Search results for: wind turbine blades
578 Structural Performance of Mechanically Connected Stone Panels under Cyclic Loading: Application to Aesthetic and Environmental Building Skin Design
Authors: Michel Soto Chalhoub
Abstract:
Building designers in the Mediterranean region and other parts of the world utilize natural stone panels on the exterior façades as skin cover. This type of finishing is not only intended for aesthetic reasons but also environmental. The stone, since the earliest ages of civilization, has been used in construction and to-date some of the most appealing buildings owe their beauty to stone finishing. The stone also provides warmth in winter and freshness in summer as it moderates heat transfer and absorbs radiation. However, as structural codes became increasingly stringent about the dynamic performance of buildings, it became essential to study the performance of stone panels under cyclic loading – a condition that arises under the building is subjected to wind or earthquakes. The present paper studies the performance of stone panels using mechanical connectors when subjected to load reversal. In this paper, we present a theoretical model that addresses modes of failure in the steel connectors, by yield, and modes of failure in the stone, by fracture. Then we provide an experimental set-up and test results for rectangular stone panels of varying thickness. When the building is subjected to an earthquake, its rectangular panels within the structural system are subjected to shear deformations, which in turn impart stress into the stone cover. Rectangular stone panels, which typically range from 40cmx80cm to 60cmx120cm, need to be designed to withstand transverse loading from the direct application of lateral loads, and to withstand simultaneously in-plane loading (membrane stress) caused by inter-story drift and overall building lateral deflection. Results show correlation between the theoretical model which we derive from solid mechanics fundamentals and the experimental results, and lead to practical design recommendations. We find that for panel thickness below a certain threshold, it is more advantageous to utilize structural adhesive materials to connect stone panels to the main structural system of the building. For larger panel thicknesses, it is recommended to utilize mechanical connectors with special detailing to ensure a minimum level of ductility and energy dissipation.Keywords: solid mechanics, cyclic loading, mechanical connectors, natural stone, seismic, wind, building skin
Procedia PDF Downloads 255577 Experimental Investigations to Measure Surface Fatigue Wear in Journal Bearing by Using Vibration Signal Analysis
Authors: Amarnath M., Ramachandra C. G., H. Chelladurai, P..Sateesh Kumar, K. Santhosh Kumar
Abstract:
Journal bearings are extensively used sliding contact machine elements to support radial/axial loaded rotors used in various applications viz. automobile crankshaft, turbine propeller shaft, rope conveyer, heavy duty electric motors. The primary reasons for the failures of these bearings include unstable lubricant film, oil degradation, misalignment, etc. This paper describes the results of experimental investigations carried out to detect surface fatigue wear developed on load bearing the contact surfaces of journal bearing. The test bearing was subjected to fatigue load cycles over a period of 600 hours. The vibration signals were acquired from the journal bearing at regular intervals of 100 hrs. These signals were post-processed by using the vibration analysis technique to obtain diagnostic information of wear propagated in the journal-bearing system.Keywords: fatigue, journal bearing, sound signals, vibration signals, wear
Procedia PDF Downloads 82576 Causal Inference Engine between Continuous Emission Monitoring System Combined with Air Pollution Forecast Modeling
Authors: Yu-Wen Chen, Szu-Wei Huang, Chung-Hsiang Mu, Kelvin Cheng
Abstract:
This paper developed a data-driven based model to deal with the causality between the Continuous Emission Monitoring System (CEMS, by Environmental Protection Administration, Taiwan) in industrial factories, and the air quality around environment. Compared to the heavy burden of traditional numerical models of regional weather and air pollution simulation, the lightweight burden of the proposed model can provide forecasting hourly with current observations of weather, air pollution and emissions from factories. The observation data are included wind speed, wind direction, relative humidity, temperature and others. The observations can be collected real time from Open APIs of civil IoT Taiwan, which are sourced from 439 weather stations, 10,193 qualitative air stations, 77 national quantitative stations and 140 CEMS quantitative industrial factories. This study completed a causal inference engine and gave an air pollution forecasting for the next 12 hours related to local industrial factories. The outcomes of the pollution forecasting are produced hourly with a grid resolution of 1km*1km on IIoTC (Industrial Internet of Things Cloud) and saved in netCDF4 format. The elaborated procedures to generate forecasts comprise data recalibrating, outlier elimination, Kriging Interpolation and particle tracking and random walk techniques for the mechanisms of diffusion and advection. The solution of these equations reveals the causality between factories emission and the associated air pollution. Further, with the aid of installed real-time flue emission (Total Suspension Emission, TSP) sensors and the mentioned forecasted air pollution map, this study also disclosed the converting mechanism between the TSP and PM2.5/PM10 for different region and industrial characteristics, according to the long-term data observation and calibration. These different time-series qualitative and quantitative data which successfully achieved a causal inference engine in cloud for factory management control in practicable. Once the forecasted air quality for a region is marked as harmful, the correlated factories are notified and asked to suppress its operation and reduces emission in advance.Keywords: continuous emission monitoring system, total suspension particulates, causal inference, air pollution forecast, IoT
Procedia PDF Downloads 87575 Salicylic Acid Improves Growth, Physiological Attributes and Salt Tolerance in Bread Wheat Cultivar (Triticum Aestivum L.)
Authors: Faiza Ateeq, Huma Jawed, Kamran Azim, Nadeem Khalid
Abstract:
Abiotic constraints such as salinity stress reduce cereal production. Salicylic acid is an elicitor of abiotic stress tolerance in plants. The aim of this study was to investigate the effects of salicylic acid on bread wheat cultivars AAI_10 from Faisalabad, Pakistan (Triticum aestivum L.) grown under salt stress in the presence and absence of 0.5 mM salicylic acid. The Physiological test was performed using different concentrations of salt solutions, i.e., 0%, 1%, 2%, 4%, and 6% on leaf blades, and determined the germination of seedlings growth after 14 days. Results showed a reduction in the weights of wheat seedlings when it’s dry and fresh in the consideration of salt stress. Salicylic Acid treatment has a positive effect when evaluated in the case of salt-treated control. The morphological test (Lowry method) was performed to determine the concentration of proteins in different samples. Results showed that the samples treated with SA showed the highest absorbance(720nm) as compared to the control and other treated samples absorbance was determined. Thus, Salicylic Acid treating wheat seedlings enables the growth of anti-stress effects, such as maintaining proline accumulation. The morphological and physiological parameters revealed that SA treatment not only decreased the negative effect of salinity on the development of the seedlings but also accelerated the reparation of the growth processes. These results suggested that salicylic acid application improved the salt tolerance of bread wheat cultivars.Keywords: salinity, salicylic acid, biotic and abiotic stresses, proline
Procedia PDF Downloads 62574 A Descriptive Study of Turkish Straits System on Dynamics of Environmental Factors Causing Maritime Accidents
Authors: Gizem Kodak, Alper Unal, Birsen Koldemir, Tayfun Acarer
Abstract:
Turkish Straits System which consists of Istanbul Strait (Bosphorus), Canakkale Strait (Dardanelles) and the Marmara Sea has a strategical location on international maritime as it is a unique waterway between the Mediterranean Sea, Black Sea and the Aegean Sea. Thus, this area has great importance since it is the only waterway between Black Sea countries and the rest of the World. Turkish Straits System has dangerous environmental factors hosts more vessel every day through developing World trade and this situation results in expanding accident risks day by day. Today, a lot of precautions have been taken to ensure safe navigation and to prevent maritime accidents, and international standards are followed to avoid maritime accidents. Despite this, the environmental factors that affect this area, trigger the maritime accidents and threaten the vessels with new accidents risks in different months with different hazards. This descriptive study consists of temporal and spatial analyses of environmental factors causing maritime accidents. This study also aims at contributing to safety navigation including monthly and regionally characteristics of variables. In this context, two different data sets are created consisting of environmental factors and accidents. This descriptive study on the accidents between 2001 and 2017 the mentioned region also studies the months and places of the accidents with environmental factor variables. Environmental factor variables are categorized as dynamic and static factors. Dynamic factors are appointed as meteorological and oceanographical while static factors are appointed as geological factors that threaten safety navigation with geometrical restricts. The variables that form dynamic factors are approached meteorological as wind direction, wind speed, wave altitude and visibility. The circulations and properties of the water mass on the system are studied as oceanographical properties. At the end of the study, the efficient meteorological and oceanographical parameters on the region are presented monthly and regionally. By this way, we acquired the monthly, seasonal and regional distributions of the accidents. Upon the analyses that are done; The Turkish Straits System that connects the Black Sea countries with the other countries and which is one of the most important parts of the world trade; is analyzed on temporal and spatial dimensions on the reasons of the accidents and have been presented as environmental factor dynamics causing maritime accidents.Keywords: descriptive study, environmental factors, maritime accidents, statistics
Procedia PDF Downloads 202573 Multi-Objective Exergy Optimization of an Organic Rankine Cycle with Cyclohexane as Working Fluid
Authors: Touil Djamal, Fergani Zineb
Abstract:
In this study, an Organic Rankine Cycle (ORC) with Cyclohexane working fluid is proposed for cogeneration in the cement industry. In this regard: first, a parametric study is conducted to evaluate the effects of some key parameters on the system performances. Next, single and multi-objective optimizations are performed to achieve the system optimal design. The optimization considers the exergy efficiency, the cost per exergy unit and the environmental impact of the net produced power as objective functions. Finally, exergy, exergoeconomic and exergoenvironmental analysis of the cycle is carried out at the optimum operating conditions. The results show that the turbine inlet pressure, the pinch point temperature difference and the heat transfer fluid temperature have significant effects on the performances of the ORC system.Keywords: organic rankine cycle, multi-objective optimization, exergy, exergoeconomic, exergoenvironmental, multi-objective optimisation, organic rankine cycle, cement plant
Procedia PDF Downloads 280572 Ultrasonic Atomizer for Turbojet Engines
Authors: Aman Johri, Sidhant Sood, Pooja Suresh
Abstract:
This paper suggests a new and more efficient method of atomization of fuel in a combustor nozzle of a high bypass turbofan engine, using ultrasonic vibrations. Since atomization of fuel just before the fuel spray is injected into the combustion chamber is an important and crucial aspect related to functioning of a propulsion system, the technology suggested by this paper and the experimental analysis on the system components eventually proves to assist in complete and rapid combustion of the fuel in the combustor module of the engine. Current propulsion systems use carburetors, atomization nozzles and apertures in air intake pipes for atomization. The idea of this paper is to deploy new age hybrid technology, namely the Ultrasound Field Effect (UFE) to effectively atomize fuel before it enters the combustion chamber, as a viable and effective method to increase efficiency and improve upon existing designs. The Ultrasound Field Effect is applied axially, on diametrically opposite ends of an atomizer tube that gloves onto the combustor nozzle, where the fuel enters and exits under a pre-defined pressure. The Ultrasound energy vibrates the fuel particles to a breakup frequency. At reaching this frequency, the fuel particles start disintegrating into smaller diameter particles perpendicular to the axis of application of the field from the parent boundary layer of fuel flow over the baseplate. These broken up fuel droplets then undergo swirling effect as per the original nozzle design, with a higher breakup ratio than before. A significant reduction of the size of fuel particles eventually results in an increment in the propulsive efficiency of the engine. Moreover, the Ultrasound atomizer operates within a control frequency such that effects of overheating and induced vibrations are least felt on the overall performance of the engine. The design of an electrical manifold for the multiple-nozzle system over a typical can-annular combustor is developed along with this study, such that the product can be installed and removed easily for maintenance and repairing, can allow for easy access for inspections and transmits least amount of vibrational energy to the surface of the combustor. Since near-field ultrasound is used, the vibrations are easily controlled, thereby successfully reducing vibrations on the outer shell of the combustor. Experimental analysis is carried out on the effect of ultrasonic vibrations on flowing jet turbine fuel using an ultrasound generator probe and results of an effective decrease in droplet size across a constant diameter, away from the boundary layer of flow is noted using visual aid by observing under ultraviolet light. The choice of material for the Ultrasound inducer tube and crystal along with the operating range of temperatures, pressures, and frequencies of the Ultrasound field effect are also studied in this paper, while taking into account the losses incurred due to constant vibrations and thermal loads on the tube surface.Keywords: atomization, ultrasound field effect, titanium mesh, breakup frequency, parent boundary layer, baseplate, propulsive efficiency, jet turbine fuel, induced vibrations
Procedia PDF Downloads 240571 Speed Power Control of Double Field Induction Generator
Authors: Ali Mausmi, Ahmed Abbou, Rachid El Akhrif
Abstract:
This research paper aims to reduce the chattering phenomenon due to control by sliding mode control applied on a wind energy conversion system based on the doubly fed induction generator (DFIG). Our goal is to offset the effect of parametric uncertainties and come as close as possible to the dynamic response solicited by the control law in the ideal case and therefore force the active and reactive power generated by the DFIG to accurately follow the reference values which are provided to it. The simulation results using Matlab / Simulink demonstrate the efficiency and performance of the proposed technique while maintaining the simplicity of control by first order sliding mode.Keywords: control of speed, correction of the equivalent command, induction generator, sliding mode
Procedia PDF Downloads 377570 3-D Numerical Simulation of Scraped Surface Heat Exchanger with Helical Screw
Authors: Rabeb Triki, Hassene Djemel, Mounir Baccar
Abstract:
Surface scraping is a passive heat transfer enhancement technique that is directly used in scraped surface heat exchanger (SSHE). The scraping action prevents the accumulation of the product on the inner wall, which intensifies the heat transfer and avoids the formation of dead zones. SSHEs are widely used in industry for several applications such as crystallization, sterilization, freezing, gelatinization, and many other continuous processes. They are designed to deal with products that are viscous, sticky or that contain particulate matter. This research work presents a three-dimensional numerical simulation of the coupled thermal and hydrodynamic behavior within a SSHE which includes Archimedes’ screw instead of scraper blades. The finite volume Fluent 15.0 was used to solve continuity, momentum and energy equations using multiple reference frame formulation. The process fluid investigated under this study is the pure glycerin. Different geometrical parameters were studied in the case of steady, non-isothermal, laminar flow. In particular, attention is focused on the effect of the conicity of the rotor and the pitch of Archimedes’ screw on temperature and velocity distribution and heat transfer rate. Numerical investigations show that the increase of the number of turns in the screw from five to seven turns leads to amelioration of heat transfer coefficient, and the increase of the conicity of the rotor from 0.1 to 0.15 leads to an increase in the rate of heat transfer. Further studies should investigate the effect of different operating parameters (axial and rotational Reynolds number) on the hydrodynamic and thermal behavior of the SSHE.Keywords: ANSYS-Fluent, hydrodynamic behavior, scraped surface heat exchange, thermal behavior
Procedia PDF Downloads 160569 Experimental Study Analyzing the Similarity Theory Formulations for the Effect of Aerodynamic Roughness Length on Turbulence Length Scales in the Atmospheric Surface Layer
Authors: Matthew J. Emes, Azadeh Jafari, Maziar Arjomandi
Abstract:
Velocity fluctuations of shear-generated turbulence are largest in the atmospheric surface layer (ASL) of nominal 100 m depth, which can lead to dynamic effects such as galloping and flutter on small physical structures on the ground when the turbulence length scales and characteristic length of the physical structure are the same order of magnitude. Turbulence length scales are a measure of the average sizes of the energy-containing eddies that are widely estimated using two-point cross-correlation analysis to convert the temporal lag to a separation distance using Taylor’s hypothesis that the convection velocity is equal to the mean velocity at the corresponding height. Profiles of turbulence length scales in the neutrally-stratified ASL, as predicted by Monin-Obukhov similarity theory in Engineering Sciences Data Unit (ESDU) 85020 for single-point data and ESDU 86010 for two-point correlations, are largely dependent on the aerodynamic roughness length. Field measurements have shown that longitudinal turbulence length scales show significant regional variation, whereas length scales of the vertical component show consistent Obukhov scaling from site to site because of the absence of low-frequency components. Hence, the objective of this experimental study is to compare the similarity theory relationships between the turbulence length scales and aerodynamic roughness length with those calculated using the autocorrelations and cross-correlations of field measurement velocity data at two sites: the Surface Layer Turbulence and Environmental Science Test (SLTEST) facility in a desert ASL in Dugway, Utah, USA and the Commonwealth Scientific and Industrial Research Organisation (CSIRO) wind tower in a rural ASL in Jemalong, NSW, Australia. The results indicate that the longitudinal turbulence length scales increase with increasing aerodynamic roughness length, as opposed to the relationships derived by similarity theory correlations in ESDU models. However, the ratio of the turbulence length scales in the lateral and vertical directions to the longitudinal length scales is relatively independent of surface roughness, showing consistent inner-scaling between the two sites and the ESDU correlations. Further, the diurnal variation of wind velocity due to changes in atmospheric stability conditions has a significant effect on the turbulence structure of the energy-containing eddies in the lower ASL.Keywords: aerodynamic roughness length, atmospheric surface layer, similarity theory, turbulence length scales
Procedia PDF Downloads 124568 Optimized Renewable Energy Mix for Energy Saving in Waste Water Treatment Plants
Authors: J. D. García Espinel, Paula Pérez Sánchez, Carlos Egea Ruiz, Carlos Lardín Mifsut, Andrés López-Aranguren Oliver
Abstract:
This paper shortly describes three main actuations over a Waste Water Treatment Plant (WWTP) for reducing its energy consumption: Optimization of the biological reactor in the aeration stage by including new control algorithms and introducing new efficient equipment, the installation of an innovative hybrid system with zero Grid injection (formed by 100kW of PV energy and 5 kW of mini-wind energy generation) and an intelligent management system for load consumption and energy generation control in the most optimum way. This project called RENEWAT, involved in the European Commission call LIFE 2013, has the main objective of reducing the energy consumptions through different actions on the processes which take place in a WWTP and introducing renewable energies on these treatment plants, with the purpose of promoting the usage of treated waste water for irrigation and decreasing the C02 gas emissions. WWTP is always required before waste water can be reused for irrigation or discharged in water bodies. However, the energetic demand of the treatment process is high enough for making the price of treated water to exceed the one for drinkable water. This makes any policy very difficult to encourage the re-use of treated water, with a great impact on the water cycle, particularly in those areas suffering hydric stress or deficiency. The cost of treating waste water involves another climate-change related burden: the energy necessary for the process is obtained mainly from the electric network, which is, in most of the cases in Europe, energy obtained from the burning of fossil fuels. The innovative part of this project is based on the implementation, adaptation and integration of solutions for this problem, together with a new concept of the integration of energy input and operative energy demand. Moreover, there is an important qualitative jump between the technologies used and the alleged technologies to use in the project which give it an innovative character, due to the fact that there are no similar previous experiences of a WWTP including an intelligent discrimination of energy sources, integrating renewable ones (PV and Wind) and the grid.Keywords: aeration system, biological reactor, CO2 emissions, energy efficiency, hybrid systems, LIFE 2013 call, process optimization, renewable energy sources, wasted water treatment plants
Procedia PDF Downloads 352567 Research Trends in High Voltage Power Transmission
Authors: Tlotlollo Sidwell Hlalele, Shengzhi Du
Abstract:
High voltage transmission is the most pivotal process in the electrical power industry. It requires a robust infrastructure that can last for decades without causing impairment in human life. Due to the so-called global warming, power transmission system has started to experience some challenges which could presumably escalate more in future. These challenges are earthquake resistance, transmission power losses, and high electromagnetic field. In this paper, research efforts aim to address these challenges are discussed. We focus in particular on the research in regenerative electric energy such as: wind, hydropower, biomass and sea-waves based on the energy storage and transmission possibility. We conclude by drawing attention to specific areas that we believe need more research.Keywords: power transmission, regenerative energy, power quality, energy storage
Procedia PDF Downloads 352566 A Review on Design and Analysis of Structure Against Blast Forces
Authors: Akshay Satishrao Kawtikwar
Abstract:
The effect of blast masses on structures is an essential aspect that need to be considered. This type of assault could be very horrifying, who where we take it into consideration in the course of the design system. While designing a building, now not only the wind and seismic masses however also the consequences of the blast have to be take into consideration. Blast load is the burden implemented to a structure form a blast wave that comes straight away after an explosion. A blast in or close to a constructing can reason catastrophic harm to the interior and exterior of the building, inner structural framework, wall collapsing, and so on. The most important feature of blast resistant construction is the ability to absorb blast energy without causing catastrophic failure of the structure as a whole. Construction materials in blastprotective structures must have ductility as well as strength.Keywords: blast resistant design, blast load, explosion, ETABS
Procedia PDF Downloads 103565 Mechanical Tests and Analyzes of Behaviors of High-Performance of Polyester Resins Reinforced With Unifilo Fiberglass
Authors: Băilă Diana Irinel, Păcurar Răzvan, Păcurar Ancuța
Abstract:
In the last years, composite materials are increasingly used in automotive, aeronautic, aerospace, construction applications. Composite materials have been used in aerospace in applications such as engine blades, brackets, interiors, nacelles, propellers/rotors, single aisle wings, wide body wings. The fields of use of composite materials have multiplied with the improvement of material properties, such as stability and adaptation to the environment, mechanical tests, wear resistance, moisture resistance, etc. The composite materials are classified concerning type of matrix materials, as metallic, polymeric and ceramic based composites and are grouped according to the reinforcement type as fibre, obtaining particulate and laminate composites. Production of a better material is made more likely by combining two or more materials with complementary properties. The best combination of strength and ductility may be accomplished in solids that consist of fibres embedded in a host material. Polyester is a suitable component for composite materials, as it adheres so readily to the particles, sheets, or fibres of the other components. The important properties of the reinforcing fibres are their high strength and high modulus of elasticity. For applications, as in automotive or in aeronautical domain, in which a high strength-to-weight ratio is important, non-metallic fibres such as fiberglass have a distinct advantage because of their low density. In general, the glass fibres content varied between 9 to 33% wt. in the composites. In this article, high-performance types of composite materials glass-epoxy and glass-polyester used in automotive domain will be analyzed, performing tensile and flexural tests and SEM analyzes.Keywords: glass-polyester composite, glass fibre, traction and flexion tests, SEM analyzes
Procedia PDF Downloads 158564 Concept, Modules and Objectives of the Syllabus Course: Small Power Plants and Renewable Energy Sources
Authors: Rade M. Ciric, Nikola L. J. Rajakovic
Abstract:
This paper presents a curriculum of the subject small power plants and renewable energy sources, dealing with the concept of distributed generation, renewable energy sources, hydropower, wind farms, geothermal power plants, cogeneration plants, biogas plants of agriculture and animal origin, solar power and fuel cells. The course is taught the manner of connecting small power plants to the grid, the impact of small generators on the distribution system, as well as economic, environmental and legal aspects of operation of distributed generators.Keywords: distributed generation, renewable energy sources, energy policy, curriculum
Procedia PDF Downloads 357563 Optimization of Heat Insulation Structure and Heat Flux Calculation Method of Slug Calorimeter
Authors: Zhu Xinxin, Wang Hui, Yang Kai
Abstract:
Heat flux is one of the most important test parameters in the ground thermal protection test. Slug calorimeter is selected as the main sensor measuring heat flux in arc wind tunnel test due to the convenience and low cost. However, because of excessive lateral heat transfer and the disadvantage of the calculation method, the heat flux measurement error of the slug calorimeter is large. In order to enhance measurement accuracy, the heat insulation structure and heat flux calculation method of slug calorimeter were improved. The heat transfer model of the slug calorimeter was built according to the energy conservation principle. Based on the heat transfer model, the insulating sleeve of the hollow structure was designed, which helped to greatly decrease lateral heat transfer. And the slug with insulating sleeve of hollow structure was encapsulated using a package shell. The improved insulation structure reduced heat loss and ensured that the heat transfer characteristics were almost the same when calibrated and tested. The heat flux calibration test was carried out in arc lamp system for heat flux sensor calibration, and the results show that test accuracy and precision of slug calorimeter are improved greatly. In the meantime, the simulation model of the slug calorimeter was built. The heat flux values in different temperature rise time periods were calculated by the simulation model. The results show that extracting the data of the temperature rise rate as soon as possible can result in a smaller heat flux calculation error. Then the different thermal contact resistance affecting calculation error was analyzed by the simulation model. The contact resistance between the slug and the insulating sleeve was identified as the main influencing factor. The direct comparison calibration correction method was proposed based on only heat flux calibration. The numerical calculation correction method was proposed based on the heat flux calibration and simulation model of slug calorimeter after the simulation model was solved by solving the contact resistance between the slug and the insulating sleeve. The simulation and test results show that two methods can greatly reduce the heat flux measurement error. Finally, the improved slug calorimeter was tested in the arc wind tunnel. And test results show that the repeatability accuracy of improved slug calorimeter is less than 3%. The deviation of measurement value from different slug calorimeters is less than 3% in the same fluid field. The deviation of measurement value between slug calorimeter and Gordon Gage is less than 4% in the same fluid field.Keywords: correction method, heat flux calculation, heat insulation structure, heat transfer model, slug calorimeter
Procedia PDF Downloads 118562 Multiresolution Mesh Blending for Surface Detail Reconstruction
Authors: Honorio Salmeron Valdivieso, Andy Keane, David Toal
Abstract:
In the area of mechanical reverse engineering, processes often encounter difficulties capturing small, highly localized surface information. This could be the case if a physical turbine was 3D scanned for lifecycle management or robust design purposes, with interest on eroded areas or scratched coating. The limitation partly is due to insufficient automated frameworks for handling -localized - surface information during the reverse engineering pipeline. We have developed a tool for blending surface patches with arbitrary irregularities into a base body (e.g. a CAD solid). The approach aims to transfer small surface features while preserving their shape and relative placement by using a multi-resolution scheme and rigid deformations. Automating this process enables the inclusion of outsourced surface information in CAD models, including samples prepared in mesh handling software, or raw scan information discarded in the early stages of reverse engineering reconstruction.Keywords: application lifecycle management, multiresolution deformation, reverse engineering, robust design, surface blending
Procedia PDF Downloads 139561 Conceptualization and Strategies of Biogas Technology for Rural Development in Nigeria
Authors: Okorowo Cyril Agochi
Abstract:
The main challenge of present world is to harness the energy source which is environment friendly and ecologically balanced. This need has forced to search for other alternate source of energy. But unfortunately the new alternative energy sources like the solar, hydro, wind etc. require huge economical value and technical power to operate, which seem to be very difficult for the developing countries like Nigeria. In the present moment biogas energy can be one and only reliable, easily available and economically feasible source of alternative and renewable source which can be managed by locally available sources and simple technology for secondary schools, tertiary institution and rural villages. This paper is aimed at boosting the energy generation for developing of rural Nigeria, through Biogas.Keywords: bio-gas, energy, environment, nigeria, technology
Procedia PDF Downloads 479560 Influence of Atmospheric Circulation Patterns on Dust Pollution Transport during the Harmattan Period over West Africa
Authors: Ayodeji Oluleye
Abstract:
This study used Total Ozone Mapping Spectrometer (TOMS) Aerosol Index (AI) and reanalysis dataset of thirty years (1983-2012) to investigate the influence of the atmospheric circulation on dust transport during the Harmattan period over WestAfrica using TOMS data. The Harmattan dust mobilization and atmospheric circulation pattern were evaluated using a kernel density estimate which shows the areas where most points are concentrated between the variables. The evolution of the Inter-Tropical Discontinuity (ITD), Sea surface Temperature (SST) over the Gulf of Guinea, and the North Atlantic Oscillation (NAO) index during the Harmattan period (November-March) was also analyzed and graphs of the average ITD positions, SST and the NAO were observed on daily basis. The Pearson moment correlation analysis was also employed to assess the effect of atmospheric circulation on Harmattan dust transport. The results show that the departure (increased) of TOMS AI values from the long-term mean (1.64) occurred from around 21st of December, which signifies the rich dust days during winter period. Strong TOMS AI signal were observed from January to March with the maximum occurring in the latter months (February and March). The inter-annual variability of TOMSAI revealed that the rich dust years were found between 1984-1985, 1987-1988, 1997-1998, 1999-2000, and 2002-2004. Significantly, poor dust year was found between 2005 and 2006 in all the periods. The study has found strong north-easterly (NE) trade winds were over most of the Sahelianregion of West Africa during the winter months with the maximum wind speed reaching 8.61m/s inJanuary.The strength of NE winds determines the extent of dust transport to the coast of Gulf of Guinea during winter. This study has confirmed that the presence of the Harmattan is strongly dependent on theSST over Atlantic Ocean and ITD position. The locus of the average SST and ITD positions over West Africa could be described by polynomial functions. The study concludes that the evolution of near surface wind field at 925 hpa, and the variations of SST and ITD positions are the major large scale atmospheric circulation systems driving the emission, distribution, and transport of Harmattan dust aerosols over West Africa. However, the influence of NAO was shown to have fewer significance effects on the Harmattan dust transport over the region.Keywords: atmospheric circulation, dust aerosols, Harmattan, West Africa
Procedia PDF Downloads 310559 Conservation of Energy in Households in Urban Areas in India
Authors: Aashee Garg, Anusha Agarwal
Abstract:
India, as a country is very rich in terms of natural resources however as citizens, we have not respected this fact and have been continuously exploiting nature’s gift to mankind. Further as the population is ever increasing, the load on the consumption of resources is unprecedented. This has led to the depletion of natural resources such as coal, oil, gas etc., apart from the pollution it causes. It is time that we shift from use of these conventional resources to more effective new ways of energy generation. We should develop and encourage usage of renewable resources such as wind and solar in households to conserve energy in place of the above mentioned nonrenewable energy sources. This paper deals with the most effective ways in which the households in India can conserve energy thus reducing effect on environment and depletion of limited resources.Keywords: energy consumption, resources, India, renewable resources and environment
Procedia PDF Downloads 437558 Fuelwood Heating, Felling, Energy Renewing in Total Fueling of Fuelwood, Renewable Technologies
Authors: Adeiza Matthew, Oluwamishola Abubakar
Abstract:
In conclusion, Fuelwood is a traditional and renewable source of energy that can have both positive and negative impacts. Adopting sustainable practices for its collection, transportation, and use and investing in renewable technologies can help mitigate the negative effects and provide a clean and reliable source of energy, improve living standards and support economic development. For example, solar energy can be used to generate electricity, heat homes and water, and can even be used for cooking. Wind energy can be used to generate electricity, and geothermal energy can be used for heating and cooling. Biogas can be produced from waste products such as animal manure, sewage, and organic kitchen waste and can be used for cooking and lighting.Keywords: calorific, BTU, wood moisture content, density of wood
Procedia PDF Downloads 107557 Aerodynamic Effects of Ice and Its Influences on Flight Characteristics of Low Speed Unmanned Aerial Vehicles
Authors: I. McAndrew, K. L. Witcher, E. Navarro
Abstract:
This paper presents the theory and application of low-speed flight for unmanned aerial vehicles when subjected to surface environmental conditions such as ice on the leading edge and upper surface. A model was developed and tested in a wind tunnel to see how theory compares with practice at various speed including take-off, landing and operational applications where head winds substantially alter parameters. Furthermore, a comparison is drawn with maned operations and how that this subject is currently under-supported with accurate theory or knowledge for designers or operators to make informed decision or accommodate individual applications. The effects of ice formation for lift and drag are determined for a range of different angles of attacks.Keywords: aerodynamics, environmental influences, glide path ratio, unmanned vehicles
Procedia PDF Downloads 330556 Numerical Study on the Effect of Spudcan Penetration on the Jacket Platform
Authors: Xiangming Ge, Bing Pan, Wei He, Hao Chen, Yong Zhou, Jiayao Wu, Weijiang Chu
Abstract:
How the extraction and penetration of spudcan affect the performance of the adjacent pile foundation supporting the jacket platform was studied in the program FLAC3D depending on a wind farm project in Bohai sea. The simulations were conducted at the end of the spudcan penetration, which induced a pockmark in the seabed. The effects of the distance between the pile foundation and the pockmark were studied. The displacement at the mudline arose when the pockmark was closer. The bearing capacity of this jacket platform with deep pile foundations has been less influenced by the process of spudcan penetration, which can induce severe stresses on the pile foundation. The induced rotation was also satisfied with the rotation-controlling criteria.Keywords: offshore foundation, pile-soil interaction, spudcan penetration, FLAC3D
Procedia PDF Downloads 215555 Rotor Dynamic Analysis for a Shaft Train by Using Finite Element Method
Authors: M. Najafi
Abstract:
In the present paper, a large turbo-generator shaft train including a heavy-duty gas turbine engine, a coupling, and a generator is established. The method of analysis is based on finite element simplified model for lateral and torsional vibration calculation. The basic elements of rotor are the shafts and the disks which are represented as circular cross section flexible beams and rigid body elements, respectively. For more accurate results, the gyroscopic effect and bearing dynamics coefficients and function of rotation are taken into account, and for the influence of shear effect, rotor has been modeled in the form of Timoshenko beam. Lateral critical speeds, critical speed map, damped mode shapes, Campbell diagram, zones of instability, amplitudes, phase angles response due to synchronous forces of excitation and amplification factor are calculated. Also, in the present paper, the effect of imbalanced rotor and effects of changing in internal force and temperature are studied.Keywords: rotor dynamic analysis, finite element method, shaft train, Campbell diagram
Procedia PDF Downloads 136554 [Keynote Talk]: Aerodynamic Effects of Ice and Its Influences on Flight Characteristics of Low Speed Unmanned Aerial Vehicles
Authors: I. McAndrew, K. L. Witcher, E. Navarro
Abstract:
This paper presents the theory and application of low speed flight for unmanned aerial vehicles when subjected to surface environmental conditions such as ice on the leading edge and upper surface. A model was developed and tested in a wind tunnel to see how theory compares with practice at various speed including take-off, landing and operational applications where head winds substantially alter parameters. Furthermore, a comparison is drawn with maned operations and how that this subject is currently under supported with accurate theory or knowledge for designers or operators to make informed decision or accommodate individual applications. The effects of ice formation for lift and drag are determined for a range of different angles of attacks.Keywords: aerodynamics, low speed flight, unmanned vehicles, environmental influences
Procedia PDF Downloads 437553 Evaluation of Soil Modulus Variation by IS 2911 and Broms Method
Authors: Mandeep Kamboj, Anand R. Katti
Abstract:
The pile of 2.4 m diameter is subjected to lateral loads and moments. These lateral loads are caused due to wind/wave forces when used in foundations of various structures such as bridge piers and high rise towers exhibiting deflections with depth. The research scientist and developer has studied and developed various procedures to evaluate the coefficient of soil modulus variation (nh), using various methods. These are verified for slender piles in sand with various diameters up to 2.4 m. The subject explains about simplified approach of the theoretical values using IS procedure and Broms method and compared with actual field soil pressure/displacement distributions measured in mono-pile along its length and across the diameter.Keywords: bridge pier, lateral loads, mono-pile, slender piles
Procedia PDF Downloads 188552 Structural Analysis and Detail Design of APV Module Structure Using Topology Optimization Design
Authors: Hyun Kyu Cho, Jun Soo Kim, Young Hoon Lee, Sang Hoon Kang, Young Chul Park
Abstract:
In the study, structure for one of offshore drilling system APV(Air Pressure Vessle) modules was designed by using topology optimum design and performed structural safety evaluation according to DNV rules. 3D model created base on design area and non-design area separated by using topology optimization for the environmental loads. This model separated 17 types for wind loads and dynamic loads and performed structural analysis evaluation for each model. As a result, the maximum stress occurred 181.25MPa.Keywords: APV, topology optimum design, DNV, structural analysis, stress
Procedia PDF Downloads 426551 Desert Houses of the Past: Green Buildings of Today
Authors: Baharak Shakeri, Seyed Hashem Hosseini
Abstract:
The weather in deserts is hot and dry in summers, and cold and dry in winters, and difference of temperature of nights and days sometimes reaches to 28°C. People of deserts have reached some solutions to cope with this climatic condition and to decrease its annoying features. Among these solutions are: constructing houses adjacent to each other, making tall walls, using mud brick and thatch cover, constructing domical arches, cellar, and wind catcher, which are together the devices to control the adversity of hot weather in summers and cold weather in winters. Using these solutions, the people of deserts have succeeded to make the best use with the least energy consumption, and to minimize the damage on the nature and environment, and in short, they are friends of the nature, which is a step toward the objectives of green buildings.Keywords: desert house, green building, Iran, nature
Procedia PDF Downloads 337550 Simulation of Bird Strike on Airplane Wings by Using SPH Methodology
Authors: Tuğçe Kiper Elibol, İbrahim Uslan, Mehmet Ali Guler, Murat Buyuk, Uğur Yolum
Abstract:
According to the FAA report, 142603 bird strikes were reported for a period of 24 years, between 1990 – 2013. Bird strike with aerospace structures not only threaten the flight security but also cause financial loss and puts life in danger. The statistics show that most of the bird strikes are happening with the nose and the leading edge of the wings. Also, a substantial amount of bird strikes is absorbed by the jet engines and causes damage on blades and engine body. Crash proof designs are required to overcome the possibility of catastrophic failure of the airplane. Using computational methods for bird strike analysis during the product development phase has considerable importance in terms of cost saving. Clearly, using simulation techniques to reduce the number of reference tests can dramatically affect the total cost of an aircraft, where for bird strike often full-scale tests are considered. Therefore, development of validated numerical models is required that can replace preliminary tests and accelerate the design cycle. In this study, to verify the simulation parameters for a bird strike analysis, several different numerical options are studied for an impact case against a primitive structure. Then, a representative bird mode is generated with the verified parameters and collided against the leading edge of a training aircraft wing, where each structural member of the wing was explicitly modeled. A nonlinear explicit dynamics finite element code, LS-DYNA was used for the bird impact simulations. SPH methodology was used to model the behavior of the bird. Dynamic behavior of the wing superstructure was observed and will be used for further design optimization purposes.Keywords: bird impact, bird strike, finite element modeling, smoothed particle hydrodynamics
Procedia PDF Downloads 327549 Comparison of Finite-Element and IEC Methods for Cable Thermal Analysis under Various Operating Environments
Authors: M. S. Baazzim, M. S. Al-Saud, M. A. El-Kady
Abstract:
In this paper, steady-state ampacity (current carrying capacity) evaluation of underground power cable system by using analytical and numerical methods for different conditions (depth of cable, spacing between phases, soil thermal resistivity, ambient temperature, wind speed), for two system voltage level were used 132 and 380 kV. The analytical method or traditional method that was used is based on the thermal analysis method developed by Neher-McGrath and further enhanced by International Electrotechnical Commission (IEC) and published in standard IEC 60287. The numerical method that was used is finite element method and it was recourse commercial software based on finite element method.Keywords: cable ampacity, finite element method, underground cable, thermal rating
Procedia PDF Downloads 379