Search results for: tool tip temperature
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 11816

Search results for: tool tip temperature

1886 Clove Oil Incorporated Biodegradable Film for Active Food Packaging

Authors: Shubham Sharma, Sandra Barkauskaite, Brendan Duffy, Swarna Jaiswal, Amit K. Jaiswal

Abstract:

Food packaging protects food from temperature, light, and humidity; preserves food and guarantees the safety and the integrity of the food. Advancement in packaging research leads to development of active packaging system with numerous properties such as oxygen scavengers, carbon-dioxide generating systems, antimicrobial active packaging, moisture control packaging, ethylene scavengers etc. In the active packaging, several additives such as essential oils, polyphenols etc. are incorporated into packaging film or within the packaging material to achieve the desired properties. This study investigates the effect on the structural, thermal and functional properties of different poly(lactide) – poly (butylene adipate-co-terephthalate) (PLA-PBAT) blend films incorporated with clove essential oil. The PLA-PBAT films were prepared by a solution casting method and then characterized based on their optical, mechanical properties, surface hydrophobicity, chemical composition, antimicrobial activity against S. aureus and E. coli, and inhibition of biofilm formation of E. coli. Results showed that, the developed packaging film containing clove oil has significant UV-blocking property (80%). However, incorporation of clove oil resulted in reduced transparency and tensile strength of the film as the concentration of clove oil increased. The surface hydrophobicity of packaging film was improved with the increasing concentration of essential oil. Similarly, thickness of the clove oil containing films increased from 36.71 µm to 106.67 µm as the concentration increases. The antimicrobial activity and biofilm inhibition study showed that the clove-incorporated PLA-PBAT composite film was effective against tested bacteria E. coli and S. aureus. This study showed that the PLA-PBAT – Clove oil composite film has significant antimicrobial and UV-blocking properties and can be used as an active food packaging film.

Keywords: active packaging, clove oil, poly(butylene adipate-co-terephthalate), poly(lactide)

Procedia PDF Downloads 155
1885 Estimation of Small Hydropower Potential Using Remote Sensing and GIS Techniques in Pakistan

Authors: Malik Abid Hussain Khokhar, Muhammad Naveed Tahir, Muhammad Amin

Abstract:

Energy demand has been increased manifold due to increasing population, urban sprawl and rapid socio-economic improvements. Low water capacity in dams for continuation of hydrological power, land cover and land use are the key parameters which are creating problems for more energy production. Overall installed hydropower capacity of Pakistan is more than 35000 MW whereas Pakistan is producing up to 17000 MW and the requirement is more than 22000 that is resulting shortfall of 5000 - 7000 MW. Therefore, there is a dire need to develop small hydropower to fulfill the up-coming requirements. In this regards, excessive rainfall, snow nurtured fast flowing perennial tributaries and streams in northern mountain regions of Pakistan offer a gigantic scope of hydropower potential throughout the year. Rivers flowing in KP (Khyber Pakhtunkhwa) province, GB (Gilgit Baltistan) and AJK (Azad Jammu & Kashmir) possess sufficient water availability for rapid energy growth. In the backdrop of such scenario, small hydropower plants are believed very suitable measures for more green environment and power sustainable option for the development of such regions. Aim of this study is to estimate hydropower potential sites for small hydropower plants and stream distribution as per steam network available in the available basins in the study area. The proposed methodology will focus on features to meet the objectives i.e. site selection of maximum hydropower potential for hydroelectric generation using well emerging GIS tool SWAT as hydrological run-off model on the Neelum, Kunhar and the Dor Rivers’ basins. For validation of the results, NDWI will be computed to show water concentration in the study area while overlaying on geospatial enhanced DEM. This study will represent analysis of basins, watershed, stream links, and flow directions with slope elevation for hydropower potential to produce increasing demand of electricity by installing small hydropower stations. Later on, this study will be benefitted for other adjacent regions for further estimation of site selection for installation of such small power plants as well.

Keywords: energy, stream network, basins, SWAT, evapotranspiration

Procedia PDF Downloads 225
1884 Thermodynamic Phase Equilibria and Formation Kinetics of Cyclopentane, Cyclopentanone and Cyclopentanol Hydrates in the Presence of Gaseous Guest Molecules including Methane and Carbon Dioxide

Authors: Sujin Hong, Seokyoon Moon, Heejoong Kim, Yunseok Lee, Youngjune Park

Abstract:

Gas hydrate is an inclusion compound in which a low-molecular-weight gas or organic molecule is trapped inside a three-dimensional lattice structure created by water-molecule via intermolecular hydrogen bonding. It is generally formed at low temperature and high pressure, and exists as crystal structures of cubic systems − structure I, structure II, and hexagonal system − structure H. Many efforts have been made to apply them to various energy and environmental fields such as gas transportation and storage, CO₂ capture and separation, and desalination of seawater. Particularly, studies on the behavior of gas hydrates by new organic materials for CO₂ storage and various applications are underway. In this study, thermodynamic and spectroscopic analyses of the gas hydrate system were performed focusing on cyclopentanol, an organic molecule that forms gas hydrate at relatively low pressure. The thermodynamic equilibria of CH₄ and CO₂ hydrate systems including cyclopentanol were measured and spectroscopic analyses of XRD and Raman were performed. The differences in thermodynamic systems and formation kinetics of CO₂ added cyclopentane, cyclopentanol and cyclopentanone hydrate systems were compared. From the thermodynamic point of view, cyclopentanol was found to be a hydrate promotor. Spectroscopic analyses showed that cyclopentanol formed a hydrate crystal structure of cubic structure II in the presence of CH₄ and CO₂. It was found that the differences in the functional groups among the organic guest molecules significantly affected the rate of hydrate formation and the total amounts of CO₂ stored in the hydrate systems. The total amount of CO₂ stored in the cyclopentanone hydrate was found to be twice that of the amount of CO₂ stored in the cyclopentane and the cyclopentanol hydrates. The findings are expected to open up new opportunity to develop the gas hydrate based wastewater desalination technology.

Keywords: gas hydrate, CO₂, separation, desalination, formation kinetics, thermodynamic equilibria

Procedia PDF Downloads 273
1883 Hybrid Speciation and Morphological Differentiation in Senecio (Senecioneae, Asteraceae) from the Andes

Authors: Luciana Salomon

Abstract:

The Andes hold one of the highest plant species diversity in the world. How such diversity originated is one of the most intriguing questions in studies addressing the pattern of plant diversity worldwide. Recently, the explosive adaptive radiations found in high Andean groups have been pointed as major triggers of this spectacular diversity. The Andes are one of the most species-rich area for the largest genus from the Asteraceae family, Senecio. There, the genus presents an incredible variation in growth form and ecological niche space. If this diversity of Andean Senecio can be explained by a monophyletic origin and subsequent radiation has not been tested up to now. Previous studies trying to disentangle the evolutionary history of some Andean Senecio struggled with the relatively low resolution and support of the phylogenies, which is indicative of recently radiated groups. Using Hyb-Seq, a powerful approach is available to address phylogenetic questions in groups whose evolutionary histories are recent and rapid. This approach was used for Senecio to build a phylogenetic backbone on which to study the mechanisms shaping its hyper-diversity in the Andes, focusing on Senecio ser. Culcitium, an exclusively Andean and well circumscribed group presenting large morphological variation and which is widely distributed across the Andes. Hyb-Seq data for about 130 accessions of Seneciowas generated. Using standard data analysis work flows and a newly developed tool to utilize paralogs for phylogenetic reconstruction, robustness of the species treewas investigated. Fully resolved and moderately supported species trees were obtained, showing Senecio ser. Culcitium as monophyletic. Within this group, some species formed well-supported clades congruent with morphology, while some species would not have exclusive ancestry, in concordance with previous studies showing a geographic differentiation. Additionally, paralogs were detected for a high number of loci, indicating duplication events and hybridization, known to be common in Senecio ser. Culcitium might have lead to hybrid speciation. The rapid diversification of the group seems to have followed a south-north distribution throughout the Andes, having accelerated in the conquest of new habitats more recently available: i.e., Montane forest, Paramo, and Superparamo.

Keywords: evolutionary radiations, andes, paralogy, hybridization, senecio

Procedia PDF Downloads 132
1882 3D Numerical Simulation of Undoweled and Uncracked Joints in Short Paneled Concrete Pavements

Authors: K. Sridhar Reddy, M. Amaranatha Reddy, Nilanjan Mitra

Abstract:

Short paneled concrete pavement (SPCP) with shorter panel size can be an alternative to the conventional jointed plain concrete pavements (JPCP) at the same cost as the asphalt pavements with all the advantages of concrete pavement with reduced thickness, less chance of mid-slab cracking and or dowel bar locking so common in JPCP. Cast-in-situ short concrete panels (short slabs) laid on a strong foundation consisting of a dry lean concrete base (DLC), and cement treated subbase (CTSB) will reduce the thickness of the concrete slab to the order of 180 mm to 220 mm, whereas JPCP was with 280 mm for the same traffic. During the construction of SPCP test sections on two Indian National Highways (NH), it was observed that the joints remain uncracked after a year of traffic. The undoweled and uncracked joints load transfer variability and joint behavior are of interest with anticipation on its long-term performance of the SPCP. To investigate the effects of undoweled and uncracked joints on short slabs, the present study was conducted. A multilayer linear elastic analysis using 3D finite element package for different panel sizes with different thicknesses resting on different types of solid elastic foundation with and without temperature gradient was developed. Surface deflections were obtained from 3D FE model and validated with measured field deflections from falling weight deflectometer (FWD) test. Stress analysis indicates that flexural stresses in short slabs are decreased with a decrease in panel size and increase in thickness. Detailed evaluation of stress analysis with the effects of curling behavior, the stiffness of the base layer and a variable degree of load transfer, is underway.

Keywords: joint behavior, short slabs, uncracked joints, undoweled joints, 3D numerical simulation

Procedia PDF Downloads 185
1881 Effect of Climate Change Rate in Indonesia against the Shrinking Dimensions of Granules and Plasticity Index of Soils

Authors: Muhammad Rasyid Angkotasan

Abstract:

The soil is a dense granules and arrangement of the pores that are related to each other, so that the water can flow from one point which has higher energy to a point that has lower energy. The flow of water through the pores of the porous ground is urgently needed in water seepage estimates in ground water pumping problems, investigate for underground construction, as well as analyzing the stability of the construction of Weirs. Climate change resulted in long-term changes in the distribution of weather patterns are statistically throughout the period start time of decades to millions of years. In other words, changes in the average weather circumstances or a change in the distribution of weather events, on average, for example, the number of extreme weather events that increasingly a lot or a little. Climate change is limited to a particular regional or can occur in all regions of the Earth. Geographical location between two continents and two oceans and is located around the equator is klimatologis factor is the cause of flooding and drought in Indonesia. This caused Indonesia' geographical position is on a hemisphere with a tropical monsoon climate is very sensitive to climatic anomaly El Nino Southern Oscillation (ENSO). ENSO causes drought occurrence in sea surface temperature conditions in the Pacific Equator warms up to the middle part of the East (El Nino). Based on the analysis of the climate of the last 30 years show that there is a tendency, the formation of a new pattern of climate causes the onset of climate change. The impact of climate change on the occurrence of the agricultural sector is the bergesernya beginning of the dry season which led to the above-mentioned pattern planting due to drought. The impact of climate change (drought) which is very extreme in Indonesia affect the shrinkage dimensions grain land and reduced the value of a percentage of the soil Plasticity Index caused by climate change.

Keywords: climate change, soil shrinkage, plasticity index, shrinking dimensions

Procedia PDF Downloads 240
1880 Quick Response Codes in Physio: A Simple Click to Long-Term Oxygen Therapy Education

Authors: K. W. Lee, C. M. Choi, H. C. Tsang, W. K. Fong, Y. K. Cheng, L. Y. Chan, C. K. Yuen, P. W. Lau, Y. L. To, K. C. Chow

Abstract:

QR (Quick Response) Code is a matrix barcode. It enables users to open websites, photos and other information with mobile devices by just snapping the code. In usual Long Term Oxygen Therapy arrangement, piles of LTOT related information like leaflets from different oxygen service providers are given to patients to choose an appropriate plan according to their needs. If these printed materials are transformed into electronic format (QR Code), it would be more environmentally-friendly. More importantly, electronic materials including LTOT equipment operation and dyspnoea relieving techniques also empower patients in long-term disease management. The objective to this study is to investigate the effect of QR code in patient education on new LTOT users. This study was carried out in medical wards of North District Hospital. Adult patients and relatives who followed commands, were able to use smartphones with internet services and required LTOT arrangement on hospital discharge were recruited. In LTOT arrangement, apart from the usual LTOT education booklets which included patients’ personal information (e.g. oxygen titration and six-minute walk test results etc.), extra leaflets consisted of 1. QR codes of LTOT plans from different oxygen service providers, 2. Education materials of dyspnoea management and 3. Instructions on LTOT equipment operation were given. Upon completion of LTOT arrangement, a questionnaire about the use of QR code on patient education was filled in by patients or relatives. A total of 10 new LTOT users were recruited from November 2017 to January 2018. Initially, 70% of them did not know anything about the QR code, but all of them understood its operation after a simple demonstration. 70% of them agreed that it was convenient to use (20% strongly agree, 40% agree, 10% somewhat agree). 80% of them agreed that QR code could facilitate the retrieval of more LTOT related information (10% strongly agree, 70% agree) while 90% agreed that we should continue delivering QR code leaflets to new LTOT users in the future (30% strongly agree, 40% agree, 20% somewhat agree). It is proven that QR code is a convenient and environmentally-friendly tool to deliver information. It is also relatively easy to be introduced to new users. It has received welcoming feedbacks from current users.

Keywords: long-term oxygen therapy, physiotherapy, patient education, QR code

Procedia PDF Downloads 149
1879 Nursing Students’ Opinions about Theoretical Lessons and Clinical Area: A Survey in a Nursing Department

Authors: Ergin Toros, Manar Aslan

Abstract:

This study was planned as a descriptive study in order to learn the opinions of the students who are studying in nursing undergraduate program about their theoretical/practical lessons and departments. The education in the undergraduate nursing programs has great importance because it contains the knowledge and skills to prepare student nurses to the clinic in the future. In order to provide quality-nursing services in the future, the quality of nursing education should be measured, and opinions of student nurses about education should be taken. The research population was composed of students educated in a university with 1-4 years of theoretical and clinical education (N=550), and the sample was composed of 460 students that accepted to take part in the study. It was reached to 83.6% of target population. Data collected through a survey developed by the researchers. Survey consists of 48 questions about sociodemographic characteristics (9 questions), theoretical courses (9 questions), laboratory applications (7 questions), clinical education (14 questions) and services provided by the faculty (9 questions). It was determined that 83.3% of the nursing students found the nursing profession to be suitable for them, 53% of them selected nursing because of easy job opportunity, and 48.9% of them stayed in state dormitory. Regarding the theoretical courses, 84.6% of the students were determined to agree that the question ‘Course schedule is prepared before the course and published on the university web page.’ 28.7% of them were determined to do not agree that the question ‘Feedback is given to students about the assignments they prepare.’. It has been determined that 41,5% of the students agreed that ‘The time allocated to laboratory applications is sufficient.’ Students said that physical conditions in laboratory (41,5%), and the materials used are insufficient (44.6%), and ‘The number of students in the group is not appropriate for laboratory applications.’ (45.2%). 71.3% of the students think that the nurses view in the clinics the students as a tool to remove the workload, 40.7% of them reported that nurses in the clinic area did not help through the purposes of the course, 39.6% of them said that nurses' communication with students is not good. 37.8% of students stated that nurses did not provide orientation to students, 37.2% of them think that nurses are not role models for students. 53.7% of the students stated that the incentive and support for the student exchange program were insufficient., %48 of the students think that career planning services, %47.2 security services,%45.4 the advisor spent time with students are not enough. It has been determined that nursing students are most disturbed by the approach of the nurses in the clinical area within the undergraduate education program. The clinical area education which is considered as an integral part of nursing education is important and affect to student satisfaction.

Keywords: nursing education, student, clinical area, opinion

Procedia PDF Downloads 178
1878 Evaluation of Pelargonium Extract and Oil as Eco-Friendly Corrosion Inhibitor for Steel in Acidic Chloride Solutions and Pharmacological Properties

Authors: Ahmed Chetouani

Abstract:

Corrosion is a natural occurring process where it can be defined as the deterioration of materials properties due to its interaction with its environment. Corrosion can lead to failures in plant infrastructure and machines which are usually costly to repair. In terms of loss of contaminated products which will cause environmental damage and possibly costly in terms of human health. The driving force that causes metals to corrode is due to the natural consequence of their temporary existence in metallic form. There is a growing trend in utilizing plant extracts and pharmaceutical compounds as corrosion inhibitors. Exquisite identification of the essential oil of aerial parts of Pelargonium was obtained using hydrodistillation and identification using GC (gas chromatography) and GC/MS (gas chromatography-mass spectrometry). The oil was predominated by Citronellol (22.8%). The inhibitory effect of essential oil and extract of Pelargonium was estimated on the corrosion of mild steel in 1M hydrochloric acid (HCl) using weight loss, Electrochemical Impedance Spectroscopy (EIS) and Tafel polarization curves. Inhibition was found to increase with increasing concentration of the essential oil and extract of Pelargonium. The effect of temperature on the corrosion behaviour of mild steel in 1M HCl with addition of essential oil and extract was also studied and the thermodynamic parameters were determined and discussed. Values of inhibition efficiency were calculated from weight loss, Tafel polarization curves, and EIS. All results are in good agreement. Polarization curves showed that essential oil and extract of Pelargonium behave as mixed type inhibitors in hydrochloric acid. The results obtained showed that the essential oil and extract of Pelargonium could serve as an effective inhibitor of the corrosion of mild steel in Hydrochloric acid solution. To avoid any surprise of toxicity, the majority compounds have been studied by using POM analyses.

Keywords: corrosion inhibition, mild steel, pelargonium oil, extract, electrochemical system, hydrodistillation, side effects, POM Analyses

Procedia PDF Downloads 405
1877 Making a Difference in a Crisis: How the 24-Hour Surgical Ambulatory Assessment Unit Transformed Emergency Care during COVID-19

Authors: Bindhiya Thomas, Rehana Hafeez

Abstract:

Background: The Surgical Ambulatory Unit (SAU) also known as the Same Day Emergency Care (SDEC) is an established part of many hospitals providing same day emergency care service to surgical patients who would have otherwise required admission through the A&E. Prior to Covid, the SAU was functioning as a 12-hour service, but during the Covid crisis this service was transformed to a 24 hour functioning Surgical Ambulatory Assessment unit (SAAU). We studied the effects that this change brought about in-patient care in our hospital. Objective: The objective of the study was to assess the impact of a 24-hour Surgical Ambulatory Assessment unit on patient care during the time of Covid, in particular its role in freeing A&E capacity and delivering effective patient care. Methods: We collected two sets of data retrospectively. The first set was collected over a 6-week period when the SAU was functioning at the Princess Royal University Hospital. On March 23rd, 2020, the SAU was transformed into a 24-hour SAAU. Following this transformation, a second set of patient data was collected over a period of 6 weeks. A comparison was made between data collected from when the hospital had a 12-hour Surgical Ambulatory unit and later when it was transformed into a 24-hour facility. Its effects on the change in the number of patients breaching the four hour waiting period and the number of emergency surgical admissions. Results: The 24-hour Surgical Ambulatory Assessment unit brought significant reductions in the number of patients breaching the waiting period of 4 hours in A&E from 44% during the period of the 12-hour Surgical Ambulatory care facility to 0% from when the 24-hour Surgical Ambulatory Assessment Unit was established. A 28% reduction was also seen in the number of surgical patients' admissions from A&E. Conclusions: The 24-hour SAAU was found to have a profound positive impact on emergency care of surgical patients. Especially during the Covid crisis, it played a crucial role in providing not only effective and accessible patient care but also in reducing the A&E workload and admissions. It thus proved to be a strategic tool that helped to deal with the immense workload in emergency care during the Covid crisis and helped free much needed headspace at a time of uncertainty for the A&E to better configure their services. If sustained, the 24-hour SAAU could be relied on to augment the NHS emergency services in the future, especially in the event of another crisis.

Keywords: Princess Royal University Hospital, surgical ambulatory assessment unit, surgical ambulatory unit, same day emergency care

Procedia PDF Downloads 169
1876 Access to Natural Resources in the Cameroonian Part of the Logone Basin: A Driver and Mitigation Tool to Ethnical Conflicts

Authors: Bonguen Onouck Rolande Carole, Ndongo Barthelemy

Abstract:

The climate change effects on the Lake Chad, coupled with population growth, have pushed large masses of people of various origins towards the lower part of the lower Logonewatershed in search of the benefits of environmental services, causing pressure on the environment and its resources. Economic services are therefore threatened, and the decrease in resources contributes to the deterioration of the social wellbeing resulting to conflicts among/between local communities, immigrants, displaced people, and foreigners. This paper is an information contribution on ethnical conflicts drivers in the area and the provided local management mechanisms such can help mitigate present or future conflicts in similar areas. It also prints out the necessity to alleviate water access deficit and encourage good practices for the population wellbeing. In order to meet the objective, in 2018, through the interface of the World Bank-Cameroon project-PULCI, data were collected on the field directly by discussing with the population and visiting infrastructures, indirectly by a questionnaire survey. Two administrative divisions were chosen (Logoneet Chari, Mayo-Danay) in which targeted localities were Zina, Mazera, Lahai, Andirni near the Waza Park and Yagoua, Tekele, Pouss, respectively. Due to some sociocultural and religious reasons, some information were acquired through the traditional chiefs. A desk study analysis based on resources access and availability conflicts history, and management mechanism was done. As results, roots drivers of ethnical conflicts are struggles over natural resources access, and the possibility of conflicts increases as the scarcity and vulnerabilities persist, creating more sociocultural gaps and tensions. The mitigation mechanisms though fruitful, are limited. There is poor documentation on the topic, the resources management policies of this basin are unsuitable and ineffective for some. Therefore, the restoration of environmental and ecosystems, the mitigation of climate change effects, and food insecurity are the challenges that must be met to alleviate conflicts in these localities.

Keywords: ethnic, communities, conflicts, mitigation mechanisms, natural resources, logone basin

Procedia PDF Downloads 117
1875 Magnetic Chloromethylated Polymer Nanocomposite for Selective Pollutant Removal

Authors: Fabio T. Costa, Sergio E. Moya, Marcelo H. Sousa

Abstract:

Nanocomposites designed by embedding magnetic nanoparticles into a polymeric matrix stand out as ideal magnetic-hybrid and magneto-responsive materials as sorbents for removal of pollutants in environmental applications. Covalent coupling is often desired for the immobilization of species on these nanocomposites, in order to keep them permanently bounded, not desorbing or leaching over time. Moreover, unwanted adsorbates can be separated by successive washes/magnetic separations, and it is also possible to recover the adsorbate covalently bound to the nanocomposite surface through detaching/cleavage protocols. Thus, in this work, we describe the preparation and characterization of highly-magnetizable chloromethylated polystyrene-based nanocomposite beads for selective covalent coupling in environmental applications. For synthesis optimization, acid resistant core-shelled maghemite (γ-Fe₂O₃) nanoparticles were coated with oleate molecules and directly incorporated into the organic medium during a suspension polymerization process. Moreover, the cross-linking agent ethylene glycol dimethacrylate (EGDMA) was utilized for co-polymerization with the 4-vinyl benzyl chloride (VBC) to increase the resistance of microbeads against leaching. After characterizing samples with XRD, ICP-OES, TGA, optical, SEM and TEM microscopes, a magnetic composite consisting of ~500 nm-sized cross-linked polymeric microspheres embedding ~8 nm γ-Fe₂O₃ nanoparticles was verified. This nanocomposite showed large room temperature magnetization (~24 emu/g) due to the high content in maghemite (~45 wt%) and resistance against leaching even in acidic media. Moreover, the presence of superficial chloromethyl groups, probed by FTIR and XPS spectroscopies and confirmed by an amination test can selectively adsorb molecules through the covalent coupling and be used in molecular separations as shown for the selective removal of 4-aminobenzoic acid from a mixture with benzoic acid.

Keywords: nanocomposite, magnetic nanoparticle, covalent separation, pollutant removal

Procedia PDF Downloads 116
1874 Assessment of Seeding and Weeding Field Robot Performance

Authors: Victor Bloch, Eerikki Kaila, Reetta Palva

Abstract:

Field robots are an important tool for enhancing efficiency and decreasing the climatic impact of food production. There exists a number of commercial field robots; however, since this technology is still new, the robot advantages and limitations, as well as methods for optimal using of robots, are still unclear. In this study, the performance of a commercial field robot for seeding and weeding was assessed. A research 2-ha sugar beet field with 0.5m row width was used for testing, which included robotic sowing of sugar beet and weeding five times during the first two months of the growing. About three and five percent of the field were used as untreated and chemically weeded control areas, respectively. The plant detection was based on the exact plant location without image processing. The robot was equipped with six seeding and weeding tools, including passive between-rows harrow hoes and active hoes cutting inside rows between the plants, and it moved with a maximal speed of 0.9 km/h. The robot's performance was assessed by image processing. The field images were collected by an action camera with a height of 2 m and a resolution 27M pixels installed on the robot and by a drone with a 16M pixel camera flying at 4 m height. To detect plants and weeds, the YOLO model was trained with transfer learning from two available datasets. A preliminary analysis of the entire field showed that in the areas treated by the robot, the weed average density varied across the field from 6.8 to 9.1 weeds/m² (compared with 0.8 in the chemically treated area and 24.3 in the untreated area), the weed average density inside rows was 2.0-2.9 weeds / m (compared with 0 on the chemically treated area), and the emergence rate was 90-95%. The information about the robot's performance has high importance for the application of robotics for field tasks. With the help of the developed method, the performance can be assessed several times during the growth according to the robotic weeding frequency. When it’s used by farmers, they can know the field condition and efficiency of the robotic treatment all over the field. Farmers and researchers could develop optimal strategies for using the robot, such as seeding and weeding timing, robot settings, and plant and field parameters and geometry. The robot producers can have quantitative information from an actual working environment and improve the robots accordingly.

Keywords: agricultural robot, field robot, plant detection, robot performance

Procedia PDF Downloads 90
1873 Paper-Like and Battery Free Sensor Patches for Wound Monitoring

Authors: Xiaodi Su, Xin Ting Zheng, Laura Sutarlie, Nur Asinah binte Mohamed Salleh, Yong Yu

Abstract:

Wound healing is a dynamic process with multiple phases. Rapid profiling and quantitative characterization of inflammation and infection remain challenging. We have developed paper-like battery-free multiplexed sensors for holistic wound assessment via quantitative detection of multiple inflammation and infection markers. In one of the designs, the sensor patch consists of a wax-printed paper panel with five colorimetric sensor channels arranged in a pattern resembling a five-petaled flower (denoted as a ‘Petal’ sensor). The five sensors are for temperature, pH, trimethylamine, uric acid, and moisture. The sensor patch is sandwiched between a top transparent silicone layer and a bottom adhesive wound contact layer. In the second design, a palm-like-shaped paper strip is fabricated by a paper-cutter printer (denoted as ‘Palm’ sensor). This sensor strip carries five sensor regions connected by a stem sampling entrance that enables rapid colorimetric detection of multiple bacteria metabolites (aldehyde, lactate, moisture, trimethylamine, tryptophan) from wound exudate. For both the “\’ Petal’ and ‘Palm’ sensors, color images can be captured by a mobile phone. According to the color changes, one can quantify the concentration of the biomarkers and then determine wound healing status and identify/quantify bacterial species in infected wounds. The ‘Petal’ and ‘Palm’ sensors are validated with in-situ animal and ex-situ skin wound models, respectively. These sensors have the potential for integration with wound dressing to allow early warning of adverse events without frequent removal of the plasters. Such in-situ and early detection of non-healing condition can trigger immediate clinical intervention to facilitate wound care management.

Keywords: wound infection, colorimetric sensor, paper fluidic sensor, wound care

Procedia PDF Downloads 85
1872 Viscoelastic Characterization of Gelatin/Cellulose Nanocrystals Aqueous Bionanocomposites

Authors: Liliane Samara Ferreira Leite, Francys Kley Vieira Moreira, Luiz Henrique Capparelli Mattoso

Abstract:

The increasing environmental concern regarding the plastic pollution worldwide has stimulated the development of low-cost biodegradable materials. Proteins are renewable feedstocks that could be used to produce biodegradable plastics. Gelatin, for example, is a cheap film-forming protein extracted from animal skin and connective tissues of Brazilian Livestock residues; thus it has a good potential in low-cost biodegradable plastic production. However, gelatin plastics are limited in terms of mechanical and barrier properties. Cellulose nanocrystals (CNC) are efficient nanofillers that have been used to extend physical properties of polymers. This work was aimed at evaluating the reinforcing efficiency of CNC on gelatin films. Specifically, we have employed the continuous casting as the processing method for obtaining the gelatin/CNC bionanocomposites. This required a first rheological study for assessing the effect of gelatin-CNC and CNC-CNC interactions on the colloidal state of the aqueous bionanocomposite formulations. CNC were isolated from eucalyptus pulp by sulfuric acid hydrolysis (65 wt%) at 55 °C for 30 min. Gelatin was solubilized in ultra-pure water at 85°C for 20 min and then mixed with glycerol at 20 wt.% and CNC at 0.5 wt%, 1.0 wt% and 2.5 wt%. Rotational measurements were performed to determine linear viscosity (η) of bionanocomposite solutions, which increased with increasing CNC content. At 2.5 wt% CNC, η increased by 118% regarding the neat gelatin solution, which was ascribed to percolation CNC network formation. Storage modulus (G’) and loss modulus (G″) further determined by oscillatory tests revealed that a gel-like behavior was dominant in the bionanocomposite solutions (G’ > G’’) over a broad range of temperature (20 – 85 °C), particularly at 2.5 wt% CNC. These results confirm effective interactions in the aqueous gelatin-CNC bionanocomposites that could substantially increase the physical properties of the gelatin plastics. Tensile tests are underway to confirm this hypothesis. The authors would like to thank the Fapesp (process n 2016/03080-3) for support.

Keywords: bionanocomposites, cellulose nanocrystals, gelatin, viscoelastic characterization

Procedia PDF Downloads 153
1871 Applications of Artificial Intelligence (AI) in Cardiac imaging

Authors: Angelis P. Barlampas

Abstract:

The purpose of this study is to inform the reader, about the various applications of artificial intelligence (AI), in cardiac imaging. AI grows fast and its role is crucial in medical specialties, which use large amounts of digital data, that are very difficult or even impossible to be managed by human beings and especially doctors.Artificial intelligence (AI) refers to the ability of computers to mimic human cognitive function, performing tasks such as learning, problem-solving, and autonomous decision making based on digital data. Whereas AI describes the concept of using computers to mimic human cognitive tasks, machine learning (ML) describes the category of algorithms that enable most current applications described as AI. Some of the current applications of AI in cardiac imaging are the follows: Ultrasound: Automated segmentation of cardiac chambers across five common views and consequently quantify chamber volumes/mass, ascertain ejection fraction and determine longitudinal strain through speckle tracking. Determine the severity of mitral regurgitation (accuracy > 99% for every degree of severity). Identify myocardial infarction. Distinguish between Athlete’s heart and hypertrophic cardiomyopathy, as well as restrictive cardiomyopathy and constrictive pericarditis. Predict all-cause mortality. CT Reduce radiation doses. Calculate the calcium score. Diagnose coronary artery disease (CAD). Predict all-cause 5-year mortality. Predict major cardiovascular events in patients with suspected CAD. MRI Segment of cardiac structures and infarct tissue. Calculate cardiac mass and function parameters. Distinguish between patients with myocardial infarction and control subjects. It could potentially reduce costs since it would preclude the need for gadolinium-enhanced CMR. Predict 4-year survival in patients with pulmonary hypertension. Nuclear Imaging Classify normal and abnormal myocardium in CAD. Detect locations with abnormal myocardium. Predict cardiac death. ML was comparable to or better than two experienced readers in predicting the need for revascularization. AI emerge as a helpful tool in cardiac imaging and for the doctors who can not manage the overall increasing demand, in examinations such as ultrasound, computed tomography, MRI, or nuclear imaging studies.

Keywords: artificial intelligence, cardiac imaging, ultrasound, MRI, CT, nuclear medicine

Procedia PDF Downloads 84
1870 Passively Q-Switched 914 nm Microchip Laser for LIDAR Systems

Authors: Marco Naegele, Klaus Stoppel, Thomas Dekorsy

Abstract:

Passively Q-switched microchip lasers enable the great potential for sophisticated LiDAR systems due to their compact overall system design, excellent beam quality, and scalable pulse energies. However, many near-infrared solid-state lasers show emitting wavelengths > 1000 nm, which are not compatible with state-of-the-art silicon detectors. Here we demonstrate a passively Q-switched microchip laser operating at 914 nm. The microchip laser consists of a 3 mm long Nd:YVO₄ crystal as a gain medium, while Cr⁴⁺:YAG with an initial transmission of 98% is used as a saturable absorber. Quasi-continuous pumping enables single pulse operation, and low duty cycles ensure low overall heat generation and power consumption. Thus, thermally induced instabilities are minimized, and operation without active cooling is possible while ambient temperature changes are compensated by adjustment of the pump laser current only. Single-emitter diode pumping at 808 nm leads to a compact overall system design and robust setup. Utilization of a microchip cavity approach ensures single-longitudinal mode operation with spectral bandwidths in the picometer regime and results in short laser pulses with pulse durations below 10 ns. Beam quality measurements reveal an almost diffraction-limited beam and enable conclusions concerning the thermal lens, which is essential to stabilize the plane-plane resonator. A 7% output coupler transmissivity is used to generate pulses with energies in the microjoule regime and peak powers of more than 600 W. Long-term pulse duration, pulse energy, central wavelength, and spectral bandwidth measurements emphasize the excellent system stability and facilitate the utilization of this laser in the context of a LiDAR system.

Keywords: diode-pumping, LiDAR system, microchip laser, Nd:YVO4 laser, passively Q-switched

Procedia PDF Downloads 134
1869 Methodological Approach for Historical Building Retrofit Based on Energy and Cost Analysis in the Different Climatic Zones

Authors: Selin Guleroglu, Ilker Kahraman, E. Selahattin Umdu

Abstract:

In today’s world, the building sector has a significant impact on primary energy consumption and CO₂ emissions. While new buildings must have high energy performance as indicated by the Energy Performance Directive in Buildings (EPBD), published by the European Union (EU), the energy performance of the existing buildings must also be enhanced with cost-efficient methods. Turkey has a high historical building density similar to south European countries, and the high energy consumption is the main contributor in the energy consumptioın of Turkey, which is rather higher than European counterparts. Historic buildings spread around Turkey for four main climate zones covering very similar climate characteristics to both the north and south European countries. The case study building is determined as the most common building type in Turkey. This study aims to investigate energy retrofit measures covering but not limited to passive and active measures to improve the energy performance of the historical buildings located in different climatic zones within the limits of preservation of the historical value of the building as a crucial constraint. Passive measures include wall, window, and roof construction elements, and active measures HVAC systems in retrofit scenarios. The proposed methodology can help to reach up to 30% energy saving based on primary energy consumption. DesignBuilder, an energy simulation tool, is used to determine the energy performance of buildings with suggested retrofit measures, and the Net Present Value (NPV) method is used for cost analysis of them. Finally, the most efficient energy retrofit measures for all buildings are determined by analyzing primary energy consumption and the cost performance of them. Results show that heat insulation, glazing type, and HVAC system has an important role in energy saving. Also, it found that these parameters have a different positive or negative effect on building energy consumption in different climate zones. For instance, low e glazing has a positive impact on the energy performance of the building in the first zone, while it has a negative effect on the building in the forth zone. Another important result is applying heat insulation has minimum impact on building energy performance compared to other zones.

Keywords: energy performance, climatic zones, historic building, energy retrofit measures, NPV

Procedia PDF Downloads 179
1868 [Keynote Speech]: Risk Management during the Rendition Process: Use of Screen-Voice Recordings in Translator Training

Authors: Maggie Hui

Abstract:

Risk management is not a new concept; however, it is an uncharted area as applied to the translation process and translator training. Serving as one of the self-discovery activities in their practicum course, a two-cycle experiment was carried out with a class of 13 MA translation students with an attempt to explore their risk management while translating in a simulated setting that involves translator-client relations. To test the effects of the main variable of translators’ interaction with the simulated clients, the researcher employed control-group translators and two experiment groups (with Group A being the translator in Cycle 1 and the client in Cycle 2, and Group B on the client position in Cycle 1 and the translator position in Cycle 2). Experiment cycle 1 aims to explore if there would be any behavioral difference in risk management between translators with interaction with the simulated clients, i.e. experiment group A, and their counterparts without such interaction, i.e. control group. Design of Cycle 2 concerns the order of playing different roles of the translator and client in the experiment, and provides information to compare behavior of translators of the two experiment groups. Since this is process-oriented research, it is necessary to hypothesize what was happening in the translators’ minds. The researcher made use of a user-friendly screen-voice recording freeware to record subjects’ screen activities, including every word the translator typed and every change they made to the rendition, the websites they browsed and the reference tools they used, in addition to the verbalization of their thoughts throughout the process. The research observes the translation procedures subjects considered and finally adopted, and looks into the justifications for their procedures, in order to interpret their risk management. The qualitative and quantitative results of this study have some implications for translator training: (a) the experience of being a client seems to reinforce the translator’s risk aversion; (b) the use of role-playing simulation can empower students’ learning by enhancing their attitudinal or psycho-physiological competence, interpersonal competence and strategic competence; and (c) the screen-voice recordings serve as a helpful tool for learners to reflect on their rendition processes, i.e. what they performed satisfactorily and unsatisfactorily while translating and what they could do for improvement in future translation tasks.

Keywords: risk management, screen-voice recordings, simulated translator-client relations, translation pedagogy, translation process-oriented research

Procedia PDF Downloads 268
1867 Increasing Employee Productivity and Work Well-Being by Employing Affective Decision Support and a Knowledge-Based System

Authors: Loreta Kaklauskiene, Arturas Kaklauskas

Abstract:

This employee productivity and work well-being effective system aims to maximise the work performance of personnel and boost well-being in offices. Affective computing, decision support, and knowledge-based systems were used in our research. The basis of this effective system is our European Patent application (No: EP 4 020 134 A1) and two Lithuanian patents (LT 6841, LT 6866). Our study examines ways to support efficient employee productivity and well-being by employing mass-customised, personalised office environment. Efficient employee performance and well-being are managed by changing mass-customised office environment factors such as air pollution levels, humidity, temperature, data, information, knowledge, activities, lighting colours and intensity, scents, media, games, videos, music, and vibrations. These aspects of management generate a customised, adaptive environment for users taking into account their emotional, affective, and physiological (MAP) states measured and fed into the system. This research aims to develop an innovative method and system which would analyse, customise and manage a personalised office environment according to a specific user’s MAP states in a cohesive manner. Various values of work spaces (e.g., employee utilitarian, hedonic, perceived values) are also established throughout this process, based on the measurements that describe MAP states and other aspects related to the office environment. The main contribution of our research is the development of a real-time mass-customised office environment to boost employee performance and well-being. Acknowledgment: This work was supported by Project No. 2020-1-LT01-KA203-078100 “Minimizing the influence of coronavirus in a built environment” (MICROBE) from the European Union’s Erasmus + program.

Keywords: effective decision support and a knowledge-based system, human resource management, employee productivity and work well-being, affective computing

Procedia PDF Downloads 115
1866 Developing Social Responsibility Values in Nascent Entrepreneurs through Role-Play: An Explorative Study of University Students in the United Kingdom

Authors: David W. Taylor, Fernando Lourenço, Carolyn Branston, Paul Tucker

Abstract:

There are an increasing number of students at Universities in the United Kingdom engaging in entrepreneurship role-play to explore business start-up as a career alternative to employment. These role-play activities have been shown to have a positive influence on students’ entrepreneurial intentions. Universities also play a role in developing graduates’ awareness of social responsibility. However, social responsibility is often missing from these entrepreneurship role-plays. It is important that these role-play activities include the development of values that support social responsibility, in-line with those running hybrid, humane and sustainable enterprises, and not simply focus on profit. The Young Enterprise (YE) Start-Up programme is an example of a role-play activity that is gaining in popularity amongst United Kingdom Universities seeking ways to give students insight into a business start-up. A Post-92 University in the North-West of England has adapted the traditional YE Directorship roles (e.g., Marketing Director, Sales Director) by including a Corporate Social Responsibility (CSR) Director in all of the team-based YE Start-Up businesses. The aim for introducing this Directorship was to observe if such a role would help create a more socially responsible value-system within each company and in turn shape business decisions. This paper investigates role-play as a tool to help enterprise educators develop socially responsible attitudes and values in nascent entrepreneurs. A mixed qualitative methodology approach has been used, which includes interviews, role-play, and reflection, to help students develop positive value characteristics through the exploration of unethical and selfish behaviors. The initial findings indicate that role-play helped CSR Directors learn and gain insights into the importance of corporate social responsibility, influenced the values and actions of their YE Start-Ups, and increased the likelihood that if the participants were to launch a business post-graduation, that the intent would be for the business to be socially responsible. These findings help inform educators on how to develop socially responsible nascent entrepreneurs within a traditionally profit orientated business model.

Keywords: student entrepreneurship, young enterprise, social responsibility, role-play, values

Procedia PDF Downloads 155
1865 Eco-Fashion Dyeing of Denim and Knitwear with Particle-Dyes

Authors: Adriana Duarte, Sandra Sampaio, Catia Ferreira, Jaime I. N. R. Gomes

Abstract:

With the fashion of faded worn garments the textile industry has moved from indigo and pigments to dyes that are fixed by cationization, with products that can be toxic, and that can show this effect after washing down the dye with friction and/or treating with enzymes in a subsequent operation. Increasingly they are treated with bleaches, such as hypochlorite and permanganate, both toxic substances. An alternative process is presented in this work for both garment and jet dyeing processes, without the use of pre-cationization and the alternative use of “particle-dyes”. These are hybrid products, made up by an inorganic particle and an organic dye. With standard soluble dyes, it is not possible to avoid diffusion into the inside of the fiber unless using previous cationization. Only in this way can diffusion be avoided keeping the centre of the fibres undyed so as to produce the faded effect by removing the surface dye and showing the white fiber beneath. With “particle-dyes”, previous cationization is avoided. By applying low temperatures, the dye does not diffuse completely into the inside of the fiber, since it is a particle and not a soluble dye, being then able to give the faded effect. Even though bleaching can be used it can also be avoided, by the use of friction and enzymes they can be used just as for other dyes. This fashion brought about new ways of applying reactive dyes by the use of previous cationization of cotton, lowering the salt, and temperatures that reactive dyes usually need for reacting and as a side effect the application of a more environmental process. However, cationization is a process that can be problematic in applying it outside garment dyeing, such as jet dyeing, being difficult to obtain level dyeings. It also should be applied by a pad-fix or Pad-batch process due to the low affinity of the pre-cationization products making it a more expensive process, and the risk of unlevelness in processes such as jet dyeing. Wit particle-dyes, since no pre-cationizartion is necessary, they can be applied in jet dyeing. The excess dye is fixed by a fixing agent, fixing the insoluble dye onto the surface of the fibers. By applying the fixing agent only one to 1-3 rinses in water at room temperature are necessary, saving water and improving the washfastness.

Keywords: denim, garment dyeing, worn look, eco-fashion

Procedia PDF Downloads 546
1864 A Multilingual Model in the Multicultural World

Authors: Marina Petrova

Abstract:

Language policy issues related to the preservation and development of the native languages of the Russian peoples and the state languages of the national republics are increasingly becoming the focus of recent attention of educators and parents, public and national figures. Is it legal to teach the national language or the mother tongue as the state language? Due to that dispute language phobia moods easily evolve into xenophobia among the population. However, a civilized, intelligent multicultural personality can only be formed if the country develops bilingualism and multilingualism, and languages as a political tool help to find ‘keys’ to sufficiently closed national communities both within a poly-ethnic state and in internal relations of multilingual countries. The purpose of this study is to design and theoretically substantiate an efficient model of language education in the innovatively developing Republic of Sakha. 800 participants from different educational institutions of Yakutia worked at developing a multilingual model of education. This investigation is of considerable practical importance because researchers could build a methodical system designed to create conditions for the formation of a cultural language personality and the development of the multilingual communicative competence of Yakut youth, necessary for communication in native, Russian and foreign languages. The selected methodology of humane-personal and competence approaches is reliable and valid. Researchers used a variety of sources of information, including access to related scientific fields (philosophy of education, sociology, humane and social pedagogy, psychology, effective psychotherapy, methods of teaching Russian, psycholinguistics, socio-cultural education, ethnoculturology, ethnopsychology). Of special note is the application of theoretical and empirical research methods, a combination of academic analysis of the problem and experienced training, positive results of experimental work, representative series, correct processing and statistical reliability of the obtained data. It ensures the validity of the investigation’s findings as well as their broad introduction into practice of life-long language education.

Keywords: intercultural communication, language policy, multilingual and multicultural education, the Sakha Republic of Yakutia

Procedia PDF Downloads 227
1863 Web Development in Information Technology with Javascript, Machine Learning and Artificial Intelligence

Authors: Abdul Basit Kiani, Maryam Kiani

Abstract:

Online developers now have the tools necessary to create online apps that are not only reliable but also highly interactive, thanks to the introduction of JavaScript frameworks and APIs. The objective is to give a broad overview of the recent advances in the area. The fusion of machine learning (ML) and artificial intelligence (AI) has expanded the possibilities for web development. Modern websites now include chatbots, clever recommendation systems, and customization algorithms built in. In the rapidly evolving landscape of modern websites, it has become increasingly apparent that user engagement and personalization are key factors for success. To meet these demands, websites now incorporate a range of innovative technologies. One such technology is chatbots, which provide users with instant assistance and support, enhancing their overall browsing experience. These intelligent bots are capable of understanding natural language and can answer frequently asked questions, offer product recommendations, and even help with troubleshooting. Moreover, clever recommendation systems have emerged as a powerful tool on modern websites. By analyzing user behavior, preferences, and historical data, these systems can intelligently suggest relevant products, articles, or services tailored to each user's unique interests. This not only saves users valuable time but also increases the chances of conversions and customer satisfaction. Additionally, customization algorithms have revolutionized the way websites interact with users. By leveraging user preferences, browsing history, and demographic information, these algorithms can dynamically adjust the website's layout, content, and functionalities to suit individual user needs. This level of personalization enhances user engagement, boosts conversion rates, and ultimately leads to a more satisfying online experience. In summary, the integration of chatbots, clever recommendation systems, and customization algorithms into modern websites is transforming the way users interact with online platforms. These advanced technologies not only streamline user experiences but also contribute to increased customer satisfaction, improved conversions, and overall website success.

Keywords: Javascript, machine learning, artificial intelligence, web development

Procedia PDF Downloads 86
1862 Effect of Environmental Parameters on the Water Solubility of the Polycyclic Aromatic Hydrocarbons and Derivatives using Taguchi Experimental Design Methodology

Authors: Pranudda Pimsee, Caroline Sablayrolles, Pascale De Caro, Julien Guyomarch, Nicolas Lesage, Mireille Montréjaud-Vignoles

Abstract:

The MIGR’HYCAR research project was initiated to provide decisional tools for risks connected to oil spill drifts in continental waters. These tools aim to serve in the decision-making process once oil spill pollution occurs and/or as reference tools to study scenarios of potential impacts of pollutions on a given site. This paper focuses on the study of the distribution of polycyclic aromatic hydrocarbons (PAHs) and derivatives from oil spill in water as function of environmental parameters. Eight petroleum oils covering a representative range of commercially available products were tested. 41 Polycyclic Aromatic Hydrocarbons (PAHs) and derivate, among them 16 EPA priority pollutants were studied by dynamic tests at laboratory scale. The chemical profile of the water soluble fraction was different from the parent oil profile due to the various water solubility of oil components. Semi-volatile compounds (naphtalenes) constitute the major part of the water soluble fraction. A large variation in composition of the water soluble fraction was highlighted depending on oil type. Moreover, four environmental parameters (temperature, suspended solid quantity, salinity, and oil: water surface ratio) were investigated with the Taguchi experimental design methodology. The results showed that oils are divided into three groups: the solubility of Domestic fuel and Jet A1 presented a high sensitivity to parameters studied, meaning they must be taken into account. For gasoline (SP95-E10) and diesel fuel, a medium sensitivity to parameters was observed. In fact, the four others oils have shown low sensitivity to parameters studied. Finally, three parameters were found to be significant towards the water soluble fraction.

Keywords: mornitoring, PAHs, water soluble fraction, SBSE, Taguchi experimental design

Procedia PDF Downloads 329
1861 Evaluation of Intervention Effectiveness from the Client Perspective: Dimensions and Measurement of Wellbeing

Authors: Neşe Alkan

Abstract:

Purpose: The point that applied/clinical psychology, which is the practice and research discipline of the mental health field, has reached today can be summarized as the necessity of handling the psychological well-being of people from multiple perspectives and the goal of moving it to a higher level. Clients' subjective assessment of their own condition and wellbeing is an integral part of evidence-based interventions. There is a need for tools through which clients can evaluate the effectiveness of the psychotherapy/intervention performed with them and their contribution to the wellbeing and wellbeing of this process in a valid and reliable manner. The aim of this research is to meet this need, to test the reliability and validity of the index in Turkish, and explore its usability in the practices of both researchers and psychotherapists. Method: A total of 213 adults aged between 18-54, 69.5% working and 29.5% university students, were included in the study. Along with their demographic information, the participants were administered a set of scales: wellbeing, life satisfaction, spiritual satisfaction, shopping addiction, and loneliness, namely via an online platform. The construct validity of the wellbeing scale was tested with exploratory and confirmatory factor analyses, convergent and discriminant validity were tested with two-way full and partial correlation analyses and, measurement invariance was tested with one-way analysis of variance. Results: Factor analyzes showed that the scale consisted of six dimensions as it is in its original structure. The internal consistency of the scale was found to be Cronbach α = .82. Two-way correlation analyzes revealed that the wellbeing scale total score was positively correlated with general life satisfaction (r = .62) and spiritual satisfaction (r = .29), as expected. It was negatively correlated with loneliness (r = -.51) and shopping addiction (r = -.15). While the scale score did not vary by gender, previous illness, or nicotine addiction, it was found that the total wellbeing scale scores of the participants who had used antidepressant medication during the past year were lower than those who did not use antidepressant medication (F(1,204) = 7.713, p = .005). Conclusion: It has been concluded that the 12-item wellbeing scale consisting of six dimensions can be used in research and health sciences practices as a valid and reliable measurement tool. Further research which examines the reliability and validity of the scale in different widely used languages such as Spanish and Chinese is recommended.

Keywords: wellbeing, intervention effectiveness, reliability and validity, effectiveness

Procedia PDF Downloads 182
1860 Acoustic Emission Monitoring of Surface Roughness in Ultra High Precision Grinding of Borosilicate-Crown Glass

Authors: Goodness Onwuka, Khaled Abou-El-Hossein

Abstract:

The increase in the demand for precision optics, coupled with the absence of much research output in the ultra high precision grinding of precision optics as compared to the ultrahigh precision diamond turning of optical metals has fostered the need for more research in the ultra high precision grinding of an optical lens. Furthermore, the increase in the stringent demands for nanometric surface finishes through lapping, polishing and grinding processes necessary for the use of borosilicate-crown glass in the automotive and optics industries has created the demand to effectively monitor the surface roughness during the production process. Acoustic emission phenomenon has been proven as useful monitoring technique in several manufacturing processes ranging from monitoring of bearing production to tool wear estimation. This paper introduces a rare and unique approach with the application of acoustic emission technique to monitor the surface roughness of borosilicate-crown glass during an ultra high precision grinding process. This research was carried out on a 4-axes Nanoform 250 ultrahigh precision lathe machine using an ultra high precision grinding spindle to machine the flat surface of the borosilicate-crown glass with the tip of the grinding wheel. A careful selection of parameters and design of experiment was implemented using Box-Behnken method to vary the wheel speed, feed rate and depth of cut at three levels with a 3-center point design. Furthermore, the average surface roughness was measured using Taylor Hobson PGI Dimension XL optical profilometer, and an acoustic emission data acquisition device from National Instruments was utilized to acquire the signals while the data acquisition codes were designed with National Instrument LabVIEW software for acquisition at a sampling rate of 2 million samples per second. The results show that the raw and root mean square amplitude values of the acoustic signals increased with a corresponding increase in the measured average surface roughness values for the different parameter combinations. Therefore, this research concludes that acoustic emission monitoring technique is a potential technique for monitoring the surface roughness in the ultra high precision grinding of borosilicate-crown glass.

Keywords: acoustic emission, borosilicate-crown glass, surface roughness, ultra high precision grinding

Procedia PDF Downloads 296
1859 Orange Fleshed Sweet Potato Response to Filter Cake and Macadamia Husk Compost in Two Agro-Ecologies of Kwazulu-Natal, South Africa

Authors: Kayode Fatokun, Nozipho N. Motsa

Abstract:

Field experiments were carried out during the summer/autumn (first trial) and winter/spring (second trial) seasons of 2019 and 2021 inDlangubo, Ngwelezane, and Mtubatubaareas of KwaZulu-Natal Province of South Africa to study the drought amelioration effects and impact of 2 locally available organic wastes [filter cake (FC) and macadamia husk compost (MHC)] on the productivity, and physiological responses of 4 orange-fleshed sweet potato cultivars (Buregard cv., Impilo, W-119 and 199062.1). The effects of FC and MHC were compared with that of inorganic fertilizer (IF) [2:3:2 (30)], FC+IF, MHC+IF, and control. The soil amendments were applied in the first trials only. Climatic data such as humidity, temperature, and rainfall were taken via remote sensing. The results of the first trial indicated that filter cake and IF significantly performed better than MHC. While the strength of filter cake may be attributable to its rich array of mineral nutrients such as calcium, magnesium, potassium, sodium, zinc, copper, manganese, iron, and phosphorus. The little performance from MHC may be attributable to its water holding capacity. Also, a positive correction occurred between the yield of the test OFSP cultivars and climatic factors such as rainfall, NDVI, and NDWI values. Whereas the inorganic fertilizer did not have any significant effect on the growth and productivity of any of the tested sweet potato cultivars in the second trial; FC, and MHC largely maintained their significant performances. In conclusion, the use of FC is highly recommended in the production of the test orange-fleshed sweet potato cultivars. Also, the study indicated that both FC and MHC may not only supply the needed plant nutrients but has the capacity to reduce the impact of drought on the growth of the test cultivars. These findings are of great value to farmers, especially the resource-poorones.

Keywords: amendments, drought, filter cake, macadamia husk compost, sweet potato

Procedia PDF Downloads 102
1858 Sea of Light: A Game 'Based Approach for Evidence-Centered Assessment of Collaborative Problem Solving

Authors: Svenja Pieritz, Jakab Pilaszanovich

Abstract:

Collaborative Problem Solving (CPS) is recognized as being one of the most important skills of the 21st century with having a potential impact on education, job selection, and collaborative systems design. Therefore, CPS has been adopted in several standardized tests, including the Programme for International Student Assessment (PISA) in 2015. A significant challenge of evaluating CPS is the underlying interplay of cognitive and social skills, which requires a more holistic assessment. However, the majority of the existing tests are using a questionnaire-based assessment, which oversimplifies this interplay and undermines ecological validity. Two major difficulties were identified: Firstly, the creation of a controllable, real-time environment allowing natural behaviors and communication between at least two people. Secondly, the development of an appropriate method to collect and synthesize both cognitive and social metrics of collaboration. This paper proposes a more holistic and automated approach to the assessment of CPS. To address these two difficulties, a multiplayer problem-solving game called Sea of Light was developed: An environment allowing students to deploy a variety of measurable collaborative strategies. This controlled environment enables researchers to monitor behavior through the analysis of game actions and chat. The according solution for the statistical model is a combined approach of Natural Language Processing (NLP) and Bayesian network analysis. Social exchanges via the in-game chat are analyzed through NLP and fed into the Bayesian network along with other game actions. This Bayesian network synthesizes evidence to track and update different subdimensions of CPS. Major findings focus on the correlations between the evidences collected through in- game actions, the participants’ chat features and the CPS self- evaluation metrics. These results give an indication of which game mechanics can best describe CPS evaluation. Overall, Sea of Light gives test administrators control over different problem-solving scenarios and difficulties while keeping the student engaged. It enables a more complete assessment based on complex, socio-cognitive information on actions and communication. This tool permits further investigations of the effects of group constellations and personality in collaborative problem-solving.

Keywords: bayesian network, collaborative problem solving, game-based assessment, natural language processing

Procedia PDF Downloads 136
1857 Improved Benzene Selctivity for Methane Dehydroaromatization via Modifying the Zeolitic Pores by Dual Templating Approach

Authors: Deepti Mishra, K. K Pant, Xiu Song Zhao, Muxina Konarova

Abstract:

Catalytic transformation of simplest hydrocarbon methane into benzene and valuable chemicals over Mo/HZSM-5 has a great economic potential, however, it suffers serious hurdles due to the blockage in the micropores because of extensive coking at high temperature during methane dehydroaromatization (MDA). Under such conditions, it necessitates the design of micro/mesoporous ZSM-5, which has the advantages viz. uniform dispersibility of MoOx species, consequently the formation of active Mo sites in the micro/mesoporous channel and lower carbon deposition because of improved mass transfer rate within the hierarchical pores. In this study, we report a unique strategy to control the porous structures of ZSM-5 through a dual templating approach, utilizing C6 and C12 -surfactants as porogen. DFT studies were carried out to correlate the ZSM-5 framework development using the C6 and C12 surfactants with structure directing agent. The structural and morphological parameters of the synthesized ZSM-5 were explored in detail to determine the crystallinity, porosity, Si/Al ratio, particle shape, size, and acidic strength, which were further correlated with the physicochemical and catalytic properties of Mo modified HZSM-5 catalysts. After Mo incorporation, all the catalysts were tested for MDA reaction. From the activity test, it was observed that C6 surfactant-modified hierarchically porous Mo/HZSM-5(H) showed the highest benzene formation rate (1.5 μmol/gcat. s) and longer catalytic stability up to 270 min of reaction as compared to the conventional microporous Mo/HZSM-5(C). In contrary, C12 surfactant modified Mo/HZSM-5(D) is inferior towards MDA reaction (benzene formation rate: 0.5 μmol/gcat. s). We ascribed that the difference in MDA activity could be due to the hierarchically interconnected meso/microporous feature of Mo/HZSM-5(H) that precludes secondary reaction of coking from benzene and hence contributing substantial stability towards MDA reaction.

Keywords: hierarchical pores, Mo/HZSM-5, methane dehydroaromatization, coke deposition

Procedia PDF Downloads 87