Search results for: Agilent’s Advanced Design System (ADS)
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 28298

Search results for: Agilent’s Advanced Design System (ADS)

27308 Development and Validation of Thermal Stability in Complex System ABDM has two ASIC by NISA and COMSOL Tools

Authors: A. Oukaira, A. Lakhssassi, O. Ettahri

Abstract:

To make a good thermal management in an ABDM (Adapter Board Detector Module) card, we must first control temperature and its gradient from the first step in the design of integrated circuits ASIC of our complex system. In this paper, our main goal is to develop and validate the thermal stability in order to get an idea of the flow of heat around the ASIC in transient and thus address the thermal issues for integrated circuits at the ABDM card. However, we need heat sources simulations for ABDM card to establish its thermal mapping. This led us to perform simulations at each ASIC that will allow us to understand the thermal ABDM map and find real solutions for each one of our complex system that contains 36 ABDM map, taking into account the different layers around ASIC. To do a transient simulation under NISA, we had to build a function of power modulation in time TIMEAMP. The maximum power generated in the ASIC is 0.6 W. We divided the power uniformly in the volume of the ASIC. This power was applied for 5 seconds to visualize the evolution and distribution of heat around the ASIC. The DBC (Dirichlet Boundary conditions) method was applied around the ABDM at 25°C and just after these simulations in NISA tool we will validate them by COMSOL tool, wich is a numerical calculation software for a modular finite element for modeling a wide variety of physical phenomena characterizing a real problem. It will also be a design tool with its ability to handle 3D geometries for complex systems.

Keywords: ABDM, APD, thermal mapping, complex system

Procedia PDF Downloads 264
27307 Building Safety Through Real-time Design Fire Protection Systems

Authors: Mohsin Ali Shaikh, Song Weiguo, Muhammad Kashan Surahio, Usman Shahid, Rehmat Karim

Abstract:

When the area of a structure that is threatened by a disaster affects personal safety, the effectiveness of disaster prevention, evacuation, and rescue operations can be summarized by three assessment indicators: personal safety, property preservation, and attribution of responsibility. These indicators are applicable regardless of the disaster that affects the building. People need to get out of the hazardous area and to a safe place as soon as possible because there's no other way to respond. The results of the tragedy are thus closely related to how quickly people are advised to evacuate and how quickly they are rescued. This study considers present fire prevention systems to address catastrophes and improve building safety. It proposes the methods of Prevention Level for Deployment in Advance and Spatial Transformation by Human-Machine Collaboration. We present and prototype a real-time fire protection system architecture for building disaster prevention, evacuation, and rescue operations. The design encourages the use of simulations to check the efficacy of evacuation, rescue, and disaster prevention procedures throughout the planning and design phase of the structure.

Keywords: prevention level, building information modeling, quality management system, simulated reality

Procedia PDF Downloads 70
27306 Analysis of the Factors Affecting the Public Bicycle Projects in Chinese Cities

Authors: Xiujuan Wang, Weiguo Wang, Lei Yu, Xue Liu

Abstract:

There are many purported benefits of public bike systems, therefore, it has seen a sharp increase since 2008 in Hangzhou, China. However, there are few studies on the public bicycle system in Chinese cities. In order to make recommendations for the development of public bicycle systems, this paper analyzes the influencing factors by using the system dynamics method according to the main characteristics of Chinese cities. The main characteristics of Chinese cities lie in the city size and process of urbanization, traffic mode division, demographic characteristics, bicycle infrastructure and right of way, regime structure. Finally, under the context of Chinese bike sharing systems, these analyses results can help to design some feasible strategies for the planner to the development of the public bicycles.

Keywords: engineering of communication and transportation system, bicycle, public bike, characteristics of Chinese cities, system dynamics

Procedia PDF Downloads 244
27305 Leveraging Digital Transformation Initiatives and Artificial Intelligence to Optimize Readiness and Simulate Mission Performance across the Fleet

Authors: Justin Woulfe

Abstract:

Siloed logistics and supply chain management systems throughout the Department of Defense (DOD) has led to disparate approaches to modeling and simulation (M&S), a lack of understanding of how one system impacts the whole, and issues with “optimal” solutions that are good for one organization but have dramatic negative impacts on another. Many different systems have evolved to try to understand and account for uncertainty and try to reduce the consequences of the unknown. As the DoD undertakes expansive digital transformation initiatives, there is an opportunity to fuse and leverage traditionally disparate data into a centrally hosted source of truth. With a streamlined process incorporating machine learning (ML) and artificial intelligence (AI), advanced M&S will enable informed decisions guiding program success via optimized operational readiness and improved mission success. One of the current challenges is to leverage the terabytes of data generated by monitored systems to provide actionable information for all levels of users. The implementation of a cloud-based application analyzing data transactions, learning and predicting future states from current and past states in real-time, and communicating those anticipated states is an appropriate solution for the purposes of reduced latency and improved confidence in decisions. Decisions made from an ML and AI application combined with advanced optimization algorithms will improve the mission success and performance of systems, which will improve the overall cost and effectiveness of any program. The Systecon team constructs and employs model-based simulations, cutting across traditional silos of data, aggregating maintenance, and supply data, incorporating sensor information, and applying optimization and simulation methods to an as-maintained digital twin with the ability to aggregate results across a system’s lifecycle and across logical and operational groupings of systems. This coupling of data throughout the enterprise enables tactical, operational, and strategic decision support, detachable and deployable logistics services, and configuration-based automated distribution of digital technical and product data to enhance supply and logistics operations. As a complete solution, this approach significantly reduces program risk by allowing flexible configuration of data, data relationships, business process workflows, and early test and evaluation, especially budget trade-off analyses. A true capability to tie resources (dollars) to weapon system readiness in alignment with the real-world scenarios a warfighter may experience has been an objective yet to be realized to date. By developing and solidifying an organic capability to directly relate dollars to readiness and to inform the digital twin, the decision-maker is now empowered through valuable insight and traceability. This type of educated decision-making provides an advantage over the adversaries who struggle with maintaining system readiness at an affordable cost. The M&S capability developed allows program managers to independently evaluate system design and support decisions by quantifying their impact on operational availability and operations and support cost resulting in the ability to simultaneously optimize readiness and cost. This will allow the stakeholders to make data-driven decisions when trading cost and readiness throughout the life of the program. Finally, sponsors are available to validate product deliverables with efficiency and much higher accuracy than in previous years.

Keywords: artificial intelligence, digital transformation, machine learning, predictive analytics

Procedia PDF Downloads 162
27304 Presenting a Model Based on Artificial Neural Networks to Predict the Execution Time of Design Projects

Authors: Hamed Zolfaghari, Mojtaba Kord

Abstract:

After feasibility study the design phase is started and the rest of other phases are highly dependent on this phase. forecasting the duration of design phase could do a miracle and would save a lot of time. This study provides a fast and accurate Machine learning (ML) and optimization framework, which allows a quick duration estimation of project design phase, hence improving operational efficiency and competitiveness of a design construction company. 3 data sets of three years composed of daily time spent for different design projects are used to train and validate the ML models to perform multiple projects. Our study concluded that Artificial Neural Network (ANN) performed an accuracy of 0.94.

Keywords: time estimation, machine learning, Artificial neural network, project design phase

Procedia PDF Downloads 98
27303 Optimum of Offshore Structures Lifting Padeyes Using Finite Element Method

Authors: Abdelrahim Hamadelnil

Abstract:

Padeye design and analysis plays important roles during the lifting, load out and installation of heavy structures. This paper explains the disadvantages of limiting the effective thickness of the cheek plate to 75% of the main plate thickness. In addition, a sensitivity study about the impact of the out of plane force on the padeye design is discussed. This study also explains the fabrication requirements to ensure that the designed strength is achieved. The objective of this study is to elaborate and discuss the philosophy of padeye design and to propose the suitable effective cheek plate thickness to be considered in the analysis of padeye. A finite element analysis using London University Structure Analysis System (LUSAS), is conducted and compared with the hand calculation. The benefits and advantage of using FE analysis is addressed in this paper. At the end of this paper, a guideline elaborating the philosophy of the design of the padeye is developed and the suitable effective thickness of cheek plate to be considered in the design is recommended. In addition, a comparison between the finite element result and the hand calculation using beam theory is discussed as well.

Keywords: cheek plate, effective thickness, out of plane force, Padeye

Procedia PDF Downloads 328
27302 Reframing Service Oriented Architecture Design Principles in Software Design Quality

Authors: Purnomo Yustianto, Robin Doss, Novianto B. Kurniawan Suhardi

Abstract:

Since its inception, the design activities of Service Oriented Architecture (SOA) has been guided with aspects from the Service Design Principles (SDP), such as cohesion, granularity, loose coupling, discoverability, and autonomy, etc. The goal of this paper is two folds. The first is to examine the position of SDP within the context of software quality, and the second is to reframe the aspects of SDP into a more concise terms and relations. This paper is divided into four parts, in which after the introduction, a review on related software quality is provided to determine the quality context of SDP. The third part reviews the original SDP and offers a relation model among the SDP aspects. The fourth part explores the design quality metrics available for SOA and proposes a relationship representing the design quality. Among the aspects of design principles, the cohesion and coupling aspect is determined to be the two important aspects for achieving reusability of a service.

Keywords: SOA, software quality, service design principle, reusability, cohesion, coupling

Procedia PDF Downloads 171
27301 Production of Rhamnolipids from Different Resources and Estimating the Kinetic Parameters for Bioreactor Design

Authors: Olfat A. Mohamed

Abstract:

Rhamnolipids biosurfactants have distinct properties given them importance in many industrial applications, especially their great new future applications in cosmetic and pharmaceutical industries. These applications have encouraged the search for diverse and renewable resources to control the cost of production. The experimental results were then applied to find a suitable mathematical model for obtaining the design criteria of the batch bioreactor. This research aims to produce Rhamnolipids from different oily wastewater sources such as petroleum crude oil (PO) and vegetable oil (VO) by using Pseudomonas aeruginosa ATCC 9027. Different concentrations of the PO and the VO are added to the media broth separately are in arrangement (0.5 1, 1.5, 2, 2.5 % v/v) and (2, 4, 6, 8 and 10%v/v). The effect of the initial concentration of oil residues and the addition of glycerol and palmitic acid was investigated as an inducer in the production of rhamnolipid and the surface tension of the broth. It was found that 2% of the waste (PO) and 6% of the waste (VO) was the best initial substrate concentration for the production of rhamnolipids (2.71, 5.01 g rhamnolipid/l) as arrangement. Addition of glycerol (10-20% v glycerol/v PO) to the 2% PO fermentation broth led to increase the rhamnolipid production (about 1.8-2 times fold). However, the addition of palmitic acid (5 and 10 g/l) to fermentation broth contained 6% VO rarely enhanced the production rate. The experimental data for 2% initially (PO) was used to estimate the various kinetic parameters. The following results were obtained, maximum rate or velocity of reaction (Vmax) = 0.06417 g/l.hr), yield of cell weight per unit weight of substrate utilized (Yx/s = 0.324 g Cx/g Cs) maximum specific growth rate (μmax = 0.05791 hr⁻¹), yield of rhamnolipid weight per unit weight of substrate utilized (Yp/s)=0.2571gCp/g Cs), maintenance coefficient (Ms =0.002419), Michaelis-Menten constant, (Km=6.1237 gmol/l), endogenous decay coefficient (Kd=0.002375 hr⁻¹). Predictive parameters and advanced mathematical models were applied to evaluate the time of the batch bioreactor. The results were as follows: 123.37, 129 and 139.3 hours in respect of microbial biomass, substrate and product concentration, respectively compared with experimental batch time of 120 hours in all cases. The expected mathematical models are compatible with the laboratory results and can, therefore, be considered as tools for expressing the actual system.

Keywords: batch bioreactor design, glycerol, kinetic parameters, petroleum crude oil, Pseudomonas aeruginosa, rhamnolipids biosurfactants, vegetable oil

Procedia PDF Downloads 132
27300 An Algorithm of Regulation of Glucose-Insulin Concentration in the Blood

Authors: B. Selma, S. Chouraqui

Abstract:

The pancreas is an elongated organ that extends across the abdomen, below the stomach. In addition, it secretes certain enzymes that aid in food digestion. The pancreas also manufactures hormones responsible for regulating blood glucose levels. In the present paper, we propose a mathematical model to study the homeostasis of glucose and insulin in healthy human, and a simulation of this model, which depicts the physiological events after a meal, will be represented in ordinary humans. The aim of this paper is to design an algorithm which regulates the level of glucose in the blood. The algorithm applied the concept of expert system for performing an algorithm control in the form of an "active" used to prescribe the rate of insulin infusion. By decomposing the system into subsystems, we have developed parametric models of each subsystem by using a forcing function strategy. The results showed a performance of the control system.

Keywords: modeling, algorithm, regulation, glucose-insulin, blood, control system

Procedia PDF Downloads 178
27299 Autonomous Position Control of an Unmanned Aerial Vehicle Based on Accelerometer Response for Indoor Navigation Using Kalman Filtering

Authors: Syed Misbahuddin, Sagufta Kapadia

Abstract:

Autonomous indoor drone navigation has been posed with various challenges, including the inability to use a Global Positioning System (GPS). As of now, Unmanned Aerial Vehicles (UAVs) either rely on 3D mapping systems or utilize external camera arrays to track the UAV in an enclosed environment. The objective of this paper is to develop an algorithm that utilizes Kalman Filtering to reduce noise, allowing the UAV to be navigated indoors using only the flight controller and an onboard companion computer. In this paper, open-source libraries are used to control the UAV, which will only use the onboard accelerometer on the flight controller to estimate the position through double integration. One of the advantages of such a system is that it allows for low-cost and lightweight UAVs to autonomously navigate indoors without advanced mapping of the environment or the use of expensive high-precision-localization sensors.

Keywords: accelerometer, indoor-navigation, Kalman-filtering, position-control

Procedia PDF Downloads 350
27298 Information Technology Pattern for Traceability to Increase the Exporting Efficiency of Thailand’s Orchid

Authors: Pimploi Tirastittam, Phutthiwat Waiyawuththanapoom, Manop Tirastittam

Abstract:

Traceability system is one of the tools which can ensure the product’s confident of the consumer as it can trace the product back to its origin and can reduce the operation cost of recall. Nowadays, there are so many technologies which can be applied to the traceability system and also able to increase the efficiency of the system such as QR Code, barcode, GS1 and GTIN. As the result, this research is aimed to study and design the information technology pattern that suits for the traceability of Thailand’s orchid because Thailand’s orchid is the popular export product for Japan, USA, China, Netherlands and Italy. This study will enhance the value of Thailand’s orchid and able to prevent the unexpected event of the defects or damaged product. The traceability pattern was received IOC test from 12 experts from 4 fields of study which are traceability field, information technology field, information communication technology field and orchid export field. The result of the in-depth interview and questionnaire showed that the technology which most compatibility with the traceability system is the QR code. The mean of the score was 4.25 and the standard deviation was 0.5 as the QR code is the new technology and user-friendly. The traceability system should start from the farm to the consumer in the consuming country as the traceability system will enhance the quality level of the product and increase the value of its as well. The other outcome from this research is the supply chain model of Thailand’s Orchid along with the system architecture and working system diagram.

Keywords: exporting, information technology pattern, orchid, traceability

Procedia PDF Downloads 225
27297 Low-Cost Mechatronic Design of an Omnidirectional Mobile Robot

Authors: S. Cobos-Guzman

Abstract:

This paper presents the results of a mechatronic design based on a 4-wheel omnidirectional mobile robot that can be used in indoor logistic applications. The low-level control has been selected using two open-source hardware (Raspberry Pi 3 Model B+ and Arduino Mega 2560) that control four industrial motors, four ultrasound sensors, four optical encoders, a vision system of two cameras, and a Hokuyo URG-04LX-UG01 laser scanner. Moreover, the system is powered with a lithium battery that can supply 24 V DC and a maximum current-hour of 20Ah.The Robot Operating System (ROS) has been implemented in the Raspberry Pi and the performance is evaluated with the selection of the sensors and hardware selected. The mechatronic system is evaluated and proposed safe modes of power distribution for controlling all the electronic devices based on different tests. Therefore, based on different performance results, some recommendations are indicated for using the Raspberry Pi and Arduino in terms of power, communication, and distribution of control for different devices. According to these recommendations, the selection of sensors is distributed in both real-time controllers (Arduino and Raspberry Pi). On the other hand, the drivers of the cameras have been implemented in Linux and a python program has been implemented to access the cameras. These cameras will be used for implementing a deep learning algorithm to recognize people and objects. In this way, the level of intelligence can be increased in combination with the maps that can be obtained from the laser scanner.

Keywords: autonomous, indoor robot, mechatronic, omnidirectional robot

Procedia PDF Downloads 176
27296 Preparation of Papers - Developing a Leukemia Diagnostic System Based on Hybrid Deep Learning Architectures in Actual Clinical Environments

Authors: Skyler Kim

Abstract:

An early diagnosis of leukemia has always been a challenge to doctors and hematologists. On a worldwide basis, it was reported that there were approximately 350,000 new cases in 2012, and diagnosing leukemia was time-consuming and inefficient because of an endemic shortage of flow cytometry equipment in current clinical practice. As the number of medical diagnosis tools increased and a large volume of high-quality data was produced, there was an urgent need for more advanced data analysis methods. One of these methods was the AI approach. This approach has become a major trend in recent years, and several research groups have been working on developing these diagnostic models. However, designing and implementing a leukemia diagnostic system in real clinical environments based on a deep learning approach with larger sets remains complex. Leukemia is a major hematological malignancy that results in mortality and morbidity throughout different ages. We decided to select acute lymphocytic leukemia to develop our diagnostic system since acute lymphocytic leukemia is the most common type of leukemia, accounting for 74% of all children diagnosed with leukemia. The results from this development work can be applied to all other types of leukemia. To develop our model, the Kaggle dataset was used, which consists of 15135 total images, 8491 of these are images of abnormal cells, and 5398 images are normal. In this paper, we design and implement a leukemia diagnostic system in a real clinical environment based on deep learning approaches with larger sets. The proposed diagnostic system has the function of detecting and classifying leukemia. Different from other AI approaches, we explore hybrid architectures to improve the current performance. First, we developed two independent convolutional neural network models: VGG19 and ResNet50. Then, using both VGG19 and ResNet50, we developed a hybrid deep learning architecture employing transfer learning techniques to extract features from each input image. In our approach, fusing the features from specific abstraction layers can be deemed as auxiliary features and lead to further improvement of the classification accuracy. In this approach, features extracted from the lower levels are combined into higher dimension feature maps to help improve the discriminative capability of intermediate features and also overcome the problem of network gradient vanishing or exploding. By comparing VGG19 and ResNet50 and the proposed hybrid model, we concluded that the hybrid model had a significant advantage in accuracy. The detailed results of each model’s performance and their pros and cons will be presented in the conference.

Keywords: acute lymphoblastic leukemia, hybrid model, leukemia diagnostic system, machine learning

Procedia PDF Downloads 187
27295 Functional Electrical Stimulator and Neuromuscular Electro Stimulator System Analysis for Foot Drop

Authors: Gül Fatma Türker, Hatice Akman

Abstract:

Portable muscle stimulators for real-time applications has first introduced by Liberson in 1961. Now these systems has been advanced. In this study, FES (Functional Electrical Stimulator) and NMES (Neuromuscular Electrostimulator) systems are analyzed through their hardware and their quality of life improvements for foot drop patients. FES and NMES systems are used for people whose leg muscles and leg neural connections are healty but not able to walk properly because of their injured central nervous system like spinal cord injuries. These systems are used to stimulate neurons or muscles by getting information from other movements and programming these stimulations to get natural walk and it is accepted as a rehabilitation method for the correction of drop foot. This systems support person to approach natural form of walking. Foot drop is characterized by steppage gait. It is a gait abnormality. This systems helps to person for plantar and dorse reflection movements which are hard to done for foot drop patients.

Keywords: FES, foot drop, NMES, stimulator

Procedia PDF Downloads 388
27294 Developing an Online Library for Faster Retrieval of Mold Base and Standard Parts of Injection Molding

Authors: Alan C. Lin, Ricky N. Joevan

Abstract:

This paper focuses on developing a system to transfer mold base plates and standard parts faster during the stage of injection mold design. This system not only provides a way to compare the file version, but also it utilizes Siemens NX 10 to isolate the updated information into a single executable file (.dll), and then, the file can be transferred without the need of transferring the whole file. By this way, the system can help the user to download only necessary mold base plates and standard parts, and those parts downloaded are only the updated portions.

Keywords: CAD, injection molding, mold base, data retrieval

Procedia PDF Downloads 302
27293 Optimal Design of a PV/Diesel Hybrid System for Decentralized Areas through Economic Criteria

Authors: David B. Tsuanyo, Didier Aussel, Yao Azoumah, Pierre Neveu

Abstract:

An innovative concept called “Flexy-Energy”is developing at 2iE. This concept aims to produce electricity at lower cost by smartly mix different available energies sources in accordance to the load profile of the region. With a higher solar irradiation and due to the fact that Diesel generator are massively used in sub-Saharan rural areas, PV/Diesel hybrid systems could be a good application of this concept and a good solution to electrify this region, provided they are reliable, cost effective and economically attractive to investors. Presentation of the developed approach is the aims of this paper. The PV/Diesel hybrid system designed consists to produce electricity and/or heat from a coupling between Diesel gensets and PV panels without batteries storage, while ensuring the substitution of gasoil by bio-fuels available in the area where the system will be installed. The optimal design of this system is based on his technical performances; the Life Cycle Cost (LCC) and Levelized Cost of Energy are developed and use as economic criteria. The Net Present Value (NPV), the internal rate of return (IRR) and the discounted payback (DPB) are also evaluated according to dual electricity pricing (in sunny and unsunny hours). The PV/Diesel hybrid system obtained is compared to the standalone Diesel gensets. The approach carried out in this paper has been applied to Siby village in Mali (Latitude 12 ° 23'N 8 ° 20'W) with 295 kWh as daily demand. This approach provides optimal physical characteristics (size of the components, number of component) and dynamical characteristics in real time (number of Diesel generator on, their load rate, fuel specific consumptions, and PV penetration rate) of the system. The system obtained is slightly cost effective; but could be improved with optimized tariffing strategies.

Keywords: investments criteria, optimization, PV hybrid, sizing, rural electrification

Procedia PDF Downloads 441
27292 Knitting Stitches’ Manipulation for Catenary Textile Structures

Authors: Virginia Melnyk

Abstract:

This paper explores the design for catenary structure using knitted textiles. Using the advantages of Grasshopper and Kangaroo parametric software to simulate and pre-design an overall form, the design is then translated to a pattern that can be made with hand manipulated stitches on a knitting machine. The textile takes advantage of the structure of knitted materials and the ability for it to stretch. Using different types of stitches to control the amount of stretch that can occur in portions of the textile generates an overall formal design. The textile is then hardened in an upside-down hanging position and then flipped right-side-up. This then becomes a structural catenary form. The resulting design is used as a small Cat House for a cat to sit inside and climb on top of.

Keywords: architectural materials, catenary structures, knitting fabrication, textile design

Procedia PDF Downloads 185
27291 Understanding Retail Benefits Trade-offs of Dynamic Expiration Dates (DED) Associated with Food Waste

Authors: Junzhang Wu, Yifeng Zou, Alessandro Manzardo, Antonio Scipioni

Abstract:

Dynamic expiration dates (DEDs) play an essential role in reducing food waste in the context of the sustainable cold chain and food system. However, it is unknown for the trades-off in retail benefits when setting an expiration date on fresh food products. This study aims to develop a multi-dimensional decision-making model that integrates DEDs with food waste based on wireless sensor network technology. The model considers the initial quality of fresh food and the change rate of food quality with the storage temperature as cross-independent variables to identify the potential impacts of food waste in retail by applying s DEDs system. The results show that retail benefits from the DEDs system depend on each scenario despite its advanced technology. In the DEDs, the storage temperature of the retail shelf leads to the food waste rate, followed by the change rate of food quality and the initial quality of food products. We found that the DEDs system could reduce food waste when food products are stored at lower temperature areas. Besides, the potential of food savings in an extended replenishment cycle is significantly more advantageous than the fixed expiration dates (FEDs). On the other hand, the information-sharing approach of the DEDs system is relatively limited in improving sustainable assessment performance of food waste in retail and even misleads consumers’ choices. The research provides a comprehensive understanding to support the techno-economic choice of the DEDs associated with food waste in retail.

Keywords: dynamic expiry dates (DEDs), food waste, retail benefits, fixed expiration dates (FEDs)

Procedia PDF Downloads 115
27290 Design and Implementation of an AI-Enabled Task Assistance and Management System

Authors: Arun Prasad Jaganathan

Abstract:

In today's dynamic industrial world, traditional task allocation methods often fall short in adapting to evolving operational conditions. This paper introduces an AI-enabled task assistance and management system designed to overcome the limitations of conventional approaches. By using artificial intelligence (AI) and machine learning (ML), the system intelligently interprets user instructions, analyzes tasks, and allocates resources based on real-time data and environmental factors. Additionally, geolocation tracking enables proactive identification of potential delays, ensuring timely interventions. With its transparent reporting mechanisms, the system provides stakeholders with clear insights into task progress, fostering accountability and informed decision-making. The paper presents a comprehensive overview of the system architecture, algorithm, and implementation, highlighting its potential to revolutionize task management across diverse industries.

Keywords: artificial intelligence, machine learning, task allocation, operational efficiency, resource optimization

Procedia PDF Downloads 62
27289 A Study of Shigeru Ban's Environmentally-Sensitive Design Approach

Authors: Duygu Merve Bulut, Fehime Yesim Gurani

Abstract:

The Japanese architect Shigeru Ban has succeeded in bringing a different understanding to the modern architectural design approach with both the material selection and the techniques he used while combining the material with the design. Ban, who reflects his respect to people and nature with his designs, has encouraged that design should be done with economic materials, easily accessible and understandable for everyone. Because of this, Ban has attracted attention and appreciated in the architectural world with his environmentally-sensitive design ideology and humanitarian projects. In order to understand Ban’s environmentally-sensitive design approach, with this article, Ban’s projects which have used natural materials; the projects of Ban’s Japenese Pavilion in Germany, Papertainer Museum in South Korea, Centre Pompidou-Metz in France and Cardboard Cathedral in New Zealand were examined and analyzed. In the following parts, 'paper tube' technology that creates awareness in architectural area, which developed and applied by Ban; has been examined in terms of building material and structure of sustainable space design. As a result of this review, Ban’s approach is evaluated in terms of its contribution to the understanding of sustainable design.

Keywords: ecological design, environmentally-sensitive design, paper tube, Shigeru Ban, sustainability

Procedia PDF Downloads 502
27288 A Readiness Framework for Digital Innovation in Education: The Context of Academics and Policymakers in Higher Institutions of Learning to Assess the Preparedness of Their Institutions to Adopt and Incorporate Digital Innovation

Authors: Lufungula Osembe

Abstract:

The field of education has witnessed advances in technology and digital transformation. The methods of teaching have undergone significant changes in recent years, resulting in effects on various areas such as pedagogies, curriculum design, personalized teaching, gamification, data analytics, cloud-based learning applications, artificial intelligence tools, advanced plug-ins in LMS, and the emergence of multimedia creation and design. The field of education has not been immune to the changes brought about by digital innovation in recent years, similar to other fields such as engineering, health, science, and technology. There is a need to look at the variables/elements that digital innovation brings to education and develop a framework for higher institutions of learning to assess their readiness to create a viable environment for digital innovation to be successfully adopted. Given the potential benefits of digital innovation in education, it is essential to develop a framework that can assist academics and policymakers in higher institutions of learning to evaluate the effectiveness of adopting and adapting to the evolving landscape of digital innovation in education. The primary research question addressed in this study is to establish the preparedness of higher institutions of learning to adopt and adapt to the evolving landscape of digital innovation. This study follows a Design Science Research (DSR) paradigm to develop a framework for academics and policymakers in higher institutions of learning to evaluate the readiness of their institutions to adopt digital innovation in education. The Design Science Research paradigm is proposed to aid in developing a readiness framework for digital innovation in education. This study intends to follow the Design Science Research (DSR) methodology, which includes problem awareness, suggestion, development, evaluation, and conclusion. One of the major contributions of this study will be the development of the framework for digital innovation in education. Given the various opportunities offered by digital innovation in recent years, the need to create a readiness framework for digital innovation will play a crucial role in guiding academics and policymakers in their quest to align with emerging technologies facilitated by digital innovation in education.

Keywords: digital innovation, DSR, education, opportunities, research

Procedia PDF Downloads 71
27287 Qatari Licensure System: Giving Voice to Educators at Government-Funded Schools

Authors: Abdullah Abu-Tineh, Hissa Sadiq, Fatma Al-Mutawah, Youmen Chabaan

Abstract:

The current study examined the experiences of educators in Qatar with the licensure process currently implemented at government schools. Using a survey study design, a total of 1,669 participants expressed their perceptions on the strengths and weaknesses of the licensure system, the professional standards, and the professional portfolio. Findings included participants’ beliefs on the importance of the licensure system in improving their performance, the necessity of using the professional standards as tools for professional growth and development, the importance of refining the professional portfolio for authenticity and reliability, and the inclusion of multiple sources of evidence, such as classroom observations, interviews, student learning outcomes, and surveys. Documenting teachers’ and school leaders’ voices was fundamental in finding ways to successfully drive future developments of the licensure system. The findings may also provide implications for other countries interested in developing or refining their own appraisal systems.

Keywords: licensure system, educator voice, professional standards, professional portfolio

Procedia PDF Downloads 204
27286 Design of Low-Cost Water Purification System Using Activated Carbon

Authors: Nayan Kishore Giri, Ramakar Jha

Abstract:

Water is a major element for the life of all the mankind in the earth. India’s surface water flows through fourteen major streams. Indian rivers are the main source of potable water in India. In the eastern part of India many toxic hazardous metals discharged into the river from mining industries, which leads many deadly diseases to human being. So the potable water quality is very significant and vital concern at present as it is related with the present and future health perspective of the human race. Consciousness of health risks linked with unsafe water is still very low among the many rural and urban areas in India. Only about 7% of total Indian people using water purifier. This unhealthy situation of water is not only present in India but also present in many underdeveloped countries. The major reason behind this is the high cost of water purifier. This current study geared towards development of economical and efficient technology for the removal of maximum possible toxic metals and pathogen bacteria. The work involves the design of portable purification system and purifying material. In this design Coconut shell granular activated carbon(GAC) and polypropylene filter cloths were used in this system. The activated carbon is impregnated with Iron(Fe). Iron is used because it enhances the adsorption capacity of activated carbon. The thorough analysis of iron impregnated activated carbon(Fe-AC) is done by Scanning Electron Microscope (SEM), X-ray diffraction (XRD) , BET surface area test were done. Then 10 ppm of each toxic metal were infiltrated through the designed purification system and they were analysed in Atomic absorption spectrum (AAS). The results are very promising and it is low cost. This work will help many people who are in need of potable water. They can be benefited for its affordability. It could be helpful in industries and other domestic usage.

Keywords: potable water, coconut shell GAC, polypropylene filter cloths, SEM, XRD, BET, AAS

Procedia PDF Downloads 382
27285 Design and Study of a Hybrid Micro-CSP/Biomass Boiler System for Water and Space Heating in Traditional Hammam

Authors: Said Lamghari, Abdelkader Outzourhit, Hassan Hamdi, Mohamed Krarouch, Fatima Ait Nouh, Mickael Benhaim, Mehdi Khaldoun

Abstract:

Traditional Hammams are big consumers of water and wood-energy. Any approach to reduce this consumption will contribute to the preservation of these two resources that are more and more stressed in Morocco. In the InnoTherm/InnoBiomass 2014 project HYBRIDBATH, funded by the Research Institute for Solar Energy and New Energy (IRESEN), we will use a hybrid system consisting of a micro-CSP system and a biomass boiler for water and space heating of a Hammam. This will overcome the problem of intermittency of solar energy, and will ensure continuous supply of hot water and heat. We propose to use local agricultural residues (olive pomace, shells of walnuts, almonds, Argan ...). Underfloor heating using either copper or PEX tubing will perform the space heating. This work focuses on the description of the system and the activities carried out so far: The installation of the system, the principle operation of the system and some preliminary test results.

Keywords: biomass boiler, hot water, hybrid systems, micro-CSP, parabolic sensor, solar energy, solar fraction, traditional hammam, underfloor heating

Procedia PDF Downloads 313
27284 Thermal Analysis and Experimental Procedure of Integrated Phase Change Material in a Storage Tank

Authors: Chargui Ridha, Agrebi Sameh

Abstract:

The integration of phase change materials (PCM) for the storage of thermal energy during the period of sunshine before being released during the night is a complement of free energy to improve the system formed by a solar collector, tank storage, and a heat exchanger. This paper is dedicated to the design of a thermal storage tank based on a PCM-based heat exchanger. The work is divided into two parts: an experimental part using paraffin as PCM was carried out within the Laboratory of Thermal Processes of Borj Cedria in order to improve the performance of the system formed by the coupling of a flat solar collector and a thermal storage tank and to subsequently determine the influence of PCM on the whole system. This phase is based on the measurement instrumentation, namely, a differential scanning calorimeter (DSC) and the thermal analyzer (hot disk: HOT DISK) in order to determine the physical properties of the paraffin (PCM), which has been chosen. The second phase involves the detailed design of the PCM heat exchanger, which is incorporated into a thermal storage tank and coupled with a solar air collector installed at the Research and Technology Centre of Energy (CRTEn). A numerical part based on the TRANSYS and Fluent software, as well as the finite volume method, was carried out for the storage reservoir systems in order to determine the temperature distribution in each chosen system.

Keywords: phase change materials, storage tank, heat exchanger, flat plate collector

Procedia PDF Downloads 95
27283 Design and Implementation of a Cross-Network Security Management System

Authors: Zhiyong Shan, Preethi Santhanam, Vinod Namboodiri, Rajiv Bagai

Abstract:

In recent years, the emerging network worms and attacks have distributive characteristics, which can spread globally in a very short time. Security management crossing networks to co-defense network-wide attacks and improve the efficiency of security administration is urgently needed. We propose a hierarchical distributed network security management system (HD-NSMS), which can integrate security management across multiple networks. First, we describe the system in macrostructure and microstructure; then discuss three key problems when building HD-NSMS: device model, alert mechanism, and emergency response mechanism; lastly, we describe the implementation of HD-NSMS. The paper is valuable for implementing NSMS in that it derives from a practical network security management system (NSMS).

Keywords: network security management, device organization, emergency response, cross-network

Procedia PDF Downloads 169
27282 Evaluation of Hybrid Viscoelastic Damper for Passive Energy Dissipation

Authors: S. S. Ghodsi, M. H. Mehrabi, Zainah Ibrahim, Meldi Suhatril

Abstract:

This research examines the performance of a hybrid passive control device for enhancing the seismic response of steel frame structures. The device design comprises a damper which employs a viscoelastic material to control both shear and axial strain. In the design, energy is dissipated through the shear strain of a two-layer system of viscoelastic pads which are located between steel plates. In addition, viscoelastic blocks have been included on either side of the main shear damper which obtains compressive strains in the viscoelastic blocks. These dampers not only dissipate energy but also increase the stiffness of the steel frame structure, and the degree to which they increase the stiffness may be controlled by the size and shape. In this research, the cyclical behavior of the damper was examined both experimentally and numerically with finite element modeling. Cyclic loading results of the finite element modeling reveal fundamental characteristics of this hybrid viscoelastic damper. The results indicate that incorporating a damper of the design can significantly improve the seismic performance of steel frame structures.

Keywords: cyclic loading, energy dissipation, hybrid damper, passive control system, viscoelastic damper

Procedia PDF Downloads 209
27281 Humanising Hospital Retrofitting: The Case Study of Malaysia Public Hospitals

Authors: Nur Faridatull Syafinaz Ahmad Tajudin

Abstract:

A hospital is a setting where individuals who are ill or injured are treated and cared for by doctors and nurses. Sanatoriums are settings where people can receive treatment and rest, particularly when recovering from a protracted illness. According to the report, hospitals are primarily designed to meet the needs of medical personnel by maximising their functionality and workflow. Hospitals frequently do a poor job of determining the patients' physical and emotional requirements and expectations. The literature on hospital design has recently focused more on the seeming need to "humanise" medical facilities. Despite the popularity of this design objective, "humanising" a space has hardly ever been defined or critically examined. The term "humanistic design" covered a broad range of design elements and designer interpretations. In reality, the hospital's layout and design the hospital may have a massive effect on patients' feel experience things and heal.

Keywords: hospital retrofitting, hospital design, humanising hospital, spatial design

Procedia PDF Downloads 122
27280 Research on Level Adjusting Mechanism System of Large Space Environment Simulator

Authors: Han Xiao, Zhang Lei, Huang Hai, Lv Shizeng

Abstract:

Space environment simulator is a device for spacecraft test. KM8 large space environment simulator built in Tianjing Space City is the largest as well as the most advanced space environment simulator in China. Large deviation of spacecraft level will lead to abnormally work of the thermal control device in spacecraft during the thermal vacuum test. In order to avoid thermal vacuum test failure, level adjusting mechanism system is developed in the KM8 large space environment simulator as one of the most important subsystems. According to the level adjusting requirements of spacecraft’s thermal vacuum tests, the four fulcrums adjusting model is established. By means of collecting level instruments and displacement sensors data, stepping motors controlled by PLC drive four supporting legs simultaneous movement. In addition, a PID algorithm is used to control the temperature of supporting legs and level instruments which long time work under the vacuum cold and black environment in KM8 large space environment simulator during thermal vacuum tests. Based on the above methods, the data acquisition and processing, the analysis and calculation, real time adjustment and fault alarming of the level adjusting mechanism system are implemented. The level adjusting accuracy reaches 1mm/m, and carrying capacity is 20 tons. Debugging showed that the level adjusting mechanism system of KM8 large space environment simulator can meet the thermal vacuum test requirement of the new generation spacecraft. The performance and technical indicators of the level adjusting mechanism system which provides important support for the development of spacecraft in China have been ahead of similar equipment in the world.

Keywords: space environment simulator, thermal vacuum test, level adjusting, spacecraft, parallel mechanism

Procedia PDF Downloads 248
27279 Energy Efficiency Analysis of Discharge Modes of an Adiabatic Compressed Air Energy Storage System

Authors: Shane D. Inder, Mehrdad Khamooshi

Abstract:

Efficient energy storage is a crucial factor in facilitating the uptake of renewable energy resources. Among the many options available for energy storage systems required to balance imbalanced supply and demand cycles, compressed air energy storage (CAES) is a proven technology in grid-scale applications. This paper reviews the current state of micro scale CAES technology and describes a micro-scale advanced adiabatic CAES (A-CAES) system, where heat generated during compression is stored for use in the discharge phase. It will also describe a thermodynamic model, developed in EES (Engineering Equation Solver) to evaluate the performance and critical parameters of the discharge phase of the proposed system. Three configurations are explained including: single turbine without preheater, two turbines with preheaters, and three turbines with preheaters. It is shown that the micro-scale A-CAES is highly dependent upon key parameters including; regulator pressure, air pressure and volume, thermal energy storage temperature and flow rate and the number of turbines. It was found that a micro-scale AA-CAES, when optimized with an appropriate configuration, could deliver energy input to output efficiency of up to 70%.

Keywords: CAES, adiabatic compressed air energy storage, expansion phase, micro generation, thermodynamic

Procedia PDF Downloads 311