Search results for: velocity deficit
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 1973

Search results for: velocity deficit

1013 A Study on Kinetic of Nitrous Oxide Catalytic Decomposition over CuO/HZSM-5

Authors: Y. J. Song, Q. S. Xu, X. C. Wang, H. Wang, C. Q. Li

Abstract:

The catalyst of copper oxide loaded on HZSM-5 was developed for nitrous oxide (N₂O) direct decomposition. The kinetic of nitrous oxide decomposition was studied for CuO/HZSM-5 catalyst prepared by incipient wetness impregnation method. The external and internal diffusion of catalytic reaction were considered in the investigation. Experiment results indicated that the external diffusion was basically eliminated when the reaction gas mixture gas hourly space velocity (GHSV) was higher than 9000h⁻¹ and the influence of the internal diffusion was negligible when the particle size of the catalyst CuO/HZSM-5 was small than 40-60 mesh. The experiment results showed that the kinetic of catalytic decomposition of N₂O was a first-order reaction and the activation energy and the pre-factor of the kinetic equation were 115.15kJ/mol and of 1.6×109, respectively.

Keywords: catalytic decomposition, CuO/HZSM-5, kinetic, nitrous oxide

Procedia PDF Downloads 178
1012 The Effect of Neurocognitive Exercise Program on ADHD Symptoms, Attention, and Dynamic Balance in Medication Naive Children with ADHD: A Pilot Study

Authors: Nurullah Buker, Ezgi Karagoz, Yesim Salik Sengul, Sevay Alsen Guney, Gokhan Yoyler, Aylin Ozbek

Abstract:

Attention Deficit Hyperactivity Disorder (ADHD) is one of the most common neurodevelopmental disorders with heterogeneous clinical features such as inattention, hyperactivity, and impulsivity. Many different types of exercise interventions were employed for children with ADHD. However, previous studies have usually examined the effects of non-specific exercise programs or short-term effects of exercise. The aim of this study is to investigate the effect of the Neurocognitive Exercise Program (NEP), which is a structured exercise program derived from Life Kinetik, and a relatively new for children with ADHD, on symptoms, attention, and dynamic balance in medication-naïve children with ADHD. Fourteen medication-naive children (7-12 years) with ADHD were included in the intervention group. NEP was performed once a week for ten weeks. The intervention group also performed a structured home exercise program for another six days, for ten weeks. The children in the intervention group were assessed at baseline, in the third month, in the sixth month, and in the twelfth month regarding ADHD-related symptoms, attention, and dynamic balance. Fifteen age-matched typically developing children were assessed once for establishing normative values. Hyperactivity-Impulsivity score and dynamic balance were found to improve after NEP in the ADHD group in the 3rd month (p<0.05). In addition, these results were similar for both groups after NEP and at the end of the 12th month (p>0.05). The NEP may provide beneficial effects on hyperactivity-impulsivity, oppositional defiant, and dynamic balance in children with ADHD, and the improvements may be maintained in the long term.

Keywords: ADHD, attention problems, dynamic balance, neurocognitive exercise

Procedia PDF Downloads 76
1011 Effects of Microbial Biofertilization on Nodulation, Nitrogen Fixation, and Yield of Lablab purpureus

Authors: Benselama Amel, Ounane S. Mohamed, Bekki Abdelkader

Abstract:

A collection of 20 isolates from fresh Nodules of the legume plant Lablab purpureus was isolated. These isolates have been authenticated by seedling inoculation grown in jars containing sand. The results obtained after two months of culture have revealed that the 20 isolates (100% of the isolates) are able to nodulate their host plants. The results obtained were analyzed statistically by ANOVA using the software statistica and had shown that the effect of the inoculation has significantly improved all the growth parameters (the height of the plant and the dry weight of the aerial parts and roots, and the number of nodules). We have evaluated the tolerance of all strains of the collection to the major stress factors as the salinity, pH and extreme temperature. The osmotolerance reached a concentration up to 1710mm of NaCl. The strains were also able to grow on a wide range of pH, ranging from 4.5 to 9.5, and temperature, between 4°C and 40°C. Also, we tested the effect of the acidity, aluminum and ferric deficit on the Lablab-rhizobia symbiosis. Lablab purpureus has not been affected by the presence of high concentrations of aluminum. On the other hand, iron deficiency has caused a net decrease in the dry biomass of the aerial part. The results of all the phenotypic characters have been treated by the statistical Minitab software, the numerical analysis had shown that these bacterial strains are divided into two distinct groups at a level of similarity of 86 %. The SDS-PAGE was carried out to determine the profile of the total protein of the strains. The coefficients of similarity of polypeptide bands between the isolates and strains reference (Bradyrhizobium, Mesorizobium sp.) confirm that our strain belongs to the groups of rhizobia.

Keywords: SDS-PAGE, rhizobia, symbiosis, phenotypic characterization, Lablab purpureus

Procedia PDF Downloads 302
1010 Computational Fluid Dynamics Analysis of an RC Airplane Wing Using a NACA 2412 Profile at Different Angle of Attacks

Authors: Huseyin Gokberk, Shian Gao

Abstract:

CFD analysis of the relationship between the coefficients of lift and drag with respect to the angle of attack on a NACA 2412 wing section of an RC plane is conducted. Both the 2D and 3D models are investigated with the turbulence model. The 2D analysis has a free stream velocity of 10m/s at different AoA of 0°, 2°, 5°, 10°, 12°, and 15°. The induced drag and drag coefficient increased throughout the changes in angles even after the critical angle had been exceeded, whereas the lift force and coefficient of lift increased but had a limit at the critical stall angle, which results in values to reduce sharply. Turbulence flow characteristics are analysed around the aerofoil with the additions caused due to a finite 3D model. 3D results highlight how wing tip vortexes develop and alter the flow around the wing with the effects of the tapered configuration.

Keywords: CFD, turbulence modelling, aerofoil, angle of attack

Procedia PDF Downloads 215
1009 Analytical Solutions for Corotational Maxwell Model Fluid Arising in Wire Coating inside a Canonical Die

Authors: Muhammad Sohail Khan, Rehan Ali Shah

Abstract:

The present paper applies the optimal homotopy perturbation method (OHPM) and the optimal homotopy asymptotic method (OHAM) introduced recently to obtain analytic approximations of the non-linear equations modeling the flow of polymer in case of wire coating of a corotational Maxwell fluid. Expression for the velocity field is obtained in non-dimensional form. Comparison of the results obtained by the two methods at different values of non-dimensional parameter l10, reveal that the OHPM is more effective and easy to use. The OHPM solution can be improved even working in the same order of approximation depends on the choices of the auxiliary functions.

Keywords: corotational Maxwell model, optimal homotopy asymptotic method, optimal homotopy perturbation method, wire coating die

Procedia PDF Downloads 334
1008 Parametric Dependence of the Advection-Diffusion Equation in Two Dimensions

Authors: Matheus Fernando Pereira, Varese Salvador Timoteo

Abstract:

In this work, we have solved the two-dimensional advection-diffusion equation numerically for a spatially dependent solute dispersion along non-uniform flow with a pulse type source in order to make a systematic study on the influence of medium heterogeneity, initial flow velocity, and initial dispersion coefficient parameters on the solutions of the equation. The behavior of the solutions is then investigated as we change the three parameters independently. Our results show that even though the parameters represent different physical features of the system, the effect on their variation is very similar. We also observe that the effects caused by the parameters on the concentration depend on the distance from the source. Finally, our numerical results are in good agreement with the exact solutions for all values of the parameters we used in our analysis.

Keywords: advection-diffusion equation, dispersion, numerical methods, pulse-type source

Procedia PDF Downloads 236
1007 MHD Flow in a Curved Duct with FCI under a Uniform Magnetic Field

Authors: Yue Yan, Chang Nyung Kim

Abstract:

The numerical investigation of the three-dimensional liquid-metal (LM) magnetohydrodynamic (MHD) flows in a curved duct with flow channel insert (FCI) is presented in this paper, based on the computational fluid dynamics (CFD) method. A uniform magnetic field is applied perpendicular to the duct. The interdependency of the flow variables is examined in terms of the flow velocity, current density, electric potential and pressure. The electromagnetic characteristics of the LM MHD flows are reviewed with an introduction of the electric-field component and electro-motive component of the current. The influence of the existence of the FCI on the fluid flow is investigated in detail. The case with FCI slit located near the side layer yields smaller pressure gradient with stable flow field.

Keywords: curved duct, flow channel insert, liquid-metal, magnetohydrodynamic

Procedia PDF Downloads 490
1006 Studies on Plasma Spray Deposited La2O3 - YSZ (Yttria-Stabilized Zirconia) Composite Thermal Barrier Coating

Authors: Prashant Sharma, Jyotsna Dutta Majumdar

Abstract:

The present study concerns development of a composite thermal barrier coating consisting of a mixture of La2O3 and YSZ (with 8 wt.%, 32 wt.% and 50 wt.% 50% La2O3) by plasma spray deposition technique on a CoNiCrAlY based bond coat deposited on Inconel 718 substrate by high velocity oxy-fuel deposition (HVOF) technique. The addition of La2O3 in YSZ causes the formation of pyrochlore (La2Zr2O7) phase in the inter splats boundary along with the presence of LaYO3 phase. The coefficient of thermal expansion is significantly reduced from due to the evolution of different phases and structural defects in the sprayed coating. The activation energy for TGO growth under isothermal and cyclic oxidation was increased in the composite coating as compared to YSZ coating.

Keywords: plasma spraying, oxidation resistance, thermal barrier coating, microstructure, X-ray method

Procedia PDF Downloads 345
1005 Measurement and Prediction of Speed of Sound in Petroleum Fluids

Authors: S. Ghafoori, A. Al-Harbi, B. Al-Ajmi, A. Al-Shaalan, A. Al-Ajmi, M. Ali Juma

Abstract:

Seismic methods play an important role in the exploration for hydrocarbon reservoirs. However, the success of the method depends strongly on the reliability of the measured or predicted information regarding the velocity of sound in the media. Speed of sound has been used to study the thermodynamic properties of fluids. In this study, experimental data are reported and analyzed on the speed of sound in toluene and octane binary mixture. Three-factor three-level Box-Benhkam design is used to determine the significance of each factor, the synergetic effects of the factors, and the most significant factors on speed of sound. The developed mathematical model and statistical analysis provided a critical analysis of the simultaneous interactive effects of the independent variables indicating that the developed quadratic models were highly accurate and predictive.

Keywords: experimental design, octane, speed of sound, toluene

Procedia PDF Downloads 269
1004 Stable Time Reversed Integration of the Navier-Stokes Equation Using an Adjoint Gradient Method

Authors: Jurriaan Gillissen

Abstract:

This work is concerned with stabilizing the numerical integration of the Navier-Stokes equation (NSE), backwards in time. Applications involve the detection of sources of, e.g., sound, heat, and pollutants. Stable reverse numerical integration of parabolic differential equations is also relevant for image de-blurring. While the literature addresses the reverse integration problem of the advection-diffusion equation, the problem of numerical reverse integration of the NSE has, to our knowledge, not yet been addressed. Owing to the presence of viscosity, the NSE is irreversible, i.e., when going backwards in time, the fluid behaves, as if it had a negative viscosity. As an effect, perturbations from the perfect solution, due to round off errors or discretization errors, grow exponentially in time, and reverse integration of the NSE is inherently unstable, regardless of using an implicit time integration scheme. Consequently, some sort of filtering is required, in order to achieve a stable, numerical, reversed integration. The challenge is to find a filter with a minimal adverse affect on the accuracy of the reversed integration. In the present work, we explore an adjoint gradient method (AGM) to achieve this goal, and we apply this technique to two-dimensional (2D), decaying turbulence. The AGM solves for the initial velocity field u0 at t = 0, that, when integrated forward in time, produces a final velocity field u1 at t = 1, that is as close as is feasibly possible to some specified target field v1. The initial field u0 defines a minimum of a cost-functional J, that measures the distance between u1 and v1. In the minimization procedure, the u0 is updated iteratively along the gradient of J w.r.t. u0, where the gradient is obtained by transporting J backwards in time from t = 1 to t = 0, using the adjoint NSE. The AGM thus effectively replaces the backward integration by multiple forward and backward adjoint integrations. Since the viscosity is negative in the adjoint NSE, each step of the AGM is numerically stable. Nevertheless, when applied to turbulence, the AGM develops instabilities, which limit the backward integration to small times. This is due to the exponential divergence of phase space trajectories in turbulent flow, which produces a multitude of local minima in J, when the integration time is large. As an effect, the AGM may select unphysical, noisy initial conditions. In order to improve this situation, we propose two remedies. First, we replace the integration by a sequence of smaller integrations, i.e., we divide the integration time into segments, where in each segment the target field v1 is taken as the initial field u0 from the previous segment. Second, we add an additional term (regularizer) to J, which is proportional to a high-order Laplacian of u0, and which dampens the gradients of u0. We show that suitable values for the segment size and for the regularizer, allow a stable reverse integration of 2D decaying turbulence, with accurate results for more then O(10) turbulent, integral time scales.

Keywords: time reversed integration, parabolic differential equations, adjoint gradient method, two dimensional turbulence

Procedia PDF Downloads 218
1003 Experimental and Numerical Investigation of Flow Control Using a Novel Active Slat

Authors: Basman Elhadidi, Islam Elqatary, Osama Saaid, Hesham Othman

Abstract:

An active slat is developed to increase the lift and delay the separation for a DU96-W180 airfoil. The active slat is a fixed slat that can be closed, fully opened or intermittently opened by a rotating vane depending on the need. Experimental results show that the active slat has reduced the mean pressure and increased the mean velocity on the suction side of the airfoil for all positive angles of attack, indicating an increase of lift. The experimental data and numerical simulations also show that the direction of actuator vane rotation can influence the mixing of the flow streams on the suction side and hence influence the aerodynamic performance.

Keywords: active slat, flow control, experimental investigation, aerodynamic performance

Procedia PDF Downloads 433
1002 Microgravity, Hydrological and Metrological Monitoring of Shallow Ground Water Aquifer in Al-Ain, UAE

Authors: Serin Darwish, Hakim Saibi, Amir Gabr

Abstract:

The United Arab Emirates (UAE) is situated within an arid zone where the climate is arid and the recharge of the groundwater is very low. Groundwater is the primary source of water in the United Arab Emirates. However, rapid expansion, population growth, agriculture, and industrial activities have negatively affected these limited water resources. The shortage of water resources has become a serious concern due to the over-pumping of groundwater to meet demand. In addition to the deficit of groundwater, the UAE has one of the highest per capita water consumption rates in the world. In this study, a combination of time-lapse measurements of microgravity and depth to groundwater level in selected wells in Al Ain city was used to estimate the variations in groundwater storage. Al-Ain is the second largest city in Abu Dhabi Emirates and the third largest city in the UAE. The groundwater in this region has been overexploited. Relative gravity measurements were acquired using the Scintrex CG-6 Autograv. This latest generation gravimeter from Scintrex Ltd provides fast, precise gravity measurements and automated corrections for temperature, tide, instrument tilt and rejection of data noise. The CG-6 gravimeter has a resolution of 0.1μGal. The purpose of this study is to measure the groundwater storage changes in the shallow aquifers based on the application of microgravity method. The gravity method is a nondestructive technique that allows collection of data at almost any location over the aquifer. Preliminary results indicate a possible relationship between microgravity and water levels, but more work needs to be done to confirm this. The results will help to develop the relationship between monthly microgravity changes with hydrological and hydrogeological changes of shallow phreatic. The study will be useful in water management considerations and additional future investigations.

Keywords: Al-Ain, arid region, groundwater, microgravity

Procedia PDF Downloads 148
1001 A Novel Model for Saturation Velocity Region of Graphene Nanoribbon Transistor

Authors: Mohsen Khaledian, Razali Ismail, Mehdi Saeidmanesh, Mahdiar Hosseinghadiry

Abstract:

A semi-analytical model for impact ionization coefficient of graphene nanoribbon (GNR) is presented. The model is derived by calculating probability of electrons reaching ionization threshold energy Et and the distance traveled by electron gaining Et. In addition, ionization threshold energy is semi-analytically modeled for GNR. We justify our assumptions using analytic modeling and comparison with simulation results. Gaussian simulator together with analytical modeling is used in order to calculate ionization threshold energy and Kinetic Monte Carlo is employed to calculate ionization coefficient and verify the analytical results. Finally, the profile of ionization is presented using the proposed models and simulation and the results are compared with that of silicon.

Keywords: nanostructures, electronic transport, semiconductor modeling, systems engineering

Procedia PDF Downloads 469
1000 Adaptive Cooperative Control of Nonholonomic Mobile Robot Based on Immersion and Invariance

Authors: Imil Hamda Imran, Sami El Ferik

Abstract:

This paper deals with adaptive cooperative control of non holonomic mobile robot moved together in a given formation. The controller is designed based on the Immersion and Invariance (I&I) approach. I&I is a framework for adaptive stabilization of nonlinear systems with uncertain parameters. We investigate the tracking control of non holonomic mobile robot with uncertainties in The I&I-based adaptive controller regulates the angular and linear velocity of non holonomic mobile robot. The results demonstrate that the ability of I&I-based adaptive cooperative control in tracking the position of non holonomic mobile robot.

Keywords: nonholonomic mobile robot, immersion and invariance, adaptive control, uncertain nonlinear systems

Procedia PDF Downloads 492
999 Finding the Free Stream Velocity Using Flow Generated Sound

Authors: Saeed Hosseini, Ali Reza Tahavvor

Abstract:

Sound processing is one the subjects that newly attracts a lot of researchers. It is efficient and usually less expensive than other methods. In this paper the flow generated sound is used to estimate the flow speed of free flows. Many sound samples are gathered. After analyzing the data, a parameter named wave power is chosen. For all samples, the wave power is calculated and averaged for each flow speed. A curve is fitted to the averaged data and a correlation between the wave power and flow speed is founded. Test data are used to validate the method and errors for all test data were under 10 percent. The speed of the flow can be estimated by calculating the wave power of the flow generated sound and using the proposed correlation.

Keywords: the flow generated sound, free stream, sound processing, speed, wave power

Procedia PDF Downloads 411
998 Numerical Study on Enhancement of Heat Transfer by Turbulence

Authors: Muhammad Azmain Abdullah, Ar Rashedul, Mohammad Ali

Abstract:

This paper scrutinizes the influences of turbulence on heat transport rate, Nusselt number. The subject matter of this investigation also deals with the improvement of heat transfer efficiency of the swirl flow obtained by rotating a twisted tape in a circular pipe. The conditions to be fulfilled to observe the impact of Reynolds number and rotational speed of twisted tape are: a uniform temperature on the outer surface of the pipe, the magnitude of velocity of water varying from 0.1 m/s to 0.7 m/s in order to alter Reynolds number and a rotational speed of 200 rpm to 600 rpm. The gyration of twisted tape increase by 17%. It is also observed that heat transfer is exactly proportional to inlet gauge pressure and reciprocally proportional to increase of twist ratio.

Keywords: swirl flow, twisted tape, twist ratio, heat transfer

Procedia PDF Downloads 259
997 Indoor Thermal Comfort in Educational Buildings in the State of Kuwait

Authors: Sana El-Azzeh, Farraj Al-Ajmi, Abdulrahman Al-Aqqad, Mohamed Salem

Abstract:

Thermal comfort is defined according to ANSI/ASHRAE Standard 55 as a condition of mind that expresses satisfaction with the thermal environment and is assessed by subjective evaluation. Sustaining this standard of thermal comfort for occupants of buildings or other enclosures is one of the important goals of HVAC design engineers. This paper presents a study of thermal comfort and adaptive behaviors of occupants who occupies two locations at the campus of the Australian College of Kuwait. A longitudinal survey and field measurement were conducted to measure thermal comfort, adaptive behaviors, and indoor environment qualities. The study revealed that female occupants in the selected locations felt warmer than males and needed more air velocity and lower temperature.

Keywords: indoor thermal comfort, educational facility, gender analysis, dry desert climate

Procedia PDF Downloads 153
996 Public Debt Shocks and Public Goods Provisioning in Nigeria: Implication for National Development

Authors: Amenawo I. Offiong, Hodo B. Riman

Abstract:

Public debt profile of Nigeria has continuously been on the increase over the years. The drop in international crude oil prices has further worsened revenue position of the country, thus, necessitating further acquisition of public debt to bridge the gap in revenue deficit. Yet, when we look back at the increasing public sector spending, there are concerns that the government spending do not amount to increase in public goods provided for the country. Using data from 1980 to 2014 the study therefore seeks to investigate the factors responsible for the poor provision of public goods in the face of increasing public debt profile. Using the unrestricted VAR model Governance and Tax revenue were introduced into the model as structural variables. The result suggested that governance and tax revenue were structural determinants of the effectiveness of public goods provisioning in Nigeria. The study therefore identified weak governance as the major reason for the non-provision of public goods in Nigeria. While tax revenue exerted positive influence on the provisions of public goods, weak/poor governance was observed to crowd the benefits from increase tax revenue. The study therefore recommends reappraisal of the governance system in Nigeria. Elected officers in governance should be more transparent and accountable to the electorates they represent. Furthermore, the study advocates for an annual auditing of all government MDAs accounts by external auditors to ensure (a) accountability of public debts utilization, (b) transparent in implementation of program support funds, (c) integrity of agencies responsible for program management, and (d) measuring program effectiveness with amount of funds expended.

Keywords: impulse response function, public debt shocks, governance, public goods, tax revenue, vector auto-regression

Procedia PDF Downloads 264
995 Defining Priority Areas for Biodiversity Conservation to Support for Zoning Protected Areas: A Case Study from Vietnam

Authors: Xuan Dinh Vu, Elmar Csaplovics

Abstract:

There has been an increasing need for methods to define priority areas for biodiversity conservation since the effectiveness of biodiversity conservation in protected areas largely depends on the availability of material resources. The identification of priority areas requires the integration of biodiversity data together with social data on human pressures and responses. However, the deficit of comprehensive data and reliable methods becomes a key challenge in zoning where the demand for conservation is most urgent and where the outcomes of conservation strategies can be maximized. In order to fill this gap, the study applied an environmental model Condition–Pressure–Response to suggest a set of criteria to identify priority areas for biodiversity conservation. Our empirical data has been compiled from 185 respondents, categorizing into three main groups: governmental administration, research institutions, and protected areas in Vietnam by using a well - designed questionnaire. Then, the Analytic Hierarchy Process (AHP) theory was used to identify the weight of all criteria. Our results have shown that priority level for biodiversity conservation could be identified by three main indicators: condition, pressure, and response with the value of the weight of 26%, 41%, and 33%, respectively. Based on the three indicators, 7 criteria and 15 sub-criteria were developed to support for defining priority areas for biodiversity conservation and zoning protected areas. In addition, our study also revealed that the groups of governmental administration and protected areas put a focus on the 'Pressure' indicator while the group of Research Institutions emphasized the importance of 'Response' indicator in the evaluation process. Our results provided recommendations to apply the developed criteria for identifying priority areas for biodiversity conservation in Vietnam.

Keywords: biodiversity conservation, condition–pressure–response model, criteria, priority areas, protected areas

Procedia PDF Downloads 164
994 The Effect of Raindrop Kinetic Energy on Soil Erodibility

Authors: A. Moussouni, L. Mouzai, M. Bouhadef

Abstract:

Soil erosion is a very complex phenomenon, resulting from detachment and transport of soil particles by erosion agents. The kinetic energy of raindrop is the energy available for detachment and transport by splashing rain. The soil erodibility is defined as the ability of soil to resist to erosion. For this purpose, an experimental study was conducted in the laboratory using rainfall simulator to study the effect of the kinetic energy of rain (Ec) on the soil erodibility (K). The soil used was a sandy agricultural soil of 62.08% coarse sand, 19.14% fine sand, 6.39% fine silt, 5.18% coarse silt and 7.21% clay. The obtained results show that the kinetic energy of raindrops evolves as a power law with soil erodibility.

Keywords: erosion, runoff, raindrop kinetic energy, soil erodibility, rainfall intensity, raindrop fall velocity

Procedia PDF Downloads 496
993 Conical Spouted Bed Combustor for Combustion of Vine Shoots Wastes

Authors: M. J. San José, S. Alvarez, R. López

Abstract:

In order to prove the applicability of a conical spouted bed combustor for the thermal exploitation of vineyard pruning wastes, the flow regimes of beds consisting of vine shoot beds and an inert bed were established under different operating conditions. The effect of inlet air temperature on the minimum spouted velocity was evaluated. Batch combustion of vine shoots in a conical spouted bed combustor was conducted at temperatures in the range 425-550 ºC with an inert bed. The experimental values of combustion efficiency of vine shoot calculated from the concentration the exhaust gases were assessed. The high experimental combustion efficiency obtained evidenced the proper suitability of the conical spouted bed combustor for the thermal combustion of vine shoots.

Keywords: biomass wastes, thermal combustion, conical spouted beds, vineyard wastes

Procedia PDF Downloads 196
992 Balancing and Synchronization Control of a Two Wheel Inverted Pendulum Vehicle

Authors: Shiuh-Jer Huang, Shin-Ham Lee, Sheam-Chyun Lin

Abstract:

A two wheel inverted pendulum (TWIP) vehicle is built with two hub DC motors for motion control evaluation. Arduino Nano micro-processor is chosen as the control kernel for this electric test plant. Accelerometer and gyroscope sensors are built in to measure the tilt angle and angular velocity of the inverted pendulum vehicle. Since the TWIP has significantly hub motor dead zone and nonlinear system dynamics characteristics, the vehicle system is difficult to control by traditional model based controller. The intelligent model-free fuzzy sliding mode controller (FSMC) was employed as the main control algorithm. Then, intelligent controllers are designed for TWIP balance control, and two wheels synchronization control purposes.

Keywords: balance control, synchronization control, two-wheel inverted pendulum, TWIP

Procedia PDF Downloads 387
991 Numerical Investigation of a Supersonic Ejector for Refrigeration System

Authors: Karima Megdouli, Bourhan Taschtouch

Abstract:

Supersonic ejectors have many applications in refrigeration systems. And improving ejector performance is the key to improve the efficiency of these systems. One of the main advantages of the ejector is its geometric simplicity and the absence of moving parts. This paper presents a theoretical model for evaluating the performance of a new supersonic ejector configuration for refrigeration system applications. The relationship between the flow field and the key parameters of the new configuration has been illustrated by analyzing the Mach number and flow velocity contours. The method of characteristics (MOC) is used to design the supersonic nozzle of the ejector. The results obtained are compared with those obtained by CFD. The ejector is optimized by minimizing exergy destruction due to irreversibility and shock waves. The optimization converges to an efficient optimum solution, ensuring improved and stable performance over the whole considered range of uncertain operating conditions.

Keywords: supersonic ejector, theoretical model, CFD, optimization, performance

Procedia PDF Downloads 74
990 Experimental and Numerical Investigation of Flow Control Using a Novel Active Slat

Authors: Basman Elhadidi, Islam Elqatary, Osama Mohamady, Hesham Othman

Abstract:

An active slat is developed to increase the lift and delay the separation for a DU96-W180 airfoil. The active slat is a fixed slat that can be closed, fully opened or intermittently opened by a rotating vane depending on the need. Experimental results show that the active slat has reduced the mean pressure and increased the mean velocity on the suction side of the airfoil for all positive angles of attack, indicating an increase of lift. The experimental data and numerical simulations also show that the direction of actuator vane rotation can influence the mixing of the flow streams on the suction side and hence influence the aerodynamic performance.

Keywords: active slat, flow control, DU96-W180 airfoil, flow streams

Procedia PDF Downloads 373
989 Prediction of the Tunnel Fire Flame Length by Hybrid Model of Neural Network and Genetic Algorithms

Authors: Behzad Niknam, Kourosh Shahriar, Hassan Madani

Abstract:

This paper demonstrates the applicability of Hybrid Neural Networks that combine with back propagation networks (BPN) and Genetic Algorithms (GAs) for predicting the flame length of tunnel fire A hybrid neural network model has been developed to predict the flame length of tunnel fire based parameters such as Fire Heat Release rate, air velocity, tunnel width, height and cross section area. The network has been trained with experimental data obtained from experimental work. The hybrid neural network model learned the relationship for predicting the flame length in just 3000 training epochs. After successful learning, the model predicted the flame length.

Keywords: tunnel fire, flame length, ANN, genetic algorithm

Procedia PDF Downloads 638
988 A Prevalence of Phonological Disorder in Children with Specific Language Impairment

Authors: Etim, Victoria Enefiok, Dada, Oluseyi Akintunde, Bassey Okon

Abstract:

Phonological disorder is a serious and disturbing issue to many parents and teachers. Efforts towards resolving the problem have been undermined by other specific disabilities which were hidden to many regular and special education teachers. It is against this background that this study was motivated to provide data on the prevalence of phonological disorders in children with specific language impairment (CWSLI) as the first step towards critical intervention. The study was a survey of 15 CWSLI from St. Louise Inclusive schools, Ikot Ekpene in Akwa Ibom State of Nigeria. Phonological Processes Diagnostic Scale (PPDS) with 17 short sentences, which cut across the five phonological processes that were examined, were validated by experts in test measurement, phonology and special education. The respondents were made to read the sentences with emphasis on the targeted sounds. Their utterances were recorded and analyzed in the language laboratory using Praat Software. Data were also collected through friendly interactions at different times from the clients. The theory of generative phonology was adopted for the descriptive analysis of the phonological processes. Data collected were analyzed using simple percentage and composite bar chart for better understanding of the result. The study found out that CWSLI exhibited the five phonological processes under investigation. It was revealed that 66.7%, 80%, 73.3%, 80%, and 86.7% of the respondents have severe deficit in fricative stopping, velar fronting, liquid gliding, final consonant deletion and cluster reduction, respectively. It was therefore recommended that a nationwide survey should be carried out to have national statistics of CWSLI with phonological deficits and develop intervention strategies for effective therapy to remediate the disorder.

Keywords: language disorders, phonology, phonological processes, specific language impairment

Procedia PDF Downloads 187
987 Cerebral Venous Thrombosis at High Altitude: A Rare Presentation by Sub-Arachnoid Hemorrhage

Authors: Eman G. Alayad, Mazen G. Aleyad, Mohammed Alshahrani, Ibrahim Alnaami

Abstract:

Introduction: Cerebral venous thrombosis (CVT) is a rare type of cerebrovascular disease that can occur at any age. Patients with CVT commonly present with headache, focal neurological deficit, decreased level of consciousness and seizures. Many etiologic risk factors have been reported for CVT, high altitude and oral contraceptive pill some of them. Case Presentation: A 37-year-old woman living in Abha city in the southeastern area of Saudi Arabia. (about 10,000 feet-3000 m) over the sea. complaining acute onset of severe diffuse headache and generalized tonic clonic convulsions. Followed by loss of consciousness. She was on contraceptive pills for the last 3 years. No significant Medical or surgical history. Brain CT revealed subarachnoid hemorrhage, with MRI findings showing thrombosis in transvers sinus. There was no vascular malformations such as aneurysm, arteriovenous malformation (AVM), or dural arteriovenous fistula. A CVT with subarachnoid hemorrhage was our final diagnosis based on clinical presentation and radiographic findings. Discussion: Patients with CVT had evidence of cortical SAH by 10 of 233, others found 3% of SAH was caused by CVT, indicating that the presence of cortical SAH without involvement of the basal cisterns may provide an early sign of underlying CVT. However, what is more interesting in this case, is the relationship of high altitude with CVT and SAH, which previously undescribed. Conclusion: High-altitude climbing per se was described as a risk factor for the development of CVT, though its occurrence was probably rare. Whether it is primary in etiology due to high altitude induced hypercoagulable state of unknown origin or due to cerebrovascular disturbances there is a need for further investigation especially at this unusual presentation of subarachnoid hemorrhage.

Keywords: cerebral venous thrombosis, high-altitude, subarachnoid hemorrhage, stroke

Procedia PDF Downloads 244
986 Optimum Design of Attenuator of Spun-Bond Production System

Authors: Nasser Ghassembaglou, Abdullah Bolek, Oktay Yilmaz, Ertan Oznergiz, Hikmet Kocabas, Safak Yilmaz

Abstract:

Nanofibers are effective material which have frequently been investigated to produce high quality air filters. As an environmental approach our aim is to achieve nanofibers by melting. In spun-bond systems extruder, spin-pump, nozzle package and attenuator are used. Molten polymer which flows from extruder is made steady by spin-pump. Regular melt passes through nozzle holes and forms fibers under high pressure. The fibers pulled from nozzle are shrunk to micron size by an attenuator, after solidification they are collected on a conveyor. In this research different designs of attenuator system have been studied and also CFD analysis have been done on them. Afterwards, one of these designs tested and finally some optimizations have been done to reduce pressure loss and increase air velocity.

Keywords: attenuator, nanofiber, spun-bond, extruder

Procedia PDF Downloads 410
985 The Direct Deconvolution Model for the Large Eddy Simulation of Turbulence

Authors: Ning Chang, Zelong Yuan, Yunpeng Wang, Jianchun Wang

Abstract:

Large eddy simulation (LES) has been extensively used in the investigation of turbulence. LES calculates the grid-resolved large-scale motions and leaves small scales modeled by sub lfilterscale (SFS) models. Among the existing SFS models, the deconvolution model has been used successfully in the LES of the engineering flows and geophysical flows. Despite the wide application of deconvolution models, the effects of subfilter scale dynamics and filter anisotropy on the accuracy of SFS modeling have not been investigated in depth. The results of LES are highly sensitive to the selection of fi lters and the anisotropy of the grid, which has been overlooked in previous research. In the current study, two critical aspects of LES are investigated. Firstly, we analyze the influence of sub-fi lter scale (SFS) dynamics on the accuracy of direct deconvolution models (DDM) at varying fi lter-to-grid ratios (FGR) in isotropic turbulence. An array of invertible filters are employed, encompassing Gaussian, Helmholtz I and II, Butterworth, Chebyshev I and II, Cauchy, Pao, and rapidly decaying filters. The signi ficance of FGR becomes evident, as it acts as a pivotal factor in error control for precise SFS stress prediction. When FGR is set to 1, the DDM models cannot accurately reconstruct the SFS stress due to the insufficient resolution of SFS dynamics. Notably, prediction capabilities are enhanced at an FGR of 2, resulting in accurate SFS stress reconstruction, except for cases involving Helmholtz I and II fi lters. A remarkable precision close to 100% is achieved at an FGR of 4 for all DDM models. Additionally, the further exploration extends to the fi lter anisotropy to address its impact on the SFS dynamics and LES accuracy. By employing dynamic Smagorinsky model (DSM), dynamic mixed model (DMM), and direct deconvolution model (DDM) with the anisotropic fi lter, aspect ratios (AR) ranging from 1 to 16 in LES fi lters are evaluated. The findings highlight the DDM's pro ficiency in accurately predicting SFS stresses under highly anisotropic filtering conditions. High correlation coefficients exceeding 90% are observed in the a priori study for the DDM's reconstructed SFS stresses, surpassing those of the DSM and DMM models. However, these correlations tend to decrease as lter anisotropy increases. In the a posteriori studies, the DDM model consistently outperforms the DSM and DMM models across various turbulence statistics, encompassing velocity spectra, probability density functions related to vorticity, SFS energy flux, velocity increments, strain-rate tensors, and SFS stress. It is observed that as fi lter anisotropy intensify , the results of DSM and DMM become worse, while the DDM continues to deliver satisfactory results across all fi lter-anisotropy scenarios. The fi ndings emphasize the DDM framework's potential as a valuable tool for advancing the development of sophisticated SFS models for LES of turbulence.

Keywords: deconvolution model, large eddy simulation, subfilter scale modeling, turbulence

Procedia PDF Downloads 72
984 Crossing Multi-Source Climate Data to Estimate the Effects of Climate Change on Evapotranspiration Data: Application to the French Central Region

Authors: Bensaid A., Mostephaoui T., Nedjai R.

Abstract:

Climatic factors are the subject of considerable research, both methodologically and instrumentally. Under the effect of climate change, the approach to climate parameters with precision remains one of the main objectives of the scientific community. This is from the perspective of assessing climate change and its repercussions on humans and the environment. However, many regions of the world suffer from a severe lack of reliable instruments that can make up for this deficit. Alternatively, the use of empirical methods becomes the only way to assess certain parameters that can act as climate indicators. Several scientific methods are used for the evaluation of evapotranspiration which leads to its evaluation either directly at the level of the climatic stations or by empirical methods. All these methods make a point approach and, in no case, allow the spatial variation of this parameter. We, therefore, propose in this paper the use of three sources of information (network of weather stations of Meteo France, World Databases, and Moodis satellite images) to evaluate spatial evapotranspiration (ETP) using the Turc method. This first step will reflect the degree of relevance of the indirect (satellite) methods and their generalization to sites without stations. The spatial variation representation of this parameter using the geographical information system (GIS) accounts for the heterogeneity of the behaviour of this parameter. This heterogeneity is due to the influence of site morphological factors and will make it possible to appreciate the role of certain topographic and hydrological parameters. A phase of predicting the evolution over the medium and long term of evapotranspiration under the effect of climate change by the application of the Intergovernmental Panel on Climate Change (IPCC) scenarios gives a realistic overview as to the contribution of aquatic systems to the scale of the region.

Keywords: climate change, ETP, MODIS, GIEC scenarios

Procedia PDF Downloads 94