in 100% sorghum to 28.6% in 100% white bean cookies. In the 100% sorghum cookies the iron bioavailability increased with reference to raw sorghum due to the addition of eggs. Bioavailability of iron in raw sorghum is 16.2%, therefore the percentage increase ranged from 5.1% to 28.6%. The cookies prepared from 10% white bean (S9WB1) scored the lowest 3.7 in terms of acceptability. They were the least preferred due to their somewhat soft texture. The 30% white bean cookies (S3WB1) gave results comparable to the 50% (S1WB1) and 100% white bean cookies. Cookies prepared with high percentage of white bean (50% and 100% white bean) gave the best results. Therefore cookie formulations from sorghum and white bean are successful in improving the iron status of anaemic individuals.Keywords: sorghum, white bean, iron content, bioavailable iron, cookies
Procedia PDF Downloads 41515112 Modeling and Benchmarking the Thermal Energy Performance of Palm Oil Production Plant
Authors: Mathias B. Michael, Esther T. Akinlabi, Tien-Chien Jen
Abstract:
Thermal energy consumption in palm oil production plant comprises mainly of steam, hot water and hot air. In most efficient plants, hot water and air are generated from the steam supply system. Research has shown that thermal energy utilize in palm oil production plants is about 70 percent of the total energy consumption of the plant. In order to manage the plants’ energy efficiently, the energy systems are modelled and optimized. This paper aimed to present the model of steam supply systems of a typical palm oil production plant in Ghana. The models include exergy and energy models of steam boiler, steam turbine and the palm oil mill. The paper further simulates the virtual plant model to obtain the thermal energy performance of the plant under study. The simulation results show that, under normal operating condition, the boiler energy performance is considerably below the expected level as a result of several factors including intermittent biomass fuel supply, significant moisture content of the biomass fuel and significant heat losses. The total thermal energy performance of the virtual plant is set as a baseline. The study finally recommends number of energy efficiency measures to improve the plant’s energy performance.Keywords: palm biomass, steam supply, exergy and energy models, energy performance benchmark
Procedia PDF Downloads 34915111 Low Sulfur Diesel-Like Fuel From Quick Remediation Process of Waste Oil Sludge
Authors: Isam A. H. Al Zubaidy
Abstract:
A quick process may be needed to get the benefit the big generated quantity of waste oil sludge (WOS). The process includes the mixing process of WOS with commercial diesel fuel. Different ratios of WOS to diesel fuel were prepared ranging 1:1 to 20:1 by mass. The mixture was continuously mixing for 10 minutes using bench type overhead stirrer and followed by filtration process to separate the soil waste from filtrate oil product. The quantity and the physical properties of the oil filtrate were measured. It was found that the addition of up to 15% WOS to diesel fuel was accepted without dramatic changes to the properties of diesel fuel. The amount of waste oil sludge was decreased by about 60% by mass. This means that about 60 % of the mass of sludge was recovered as light fuel oil. The physical properties of the resulting fuel from 10% sludge mixing ratio showed that the specific gravity, ash content, carbon residue, asphaltene content, viscosity, diesel index, cetane number, and calorific value were affected slightly. The color was changed to light black color. The sulfur content was increased also. This requires other processes to reduce the sulfur content of the resulting light fuel. A new desulfurization process was achieved using adsorption techniques with activated biomaterial to reduce the sulfur content to acceptable limits. Adsorption process by ZnCl₂ activated date palm kernel powder was effective for improvement of the physical properties of diesel like fuel. The final sulfur content was increased to 0.185 wt%. This diesel like fuel can be used in all tractors, buses, tracks inside and outside the refineries. The solid remaining seems to be smooth and can be mixed with asphalt mixture for asphalting the roads or can be used with other materials as an asphalt coating material for constructed buildings. Through this process, valuable fuel has been recovered, and the amount of waste material had decreased.Keywords: oil sludge, diesel fuel, blending process, filtration process
Procedia PDF Downloads 11815110 Phytotreatment of Polychlorinated Biphenyls Contaminated Soil by Chromolaena odorata L. King and Robinson
Authors: R. O. Anyasi, H. I. Atagana
Abstract:
In this study, phytoextraction ability of a weed on Aroclor 1254 was studied under greenhouse conditions. Chromolaena odorata plants were transplanted into soil containing 100, 200, and 500 ppm of Aroclor in 1L pots. The experiments were watered daily at 70 % moisture field capacity. Parameters such as fully expanded leaves per plant, shoot length, leaf chlorophyll content as well as root length at harvest were measured. PCB was not phytotoxic to C. odorata growth but plants in the 500 ppm treatment only showed diminished growth at the sixth week. Percentage increases in height of plant were 45.9, 39.4 and 40.0 for 100, 200 and 500 ppm treatments respectively. Such decreases were observed in the leaf numbers, root length and leaf chlorophyll concentration. The control sample showed 48.3 % increase in plant height which was not significant from the treated samples, an indication that C. odorata could survive such PCB concentration and could be used to remediate contaminated soil. Mean total PCB absorbed by C. odorata plant was between 6.40 and 64.60 ppm per kilogram of soil, leading to percentage PCB absorption of 0.03 and 17.03 % per kilogram of contaminated soil. PCBs were found mostly in the root tissues of the plants, and the Bioaccumulation factor were between 0.006-0.38. Total PCB absorbed by the plant increases as the concentration of the compound is increased. With these high BAF ensured, C. odorata could serve as a promising candidate plant in phytoextraction of PCB from a PCB-contaminated soil.Keywords: phytoremediation, bioremediation, soil restoration, polychlorinated biphenyls (PCB), biological treatment, aroclor
Procedia PDF Downloads 38015109 Branding and Posting Strategy on Facebook Pages of Higher Education Institutions in Ontario, Canada in 2019-2020: A Quantitative and Qualitative Investigation
Authors: Mai To
Abstract:
Higher education institutions (HEIs) in Ontario, Canada have invested in social media presence for multiple purposes, such as branding, student’ engagement, and recruitment. To have a full picture of the social media strategy implemented by HEIs in Ontario, Canada, this study used a mixed-method approach to analyze Facebook posts’ characteristics and content. A total of 1789 Facebook posts from September 2019 to April 2020 of six selected HEIs were collected for analysis and coding based on five pre-determined branding positions: Elite, Nurturing, Campus, Outcome, and Commodity. Besides, the study also calculated the engagement rate for each social media practice to measure its effectiveness. The results show that there were not many differences in practices such as posting frequency, length, types, and timing among HEIs. However, the distribution of branding positions and content targeting future students versus current students was varied, although the HEIs employed all five branding positions and targeted the same lists of audiences. Some practices such as evening post for colleges and nurturing branding for universities attracted significantly higher engagement. This study provides a review of current social media practices and branding strategy, as well as informs the practices that can better engage the audiences.Keywords: branding, higher education, social media, student engagement, student recruitment
Procedia PDF Downloads 12615108 Facile Fabrication of TiO₂NT/Fe₂O₃@Ag₂CO₃ Nanocomposite and Its Highly Efficient Visible Light Photocatalytic and Antibacterial Activity
Authors: Amal A. Al-Kahlawy, Heba H. El-Maghrabi
Abstract:
Due to the increasing need to environment protection in real time need to energize new materials are under extensive investigations. Between others, TiO2 nanotubes (TNTs) nanocomposite with iron oxide and silver carbonate, are promising alternatives as high-efficiency visible light photocatalyst due to their unique properties and their superior charge transport properties. Our efforts in this domain aim the construction of novel nanocomposite of TiO2NT/Fe2O3@Ag2CO3. The structure, surface morphology, chemical composition and optical properties were characterized by X-ray diffraction (XRD), Raman, Fourier-transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM), energy dispersive X-ray spectrometer (EDS), transmission electron microscopy (TEM), selected area electron diffraction (SAED) and UV–vis diffuse reflectance spectroscopy (DRS). XRD results confirm the interaction of TiO2-NT with iron oxide. This novel nanocomposite shows remarkably enhanced performance for phenol compounds photodegradation. The experimental data shows a promising photocatalytic activity. In particular, a maximum value of 450 mg/g was removed within 60 min at solar light irradiation with degradation efficiency of 99.5%. The high photocatalytic activity of the nanocomposite is found to be related to the increased adsorption toward chemical species, enhanced light absorption and efficient charge separation and transfer. Finally, the designed TiO2NT/Fe2O3@Ag2CO3 nanocomposite has a great degree of sustainability and could has a potential application for the industrial treatment of wastewater containing toxic organic materials.Keywords: nanocomposite, photocatalyst, solar energy, titanium dioxide nanotubes
Procedia PDF Downloads 24715107 Hygrothermal Assessment of Internally Insulated Prefabricated Concrete Wall in Polish Climatic Condition
Authors: D. Kaczorek
Abstract:
Internal insulation of external walls is often problematic due to increased moisture content in the wall and interstitial or surface condensation risk. In this paper, the hygrothermal performance of prefabricated, concrete, large panel, external wall typical for WK70 system, commonly used in Poland in the 70’s, with inside, additional insulation was investigated. Thermal insulation board made out of hygroscopic, natural materials with moisture buffer capacity and extruded polystyrene (EPS) board was used as interior insulation. Experience with this natural insulation is rare in Poland. The analysis was performed using WUFI software. First of all, the impact of various standard boundary conditions on the behavior of the different wall assemblies was tested. The comparison of results showed that the moisture class according to the EN ISO 13788 leads to too high values of total moisture content in the wall since the boundary condition according to the EN 15026 should be usually applied. Then, hygrothermal 1D-simulations were conducted by WUFI Pro for analysis of internally added insulation, and the weak point like the joint of the wall with the concrete ceiling was verified using 2D simulations. Results showed that, in the Warsaw climate and the indoor conditions adopted in accordance with EN 15026, in the tested wall assemblies, regardless of the type of interior insulation, there would not be any problems with moisture - inside the structure and on the interior surface.Keywords: concrete large panel wall, hygrothermal simulation, internal insulation, moisture related issues
Procedia PDF Downloads 16515106 Impact of Long Term Application of Municipal Solid Waste on Physicochemical and Microbial Parameters and Heavy Metal Distribution in Soils in Accordance to Its Agricultural Uses
Authors: Rinku Dhanker, Suman Chaudhary, Tanvi Bhatia, Sneh Goyal
Abstract:
Municipal Solid Waste (MSW), being a rich source of organic materials, can be used for agricultural applications as an important source of nutrients for soil and plants. This is also an alternative beneficial management practice for MSW generated in developing countries. In the present study, MSW treated soil samples from last four to six years at farmer’s field in Rohtak and Gurgaon states (Haryana, India) were collected. The samples were analyzed for all-important agricultural parameters and compared with the control untreated soil samples. The treated soil at farmer’s field showed increase in total N by 48 to 68%, P by 45.7 to 51.3%, and K by 60 to 67% compared to untreated soil samples. Application of sewage sludge at different sites led to increase in microbial biomass C by 60 to 68% compared to untreated soil. There was significant increase in total Cu, Cr, Ni, Fe, Pb, and Zn in all sewage sludge amended soil samples; however, concentration of all the metals were still below the current permitted (EU) limits. To study the adverse effect of heavy metals accumulation on various soil microbial activities, the sewage sludge samples (from wastewater treatment plant at Gurgaon) were artificially contaminated with heavy metal concentration above the EU limits. They were then applied to soil samples with different rates (0.5 to 4.0%) and incubated for 90 days under laboratory conditions. The samples were drawn at different intervals and analyzed for various parameters like pH, EC, total N, P, K, microbial biomass C, carbon mineralization, and diethylenetriaminepentaacetic acid (DTPA) exactable heavy metals. The results were compared to the uncontaminated sewage sludge. The increasing level of sewage sludge from 0.5 to 4% led to build of organic C and total N, P and K content at the early stages of incubation. But, organic C was decreased after 90 days because of decomposition of organic matter. Biomass production was significantly increased in both contaminated and uncontaminated sewage soil samples, but also led to slight increases in metal accumulation and their bioavailability in soil. The maximum metal concentrations were found in treatment with 4% of contaminated sewage sludge amendment.Keywords: heavy metal, municipal sewage sludge, sustainable agriculture, soil fertility and quality
Procedia PDF Downloads 28615105 Mechanochemical Behaviour of Aluminium–Boron Oxide–Melamine Ternary System
Authors: Ismail Seckin Cardakli, Mustafa Engin Kocadagistan, Ersin Arslan
Abstract:
In this study, mechanochemical behaviour of aluminium - boron oxide - melamine ternary system was investigated by high energy ball milling. According to the reaction Al + B₂O₃ = Al₂O₃ + B, stochiometric amount of aluminium and boron oxide with melamine up to ten percent of total weight was used in the experiments. The powder characterized by X-ray diffraction (XRD), Fourier Transform Infrared Spectroscopy (FT-IR) and Scanning Electron Microscopy (SEM) after leaching of product by 1M HCl acid. Results show that mechanically induced self-sustaining reaction (MSR) between aluminium and boron oxide takes place after four hours high energy ball milling. Al₂O₃/h-BN composite powder is obtained as the product of aluminium - boron oxide - melamine ternary system.Keywords: high energy ball milling, hexagonal boron nitride, mechanically induced self-sustaining reaction, melamine
Procedia PDF Downloads 14815104 One-Step Synthesis of Titanium Dioxide Porous Microspheres by Picosecond Pulsed Laser Welding
Authors: Huiwu Yu, Xiangyou Li, Xiaoyan Zeng
Abstract:
Porous spheres have been widely used in many fields due to their attractive features. In this work, an approach for fabricating porous spheres of nanoparticles was presented, in which the nanoparticles were welded together to form micro spheres by simply irradiating the nanoparticles in liquid medium by a picosecond laser. As an example, anatase titanium dioxide was chosen as a typical material on account of its metastability. The structure and morphologies of the products were characterised by X-ray diffraction (XRD), scanning electron microscope (SEM), Raman, and high-resolution transmission electron microscopy (HRTEM), respectively. The results showed that, anatase titanium dioxide micro spheres (2-10 μm) with macroporous (10-100 nm) were prepared from nano-anatase titanium dioxide nanoparticles (10-100 nm). The formation process of polycrystalline anatase titanium dioxide microspheres was investigated with different liquid mediums and the input laser fluences. Thus, this facile laser irradiation approach might provide a way for the fabrication of porous microspheres without phase-transition.Keywords: titanium dioxide, porous microspheres, picosecond laser, nano-welding
Procedia PDF Downloads 30515103 A Study on the Influence of Internal Sulfate on the Properties of Self-Compacting Concrete
Authors: Abbas S. Al-Ameeri Rawaa H. Issa
Abstract:
The internal sulfate attack is considered as a very important problem of concrete manufacture in Iraq and Middle East countries. Sulfate drastically influences the properties of concrete. This experimental study is aimed at investigating the effect of internal sulfates on fresh and some of the hardened properties of self compacting concrete (SCC) made from locally available materials. Tests were conducted on five mixes, with five SO3 levels (3.9, 5, 6, 7 and 8) (% by wt. of cement). The last four SO3 levels are outside the limits of the Iraqi specifications (IQS NO.45/1984). The results indicated that sulfate passively influenced the fresh properties such as decreased workability, and effect on hardened properties of the self compacting concrete. Also, the result indicated the optimum SO3 content which gives maximum strength and little tendency to expanding, which showed up at a content equal to 5% (by wt of cement), is more than acceptable limits of Iraqi specifications. Further increase in sulfates content in concrete after this optimum value showed a considerable reduction in mechanical properties of self-compacting concrete, and increment in expansion of concrete. The percentages of reduction in compressive strength, splitting tensile strength, flexural strength, static modulus of elasticity and ultrasonic pulse velocity at their later age were ranged between 10.89-36.14%, 12.90-33.33%, 7.98-36.35%, 16.36 -38.37% and 1.03-10.88% respectively.Keywords: self-compacting concrete, sulfate attack, internal sulfate attack, fresh properties, harden properties, optimum SO3 content
Procedia PDF Downloads 27015102 Production of Pre-Reduction of Iron Ore Nuggets with Lesser Sulphur Intake by Devolatisation of Boiler Grade Coal
Authors: Chanchal Biswas, Anrin Bhattacharyya, Gopes Chandra Das, Mahua Ghosh Chaudhuri, Rajib Dey
Abstract:
Boiler coals with low fixed carbon and higher ash content have always challenged the metallurgists to develop a suitable method for their utilization. In the present study, an attempt is made to establish an energy effective method for the reduction of iron ore fines in the form of nuggets by using ‘Syngas’. By devolatisation (expulsion of volatile matter by applying heat) of boiler coal, gaseous product (enriched with reducing agents like CO, CO2, H2, and CH4 gases) is generated. Iron ore nuggets are reduced by this syngas. For that reason, there is no direct contact between iron ore nuggets and coal ash. It helps to control the minimization of the sulphur intake of the reduced nuggets. A laboratory scale devolatisation furnace designed with reduction facility is evaluated after in-depth studies and exhaustive experimentations including thermo-gravimetric (TG-DTA) analysis to find out the volatile fraction present in boiler grade coal, gas chromatography (GC) to find out syngas composition in different temperature and furnace temperature gradient measurements to minimize the furnace cost by applying one heating coil. The nuggets are reduced in the devolatisation furnace at three different temperatures and three different times. The pre-reduced nuggets are subjected to analytical weight loss calculations to evaluate the extent of reduction. The phase and surface morphology analysis of pre-reduced samples are characterized using X-ray diffractometry (XRD), energy dispersive x-ray spectrometry (EDX), scanning electron microscopy (SEM), carbon sulphur analyzer and chemical analysis method. Degree of metallization of the reduced nuggets is 78.9% by using boiler grade coal. The pre-reduced nuggets with lesser sulphur content could be used in the blast furnace as raw materials or coolant which would reduce the high quality of coke rate of the furnace due to its pre-reduced character. These can be used in Basic Oxygen Furnace (BOF) as coolant also.Keywords: alternative ironmaking, coal gasification, extent of reduction, nugget making, syngas based DRI, solid state reduction
Procedia PDF Downloads 26015101 Electrochemical Biosensor for Rutin Detection with Multiwall Carbon Nanotubes and Cerium Dioxide Nanoparticles
Authors: Stephen Rathinaraj Benjamin, Flavio Colmati Junior, Maria Izabel Florindo Guedes, Rosa Amalia Fireman Dutra
Abstract:
A new enzymatic electrochemical biosensor based on multiwall carbon nanotubes and cerium oxide nanoparticles for the detection of rutin has been developed. The cerium oxide nanoparticles /HRP/ multiwall carbon nanotubes/ carbon paste electrode (HRP/ CeO2/MWCNTs/CPE) was prepared by ensuing addition of MWCNTs and HRP on the CPE, followed by the mixing with cerium oxide nanoparticles. Surface physical characteristics of the modified electrode and the electrochemical properties of the composite were investigated by scanning electron microscopy (SEM), transmission electron microscopy (TEM), cylic voltammetry (CV), differential pulse voltammetry (DPV) and square wave voltammetry (SWV). The HRP/ CeO2/MWCNTs/CPE showed good selectivity, stability and reproducibility, which was further applied to detect rutin tablet and capsule samples with satisfactory results.Keywords: cerium dioxide nanoparticles, horseradish peroxidase, multiwall carbon nanotubes, rutin
Procedia PDF Downloads 39215100 The Grammar of the Content Plane as a Style Marker in Forensic Authorship Attribution
Authors: Dayane de Almeida
Abstract:
This work aims at presenting a study that demonstrates the usability of categories of analysis from Discourse Semiotics – also known as Greimassian Semiotics in authorship cases in forensic contexts. It is necessary to know if the categories examined in semiotic analysis (the ‘grammar’ of the content plane) can distinguish authors. Thus, a study with 4 sets of texts from a corpus of ‘not on demand’ written samples (those texts differ in formality degree, purpose, addressees, themes, etc.) was performed. Each author contributed with 20 texts, separated into 2 groups of 10 (Author1A, Author1B, and so on). The hypothesis was that texts from a single author were semiotically more similar to each other than texts from different authors. The assumptions and issues that led to this idea are as follows: -The features analyzed in authorship studies mostly relate to the expression plane: they are manifested on the ‘surface’ of texts. If language is both expression and content, content would also have to be considered for more accurate results. Style is present in both planes. -Semiotics postulates the content plane is structured in a ‘grammar’ that underlies expression, and that presents different levels of abstraction. This ‘grammar’ would be a style marker. -Sociolinguistics demonstrates intra-speaker variation: an individual employs different linguistic uses in different situations. Then, how to determine if someone is the author of several texts, distinct in nature (as it is the case in most forensic sets), when it is known intra-speaker variation is dependent on so many factors?-The idea is that the more abstract the level in the content plane, the lower the intra-speaker variation, because there will be a greater chance for the author to choose the same thing. If two authors recurrently chose the same options, differently from one another, it means each one’s option has discriminatory power. -Size is another issue for various attribution methods. Since most texts in real forensic settings are short, methods relying only on the expression plane tend to fail. The analysis of the content plane as proposed by greimassian semiotics would be less size-dependable. -The semiotic analysis was performed using the software Corpus Tool, generating tags to allow the counting of data. Then, similarities and differences were quantitatively measured, through the application of the Jaccard coefficient (a statistical measure that compares the similarities and differences between samples). The results showed the hypothesis was confirmed and, hence, the grammatical categories of the content plane may successfully be used in questioned authorship scenarios.Keywords: authorship attribution, content plane, forensic linguistics, greimassian semiotics, intraspeaker variation, style
Procedia PDF Downloads 24215099 Effects of Deficit Watering and Potassium Fertigation on Growth and Yield Response of Cassava
Authors: Daniel O. Wasonga, Jouko Kleemola, Laura Alakukku, Pirjo Makela
Abstract:
Cassava (Manihot esculenta Crantz) is a major food crop for millions of people in the tropics. Growth and yield of cassava in the arid-tropics are seriously constrained by intermittent water deficit and low soil K content. Therefore, experiments were conducted to investigate the effects of interaction between water deficit and K fertigation on growth and yield response of biofortified cassava at early growth phase. Yellow cassava cultivar was grown under controlled glasshouse conditions in 5-L pots containing 1.7 kg of pre-fertilized potting mix. Plants were watered daily for 30 days after planting. Treatments were three watering levels (30%, severe water deficit; 60%, mild water deficit; 100%, well-watered), on which K (0.01, 1, 4, 16 and 32 mM) was split. Plants were harvested at 90 days after planting. Leaf area was smallest in plants grown with 30% watering and 0.01 mM K, and largest in plants grown with 100% watering and 32 mM K. Leaf, root, and total dry mass decreased in water-stressed plants. However, dry mass was markedly higher when plants were grown with 16 mM K under all watering levels in comparison to other K concentrations. The highest leaf, root and total dry mass were in plants with 100% watering and 16 mM K. In conclusion, K improved the growth of plants under water deficit and thus, K application on soils with low moisture and low K may improve the productivity of cassava.Keywords: dry mass, interaction, leaf area, Manihot esculenta
Procedia PDF Downloads 11715098 Development and Characterization of Biscuits Incorporated with Jackfruit (Artocarpus heterophyllus) Seeds and Cassava (Manihot esculenta)
Authors: Elina Brahma Hazarika, Jeuti Basumatary, Deepanka Saikia, Jaydeep Das, Micky Moni D'mary, Fungkha Basumatary
Abstract:
This study includes development of two varieties of biscuits incorporated with: the seeds of Jack fruit (Artocarpus heterophyllus), which post-consumption of it’s pulp, is discarded as a waste, and Cassava (Manihot esculenta) tubers.The jack fruit seeds and cassava were first ground into flour and its proximate and physiochemical properties were studied. The biscuits that were developed incorporating them had 50% wheat flour and 50% jackfruit seed flour and 50% cassava flours as the major composition, apart from the other general ingredients use in making biscuits. Various trials of compositions were made for baking to get the overall desirable acceptability in biscuits through sensory evaluation. Finally, the best composition of ingredients was selected to make the biscuits, and hence studies were done accordingly to compare it with the properties of their respective raw flours. The results showed that the proximate composition of the biscuits fared better than that of their respective flours: There was a decrease in the Moisture content of both Jackfruit Seed Biscuits and Cassava Biscuits to 4.5% and 6.7% than that of their respective raw flours (8 and 12%). Post-baking, there is increase in the percentages of ash, protein, and fibre contents in both Jackfruit Seed Biscuits and Cassava Biscuits; the values being 3% and 3.8%, 13.2% and 3.3%, and 3.2 and 4.1% respectively. Also the total carbohydrate content in Jackfruit Seed Biscuits and Cassava Biscuits were 66.7% and 71.7% respectively. Their sensory evaluation and texture study also yielded a clear review that they have an overall good acceptability.Keywords: baking, proximate, sensory, texture
Procedia PDF Downloads 31915097 Ubiquitous Learning Environments in Higher Education: A Scoping Literature Review
Authors: Mari A. Virtanen, Elina Haavisto, Eeva Liikanen, Maria Kääriäinen
Abstract:
Ubiquitous learning and the use of ubiquitous learning environments herald a new era in higher education. Ubiquitous environments fuse together authentic learning situations and digital learning spaces where students can seamlessly immerse themselves into the learning process. Definitions of ubiquitous learning are wide and vary in the previous literature and learning environments are not systemically described. The aim of this scoping review was to identify the criteria and the use of ubiquitous learning environments in higher education contexts. The objective was to provide a clear scope and a wide view for this research area. The original studies were collected from nine electronic databases. Seven publications in total were defined as eligible and included in the final review. An inductive content analysis was used for the data analysis. The reviewed publications described the use of ubiquitous learning environments (ULE) in higher education. Components, contents and outcomes varied between studies, but there were also many similarities. In these studies, the concept of ubiquitousness was defined as context-awareness, embeddedness, content-personalization, location-based, interactivity and flexibility and these were supported by using smart devices, wireless networks and sensing technologies. Contents varied between studies and were customized to specific uses. Measured outcomes in these studies were focused on multiple aspects as learning effectiveness, cost-effectiveness, satisfaction, and usefulness. This study provides a clear scope for ULE used in higher education. It also raises the need for transparent development and publication processes, and for practical implications of ubiquitous learning environments.Keywords: higher education, learning environment, scoping review, ubiquitous learning, u-learning
Procedia PDF Downloads 26315096 Expression Profiling of Chlorophyll Biosynthesis Pathways in Chlorophyll B-Lacking Mutants of Rice (Oryza sativa L.)
Authors: Khiem M. Nguyen, Ming C. Yang
Abstract:
Chloroplast pigments are extremely important during photosynthesis since they play essential roles in light absorption and energy transfer. Therefore, understanding the efficiency of chlorophyll (Chl) biosynthesis could facilitate enhancement in photo-assimilates accumulation, and ultimately, in crop yield. The Chl-deficient mutants have been used extensively to study the Chl biosynthetic pathways and the biogenesis of the photosynthetic apparatus. Rice (Oryza sativa L.) is one of the most leading food crops, serving as staple food for many parts of the world. To author’s best knowledge, Chl b–lacking rice has been found; however the molecular mechanism of Chl biosynthesis still remains unclear compared to wild-type rice. In this study, the ultrastructure analysis, photosynthetic properties, and transcriptome profile of wild-type rice (Norin No.8, N8) and its Chl b-lacking mutant (Chlorina 1, C1) were examined. The finding concluded that total Chl content and Chl b content in the C1 leaves were strongly reduced compared to N8 leaves, suggesting that reduction in the total Chl content contributes to leaf color variation at the physiological level. Plastid ultrastructure of C1 possessed abnormal thylakoid membranes with loss of starch granule, large number of vesicles, and numerous plastoglobuli. The C1 rice also exhibited thinner stacked grana, which was caused by a reduction in the number of thylakoid membranes per granum. Thus, the different Chl a/b ratio of C1 may reflect the abnormal plastid development and function. Transcriptional analysis identified 23 differentially expressed genes (DEGs) and 671 transcription factors (TFs) that were involved in Chl metabolism, chloroplast development, cell division, and photosynthesis. The transcriptome profile and DEGs revealed that the gene encoding PsbR (PSII core protein) was down-regulated, therefore suggesting that the lower in light-harvesting complex proteins are responsible for the lower photosynthetic capacity in C1. In addition, expression level of cell division protein (FtsZ) genes were significantly reduced in C1, causing chloroplast division defect. A total of 19 DEGs were identified based on KEGG pathway assignment involving Chl biosynthesis pathway. Among these DEGs, the GluTR gene was down-regulated, whereas the UROD, CPOX, and MgCH genes were up-regulated. Observation through qPCR suggested that later stages of Chl biosynthesis were enhanced in C1, whereas the early stages were inhibited. Plastid structure analysis together with transcriptomic analysis suggested that the Chl a/b ratio was amplified both by the reduction in Chl contents accumulation, owning to abnormal chloroplast development, and by the enhanced conversion of Chl b to Chl a. Moreover, the results indicated the same Chl-cycle pattern in the wild-type and C1 rice, indicating another Chl b degradation pathway. Furthermore, the results demonstrated that normal grana stacking, along with the absence of Chl b and greatly reduced levels of Chl a in C1, provide evidence to support the conclusion that other factors along with LHCII proteins are involved in grana stacking. The findings of this study provide insight into the molecular mechanisms that underlie different Chl a/b ratios in rice.Keywords: Chl-deficient mutant, grana stacked, photosynthesis, RNA-Seq, transcriptomic analysis
Procedia PDF Downloads 12415095 Experimental Investigation of Recycling Cementitious Materials in Low Strength Range for Sustainability and Affordability
Authors: Mulubrhan Berihu
Abstract:
Due to the design versatility, availability, and cost efficiency, concrete continues to be the most used construction material on earth. However, the production of Portland cement, the primary component of concrete mix is causing to have a serious effect on environmental and economic impacts. This shows there is a need to study using of supplementary cementitious materials (SCMs). The most commonly used supplementary cementitious materials are wastes, and the use of these industrial waste products has technical, economic, and environmental benefits besides the reduction of CO2 emission from cement production. This paper aims to document the effect on the strength property of concrete due to the use of low cement by maximizing supplementary cementitious materials like fly ash. The amount of cement content was below 250 kg/m3, and in all the mixes, the quantity of powder (cement + fly ash) is almost kept at about 500 kg. According to this, seven different cement content (250 kg/m3, 195 kg/m3, 150 kg/m3, 125 kg/m3, 100 kg/m3, 85 kg/m3, 70 kg/m3) with different amount of replacement of SCMs was conducted. The mix proportion was prepared by keeping the water content constant and varying the cement content, SCMs, and water-to-binder ratio. Based on the different mix proportions of fly ash, a range of mix designs was formulated. The test results showed that using up to 85 kg/m3 of cement is possible for plain concrete works like hollow block concrete to achieve 9.8 Mpa, and the experimental results indicate that strength is a function of w/b. The experiment result shows a big difference in gaining of compressive strength from 7 days to 28 days and this obviously shows the slow rate of hydration of fly ash concrete. As the w/b ratio increases, the strength decreases significantly. At the same time, higher permeability was seen in the specimens which were tested for three hours than one hour.Keywords: efficiency factor, cement content, compressive strength, mix proportion, w/c ratio, water permeability, SCMs
Procedia PDF Downloads 4315094 Quantum Chemical Calculations Synthesis and Corrosion Inhibition Efficiency of Nonionic Surfactants on API X65 Steel Surface under H2s Environment
Authors: E. G. Zaki, M. A. Migahed, A. M. Al-Sabagh, E. A. Khamis
Abstract:
Inhibition effect of four novel nonionic surfactants based on sulphonamide, of linear alkyl benzene sulphonic acid (LABS), was reacted with 1 mole triethylenetetramine, tetraethylenepentamine then Ethoxylation of amide X 65 type carbon steel in oil wells formation water under H2S environment was investigated by electrochemical measurements. Scanning electron microscopy (SEM) and energy dispersion X-ray (EDX) were used to characterize the steel surface. The results showed that these surfactants act as a corrosion inhibitor in and their inhibition efficiencies depend on the ethylene oxide content in the system. The obtained results showed that the percentage inhibition efficiency (η%) was increased by increasing the inhibitor concentration until the critical micelle concentration (CMC) reached The quantum chemistry calculations were carried out to study the molecular geometry and electronic structure of obtained derivatives. The energy gap between the highest occupied molecular orbital and lowest unoccupied molecular orbital has been calculated using the theoretical computations to reflect the chemical reactivity and kinetic stability of compounds.Keywords: corrosion, surfactants, steel surface, quantum
Procedia PDF Downloads 37715093 Geometric, Energetic and Topological Analysis of (Ethanol)₉-Water Heterodecamers
Authors: Jennifer Cuellar, Angie L. Parada, Kevin N. S. Chacon, Sol M. Mejia
Abstract:
The purification of bio-ethanol through distillation methods is an unresolved issue at the biofuel industry because of the ethanol-water azeotrope formation, which increases the steps of the purification process and subsequently increases the production costs. Therefore, understanding the mixture nature at the molecular level could provide new insights for improving the current methods and/or designing new and more efficient purification methods. For that reason, the present study focuses on the evaluation and analysis of (ethanol)₉-water heterodecamers, as the systems with the minimum molecular proportion that represents the azeotropic concentration (96 %m/m in ethanol). The computational modelling was carried out with B3LYP-D3/6-311++G(d,p) in Gaussian 09. Initial explorations of the potential energy surface were done through two methods: annealing simulated runs and molecular dynamics trajectories besides intuitive structures obtained from smaller (ethanol)n-water heteroclusters, n = 7, 8 and 9. The energetic order of the seven stable heterodecamers determines the most stable heterodecamer (Hdec-1) as a structure forming a bicyclic geometry with the O-H---O hydrogen bonds (HBs) where the water is a double proton donor molecule. Hdec-1 combines 1 water molecule and the same quantity of every ethanol conformer; this is, 3 trans, 3 gauche 1 and 3 gauche 2; its abundance is 89%, its decamerization energy is -80.4 kcal/mol, i.e. 13 kcal/mol most stable than the less stable heterodecamer. Besides, a way to understand why methanol does not form an azeotropic mixture with water, analogous systems ((ethanol)10, (methanol)10, and (methanol)9-water)) were optimized. Topologic analysis of the electron density reveals that Hec-1 forms 33 weak interactions in total: 11 O-H---O, 8 C-H---O, 2 C-H---C hydrogen bonds and 12 H---H interactions. The strength and abundance of the most unconventional interactions (H---H, C-H---O and C-H---O) seem to explain the preference of the ethanol for forming heteroclusters instead of clusters. Besides, O-H---O HBs present a significant covalent character according to topologic parameters as the Laplacian of electron density and the relationship between potential and kinetic energy densities evaluated at the bond critical points; obtaining negatives values and values between 1 and 2, for those two topological parameters, respectively.Keywords: ADMP, DFT, ethanol-water azeotrope, Grimme dispersion correction, simulated annealing, weak interactions
Procedia PDF Downloads 10315092 Investigating Classroom Teachers' Perceptions of Assessing U.S. College Students' L2 Chinese Oral Performance
Authors: Guangyan Chen
Abstract:
This study examined Chinese teachers’ perceptions of assessing U.S. college students’ L2 (second language) Chinese oral performances at different levels. Ten oral performances were videotaped from which three were chosen as samples to represent three different proficiency levels based on professionals’ judgments according to the ACTFL proficiency guidelines. The three samples were shown to L2 Chinese teachers who completed questionnaires about their assessments for each speech sample. In total, 104 L2 Chinese teachers responded to each of the three samples. The Exploratory Factor Analyses (EFA) of the teachers’ responses revealed three similar rating criteria patterns for assessing the three levels of oral performances. The teachers’ responses to Samples 2 and 3 revealed five rating criteria: Global proficiency, Chinese conceptual framework, content richness, communication appropriateness, and communication clarity. The teachers’ responses to Sample 1 revealed four rating criteria: global proficiency, Chinese conceptual framework, communication appropriateness/content richness, and communication clarity. However, the analyses of variance (ANOVAs) revealed that the proficiency levels of the three oral performances differed significantly across all rating criteria. Therefore, the data suggests that L2 classroom teachers could use the similar rating criteria pattern to assess college-level L2 Chinese students’ oral performances at different proficiency levels.Keywords: language assessment, L2 Chinese, oral performance, rating criteria
Procedia PDF Downloads 53915091 Applying Organic Natural Fertilizer to 'Orange Rubis' and 'Farbaly' Apricot Growth, Yield and Fruit Quality
Authors: A. Tarantino, F. Lops, G. Lopriore, G. Disciglio
Abstract:
Biostimulants are known as the organic fertilizers that can be applied in agriculture in order to increase nutrient uptake, growth and development of plants and improve quality, productivity and the environmental positive impacts. The aim of this study was to test the effects of some commercial biostimulants products (Bion® 50 WG, Hendophyt ® PS, Ergostim® XL and Radicon®) on vegeto-productive behavior and qualitative characteristics of fruits of two emerging apricot cultivars (Orange Rubis® and Farbaly®). The study was conducted during the spring-summer season 2015, in a commercial orchard located in the agricultural area of Cerignola (Foggia district, Apulian region, Southern Italy). Eight years old apricot trees, cv ‘Orange Rubis’ and ‘Farbaly®’, were used. The experimental data recorded during the experimental trial were: shoot length, total number of flower buds, flower buds drop and time of flowering and fruit set. Total yield of fruits per tree and quality parameters were determined. Experimental data showed some specific differences among the biostimulant treatments. Concerning the yield of ‘Orange Rubis’, except for the Bion treatment, the other three biostimulant treatments showed a tendentially lower values than the control. The yield of ‘Farbaly’ was lower for the Bion and Hendophyt treatments, higher for the Ergostim treatment, when compared with the yield of the control untreated. Concerning the soluble solids content, the juice of ‘Farbaly’ fruits had always higher content than that of ‘Orange Rubis’. Particularly, the Bion and the Hendophyt treatments showed in both harvest values tendentially higher than the control. Differently, the four biostimulant treatments did not affect significantly this parameter in ‘Orange Rubis’. With regard to the fruit firmness, some differences were observed between the two harvest dates and among the four biostimulant treatments. At the first harvest date, ‘Orange Rubis’ treated with Bion and Hendophyt biostimulants showed texture values tendentially lower than the control. Instead, ‘Farbaly’ for all the biostimulant treatments showed fruit firmness values significantly lower than the control. At the second harvest, almost all the biostimulants treatments in both ‘Orange Rubis’ and ‘Farbaly’ cultivar showed values lower than the control. Only ‘Farbaly’ treated with Radicon showed higher value in comparison to the control.Keywords: apricot, fruit quality, growth, organic natural fertilizer
Procedia PDF Downloads 326