Search results for: stochastic matrix
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 2667

Search results for: stochastic matrix

1707 Towards an Enhanced Compartmental Model for Profiling Malware Dynamics

Authors: Jessemyn Modiini, Timothy Lynar, Elena Sitnikova

Abstract:

We present a novel enhanced compartmental model for malware spread analysis in cyber security. This paper applies cyber security data features to epidemiological compartmental models to model the infectious potential of malware. Compartmental models are most efficient for calculating the infectious potential of a disease. In this paper, we discuss and profile epidemiologically relevant data features from a Domain Name System (DNS) dataset. We then apply these features to epidemiological compartmental models to network traffic features. This paper demonstrates how epidemiological principles can be applied to the novel analysis of key cybersecurity behaviours and trends and provides insight into threat modelling above that of kill-chain analysis. In applying deterministic compartmental models to a cyber security use case, the authors analyse the deficiencies and provide an enhanced stochastic model for cyber epidemiology. This enhanced compartmental model (SUEICRN model) is contrasted with the traditional SEIR model to demonstrate its efficacy.

Keywords: cybersecurity, epidemiology, cyber epidemiology, malware

Procedia PDF Downloads 112
1706 In-Situ Formation of Particle Reinforced Aluminium Matrix Composites by Laser Powder Bed Fusion of Fe₂O₃/AlSi12 Powder Mixture Using Consecutive Laser Melting+Remelting Strategy

Authors: Qimin Shi, Yi Sun, Constantinus Politis, Shoufeng Yang

Abstract:

In-situ preparation of particle-reinforced aluminium matrix composites (PRAMCs) by laser powder bed fusion (LPBF) additive manufacturing is a promising strategy to strengthen traditional Al-based alloys. The laser-driven thermite reaction can be a practical mechanism to in-situ synthesize PRAMCs. However, introducing oxygen elements through adding Fe₂O₃ makes the powder mixture highly sensitive to form porosity and Al₂O₃ film during LPBF, bringing challenges to producing dense Al-based materials. Therefore, this work develops a processing strategy combined with consecutive high-energy laser melting scanning and low-energy laser remelting scanning to prepare PRAMCs from a Fe₂O₃/AlSi12 powder mixture. The powder mixture consists of 5 wt% Fe₂O₃ and the remainder AlSi12 powder. The addition of 5 wt% Fe₂O₃ aims to achieve balanced strength and ductility. A high relative density (98.2 ± 0.55 %) was successfully obtained by optimizing laser melting (Emelting) and laser remelting surface energy density (Eremelting) to Emelting = 35 J/mm² and Eremelting = 5 J/mm². Results further reveal the necessity of increasing Emelting, to improve metal liquid’s spreading/wetting by breaking up the Al₂O₃ films surrounding the molten pools; however, the high-energy laser melting produced much porosity, including H₂₋, O₂₋ and keyhole-induced pores. The subsequent low-energy laser remelting could close the resulting internal pores, backfill open gaps and smoothen solidified surfaces. As a result, the material was densified by repeating laser melting and laser remelting layer by layer. Although with two-times laser scanning, the microstructure still shows fine cellular Si networks with Al grains inside (grain size of about 370 nm) and in-situ nano-precipitates (Al₂O₃, Si, and Al-Fe(-Si) intermetallics). Finally, the fine microstructure, nano-structured dispersion strengthening, and high-level densification strengthened the in-situ PRAMCs, reaching yield strength of 426 ± 4 MPa and tensile strength of 473 ± 6 MPa. Furthermore, the results can expect to provide valuable information to process other powder mixtures with severe porosity/oxide-film formation potential, considering the evidenced contribution of laser melting/remelting strategy to densify material and obtain good mechanical properties during LPBF.

Keywords: densification, laser powder bed fusion, metal matrix composites, microstructures, mechanical properties

Procedia PDF Downloads 160
1705 Understanding the Impact of Climate-Induced Rural-Urban Migration on the Technical Efficiency of Maize Production in Malawi

Authors: Innocent Pangapanga-Phiri, Eric Dada Mungatana

Abstract:

This study estimates the effect of climate-induced rural-urban migrants (RUM) on maize productivity. It uses panel data gathered by the National Statistics Office and the World Bank to understand the effect of RUM on the technical efficiency of maize production in rural Malawi. The study runs the two-stage Tobit regression to isolate the real effect of rural-urban migration on the technical efficiency of maize production. The results show that RUM significantly reduces the technical efficiency of maize production. However, the interaction of RUM and climate-smart agriculture has a positive and significant influence on the technical efficiency of maize production, suggesting the need for re-investing migrants’ remittances in agricultural activities.

Keywords: climate-smart agriculture, farm productivity, rural-urban migration, panel stochastic frontier models, two-stage Tobit regression

Procedia PDF Downloads 140
1704 Re-Differentiation Effect of Sesquiterpene Farnesol on De-Differentiated Rabbit Chondrocytes

Authors: Chun Hsien Wu, Guan Xuan Wu, Hsia Ying Cheng, Shyh Ming Kuo

Abstract:

Articular cartilage is composed of chondrocytes and extracellular matrix, such as collagen fibers, glycosaminoglycans, etc., which play an important role in lubricating and cushion joint activities. The phenotypic expression and metabolic activity of chondrocytes are extremely important in maintaining the functions of articular cartilage. In in vitro passaged culture of chondrocytes, chondrocytes gradually lose their original cell phenotype and morphology, which is called dedifferentiation. After continuous passaged culture of chondrocytes or induction by inflammatory factor IL-1, chondrocytes changed their phenotype and morphology. Also, the extracellular matrix type II collagen and GAG secretion were significantly reduced, while type I and X collagen were synthesized. Farnesol is an anti-inflammatory and antioxidant sesquiterpene compound that has the specific property of promoting collagen production. The purpose of this study was to investigate whether farnesol could restore the original type II collagen synthesis and, furthermore, the mechanisms of farnesol on the synthesis of type II collagen from the de-differentiated chondrocytes. The obtained results showed that the de-differentiated chondrocytes significantly restored to secret type II collagen and GAG (2.5-folds increases), and the secretion of collagen I and X and PGE2 synthesis were also significantly reduced after being treated with farnesol, indicating that farnesol had a restoration/re-differentiation effect on de-differentiated chondrocytes. The de-differentiated chondrocytes exhibited decreased expression of PPAR-γ and upregulated TGF-β expression to increase the MMP-13 expression. Higher expression of MMP-13 caused chondrocytes to secret type X collagen. On the contrary, increasing the expression of PPAR-γ would benefit the production of type II collagen. As shown, the PPAR-γ expression increased, and MMP-13 expression decreased after being treated with farnesol, indicating a possible signal pathway of farnesol to restore the production of type II collagen. However, more detailed mechanisms still need to evaluate.

Keywords: chondrocytes, de-differentiation, farnesol, re-differentiation

Procedia PDF Downloads 128
1703 Comparative study of the technical efficiency of the cotton farms in the towns of Banikoara and Savalou

Authors: Boukari Abdou Wakilou

Abstract:

Benin is one of West Africa's major cotton-producing countries. Cotton is the country's main source of foreign currency and employment. But it is also one of the sources of soil degradation. The search for good agricultural practices is therefore, a constant preoccupation. The aim of this study is to measure the technical efficiency of cotton growers by comparing those who constantly grow cotton on the same land with those who practice crop rotation. The one-step estimation approach of the stochastic production frontier, including determinants of technical inefficiency, was applied to a stratified random sample of 261 cotton producers. Overall, the growers had a high average technical efficiency level of 90%. However, there was no significant difference in the level of technical efficiency between the two groups of growers studied. All the factors linked to compliance with the technical production itinerary had a positive influence on the growers' level of efficiency. It is, therefore, important to continue raising awareness of the importance of respecting the technical production itinerary and of integrated soil fertility management techniques.

Keywords: technical efficiency, soil fertility, cotton, crop rotation, benin

Procedia PDF Downloads 76
1702 Steady-State Behavior of a Multi-Phase M/M/1 Queue in Random Evolution Subject to Catastrophe Failure

Authors: Reni M. Sagayaraj, Anand Gnana S. Selvam, Reynald R. Susainathan

Abstract:

In this paper, we consider stochastic queueing models for Steady-state behavior of a multi-phase M/M/1 queue in random evolution subject to catastrophe failure. The arrival flow of customers is described by a marked Markovian arrival process. The service times of different type customers have a phase-type distribution with different parameters. To facilitate the investigation of the system we use a generalized phase-type service time distribution. This model contains a repair state, when a catastrophe occurs the system is transferred to the failure state. The paper focuses on the steady-state equation, and observes that, the steady-state behavior of the underlying queueing model along with the average queue size is analyzed.

Keywords: M/G/1 queuing system, multi-phase, random evolution, steady-state equation, catastrophe failure

Procedia PDF Downloads 332
1701 Optimal Load Control Strategy in the Presence of Stochastically Dependent Renewable Energy Sources

Authors: Mahmoud M. Othman, Almoataz Y. Abdelaziz, Yasser G. Hegazy

Abstract:

This paper presents a load control strategy based on modification of the Big Bang Big Crunch optimization method. The proposed strategy aims to determine the optimal load to be controlled and the corresponding time of control in order to minimize the energy purchased from substation. The presented strategy helps the distribution network operator to rely on the renewable energy sources in supplying the system demand. The renewable energy sources used in the presented study are modeled using the diagonal band Copula method and sequential Monte Carlo method in order to accurately consider the multivariate stochastic dependence between wind power, photovoltaic power and the system demand. The proposed algorithms are implemented in MATLAB environment and tested on the IEEE 37-node feeder. Several case studies are done and the subsequent discussions show the effectiveness of the proposed algorithm.

Keywords: big bang big crunch, distributed generation, load control, optimization, planning

Procedia PDF Downloads 350
1700 Using Eigenvalues and Eigenvectors in Population Growth and Stability Obtaining

Authors: Abubakar Sadiq Mensah

Abstract:

The Knowledge of the population growth of a nation is paramount to national planning. The population of a place is studied and a model developed over a period of time, Matrices is used to form model for population growth. The eigenvalue ƛ of the matrix A and its corresponding eigenvector X is such that AX = ƛX is calculated. The stable age distribution of the population is obtained using the eigenvalue and the characteristic polynomial. Hence, estimation could be made using eigenvalues and eigenvectors.

Keywords: eigenvalues, eigenvectors, population, growth/stability

Procedia PDF Downloads 528
1699 Wadi Halfa Oolitic Ironstone Formation, Wadi Halfa and Argein Areas, North Sudan

Authors: Mutwakil Nafi, Abed Elaziz El Amein, Muna El Dawi, Khalafala Salih, Osma Elbahi, Abed Elhalim Abou

Abstract:

Recently a large deposit of oolitic iron ore of Late Carboniferous-Permotriassic-Lower Jurassic age was discovered in Wadi Halfa and Argein areas, North Sudan. It seems that the iron ore mineralization exists in the west and east bank of the River Nile of the study area that are found on the Egyptian-Sudanese border. The Carboniferous-Lower Jurassic age strata were covered by 67 sections and each section has been examined and carefully described. The iron-ore in Wadi Halfa occurs as oolitic ironstone and contained two horizons: (A) horizon and (B) horizon. Only horizon (A) was observed in southern Argein area. The texture of the ore is variable depending on the volume of the component. In thin sections the average of the ooids were ranged between 90% - 80%. The matrix varies between 10%-20% by volume and detritus quartz in other component my reach up to 30% by volume in sandy massive ore. Ooids size ranges from 0.2mm-1.00 mm on average in very coarse ooids may attend up to 1 mm in size. The matrix around the ooids is dominated by iron hydroxide, carbonate, fine and amorphous silica. The probable ore reserve estimate of 1.234 billion at a head grade of 41.29% Fe for the Wadi Halfa Oolitic Ironstone Formation. The iron ore shows higher content of phosphorus ranges from 6.15% to 0.16%, with mean 1.45%. The new technology Hatch–Ironstone Chloride Segregation (HICS) can be used to produce commercial-quality of iron and reduce phosphorus and silica to acceptable levels for steel industry. The development of infra structures and presence huge quantity of iron ore would make exploitation of the iron ore economic.

Keywords: HICS, Late Carboniferous age, oolitic iron ore, phosphorus

Procedia PDF Downloads 650
1698 The Impact of Lipids on Lung Fibrosis

Authors: G. Wojcik, J. Gindlhuber, A. Syarif, K. Hoetzenecker, P. Bohm, P. Vesely, V. Biasin, G. Kwapiszewska

Abstract:

Pulmonary fibrosis is a rare disease where uncontrolled wound healing processes damage the lung structure. Intensive changes within the extracellular matrix (ECM) and its interaction with fibroblasts have a major role in pulmonary fibrosis development. Among others, collagen is one of the main components of the ECM, and it is important for lung structure. In IPF, constant production of collagen by fibroblast, through TGFβ1-SMAD2/3 pathways, leads to an uncontrolled deposition of matrix and hence lung remodeling. Abnormal changes in lipid production, alterations in fatty acids (FAs) metabolism, enhanced oxidative stress, and lipid peroxidation in fibrotic lung and fibrotic fibroblasts have been reported; however, the interplay between the collagen and lipids is not yet established. One of the FAs influx regulators is Angiopoietin-like 4 (ANGPTL4), which inhibits lipoprotein lipase work, decreasing the availability of FAs. We hypothesized that altered lipid composition or availability could have the capability to influence the phenotype of different fibroblast populations in the lung and hence influence lung fibrosis. To prove our hypothesis, we aim to investigate lipids and their influence on human, animal, and in vitro levels. In the bleomycin model, treatment with the well-known metabolic drugs Rosiglitazone or Metformin significantly lower collagen production. Similar results were noticed in ANGPTL4 KO animals, where the KO of ANGPTL4 leads to an increase of FAs availability and lower collagen deposition after the bleomycin challenge. Currently, we study the treatment of different FAs on human lung para fibroblasts (hPF) isolated from donors. To understand the lipid composition, we are collecting human lung tissue from donors and pulmonary fibrosis patients for Liquid chromatography-mass spectrometry. In conclusion, our results suggest the lipid influence on collagen deposition during lung fibrosis, but further research needs to be conducted to understand the matter of this relationship.

Keywords: collagen, fibroblasts, lipidomics, lung, pulmonary fibrosis

Procedia PDF Downloads 88
1697 Recursive Doubly Complementary Filter Design Using Particle Swarm Optimization

Authors: Ju-Hong Lee, Ding-Chen Chung

Abstract:

This paper deals with the optimal design of recursive doubly complementary (DC) digital filter design using a metaheuristic based optimization technique. Based on the theory of DC digital filters using two recursive digital all-pass filters (DAFs), the design problem is appropriately formulated to result in an objective function which is a weighted sum of the phase response errors of the designed DAFs. To deal with the stability of the recursive DC filters during the design process, we can either impose some necessary constraints on the phases of the recursive DAFs. Through a frequency sampling and a weighted least squares approach, the optimization problem of the objective function can be solved by utilizing a population based stochastic optimization approach. The resulting DC digital filters can possess satisfactory frequency response. Simulation results are presented for illustration and comparison.

Keywords: doubly complementary, digital all-pass filter, weighted least squares algorithm, particle swarm optimization

Procedia PDF Downloads 694
1696 Green Transport Solutions for Developing Cities: A Case Study of Nairobi, Kenya

Authors: Benedict O. Muyale, Emmanuel S. Murunga

Abstract:

Cities have always been the loci for nationals as well as growth of cultural fusion and innovation. Over 50%of global population dwells in cities and urban centers. This means that cities are prolific users of natural resources and generators of waste; hence they produce most of the greenhouse gases which are causing global climate change. The root cause of increase in the transport sector carbon curve is mainly the greater numbers of individually owned cars. Development in these cities is geared towards economic progress while environmental sustainability is ignored. Infrastructure projects focus on road expansion, electrification, and more parking spaces. These lead to more carbon emissions, traffic congestion, and air pollution. Recent development plans for Nairobi city are now on road expansion with little priority for electric train solutions. The Vision 2030, Kenya’s development guide, has shed some light on the city with numerous road expansion projects. This chapter seeks to realize the following objectives; (1) to assess the current transport situation of Nairobi; (2) to review green transport solutions being undertaken in the city; (3) to give an overview of alternative green transportation solutions, and (4) to provide a green transportation framework matrix. This preliminary study will utilize primary and secondary data through mainly desktop research and analysis, literature, books, magazines and on-line information. This forms the basis for formulation of approaches for incorporation into the green transportation framework matrix of the main study report.The main goal is the achievement of a practical green transportation system for implementation by the City County of Nairobi to reduce carbon emissions and congestion and promote environmental sustainability.

Keywords: cities, transport, Nairobi, green technologies

Procedia PDF Downloads 324
1695 Using Sugar Mill Waste for Biobased Epoxy Composites

Authors: Ulku Soydal, Mustafa Esen Marti, Gulnare Ahmetli

Abstract:

In this study, precipitated calcium carbonate lime waste (LW) from sugar beet process was recycled as the raw material for the preparation of composite materials. Epoxidized soybean oil (ESO) was used as a co-matrix in 50 wt% with DGEBA type epoxy resin (ER). XRD was used for characterization of composites. Effects of ESO and LW filler amounts on mechanical properties of neat ER were investigated. Modification of ER with ESO remarkably enhanced plasticity of ER.

Keywords: epoxy resin, biocomposite, lime waste, properties

Procedia PDF Downloads 319
1694 Lung Cancer Detection and Multi Level Classification Using Discrete Wavelet Transform Approach

Authors: V. Veeraprathap, G. S. Harish, G. Narendra Kumar

Abstract:

Uncontrolled growth of abnormal cells in the lung in the form of tumor can be either benign (non-cancerous) or malignant (cancerous). Patients with Lung Cancer (LC) have an average of five years life span expectancy provided diagnosis, detection and prediction, which reduces many treatment options to risk of invasive surgery increasing survival rate. Computed Tomography (CT), Positron Emission Tomography (PET), and Magnetic Resonance Imaging (MRI) for earlier detection of cancer are common. Gaussian filter along with median filter used for smoothing and noise removal, Histogram Equalization (HE) for image enhancement gives the best results without inviting further opinions. Lung cavities are extracted and the background portion other than two lung cavities is completely removed with right and left lungs segmented separately. Region properties measurements area, perimeter, diameter, centroid and eccentricity measured for the tumor segmented image, while texture is characterized by Gray-Level Co-occurrence Matrix (GLCM) functions, feature extraction provides Region of Interest (ROI) given as input to classifier. Two levels of classifications, K-Nearest Neighbor (KNN) is used for determining patient condition as normal or abnormal, while Artificial Neural Networks (ANN) is used for identifying the cancer stage is employed. Discrete Wavelet Transform (DWT) algorithm is used for the main feature extraction leading to best efficiency. The developed technology finds encouraging results for real time information and on line detection for future research.

Keywords: artificial neural networks, ANN, discrete wavelet transform, DWT, gray-level co-occurrence matrix, GLCM, k-nearest neighbor, KNN, region of interest, ROI

Procedia PDF Downloads 158
1693 Large-Scale Simulations of Turbulence Using Discontinuous Spectral Element Method

Authors: A. Peyvan, D. Li, J. Komperda, F. Mashayek

Abstract:

Turbulence can be observed in a variety fluid motions in nature and industrial applications. Recent investment in high-speed aircraft and propulsion systems has revitalized fundamental research on turbulent flows. In these systems, capturing chaotic fluid structures with different length and time scales is accomplished through the Direct Numerical Simulation (DNS) approach since it accurately simulates flows down to smallest dissipative scales, i.e., Kolmogorov’s scales. The discontinuous spectral element method (DSEM) is a high-order technique that uses spectral functions for approximating the solution. The DSEM code has been developed by our research group over the course of more than two decades. Recently, the code has been improved to run large cases in the order of billions of solution points. Running big simulations requires a considerable amount of RAM. Therefore, the DSEM code must be highly parallelized and able to start on multiple computational nodes on an HPC cluster with distributed memory. However, some pre-processing procedures, such as determining global element information, creating a global face list, and assigning global partitioning and element connection information of the domain for communication, must be done sequentially with a single processing core. A separate code has been written to perform the pre-processing procedures on a local machine. It stores the minimum amount of information that is required for the DSEM code to start in parallel, extracted from the mesh file, into text files (pre-files). It packs integer type information with a Stream Binary format in pre-files that are portable between machines. The files are generated to ensure fast read performance on different file-systems, such as Lustre and General Parallel File System (GPFS). A new subroutine has been added to the DSEM code to read the startup files using parallel MPI I/O, for Lustre, in a way that each MPI rank acquires its information from the file in parallel. In case of GPFS, in each computational node, a single MPI rank reads data from the file, which is specifically generated for the computational node, and send them to other ranks on the node using point to point non-blocking MPI communication. This way, communication takes place locally on each node and signals do not cross the switches of the cluster. The read subroutine has been tested on Argonne National Laboratory’s Mira (GPFS), National Center for Supercomputing Application’s Blue Waters (Lustre), San Diego Supercomputer Center’s Comet (Lustre), and UIC’s Extreme (Lustre). The tests showed that one file per node is suited for GPFS and parallel MPI I/O is the best choice for Lustre file system. The DSEM code relies on heavily optimized linear algebra operation such as matrix-matrix and matrix-vector products for calculation of the solution in every time-step. For this, the code can either make use of its matrix math library, BLAS, Intel MKL, or ATLAS. This fact and the discontinuous nature of the method makes the DSEM code run efficiently in parallel. The results of weak scaling tests performed on Blue Waters showed a scalable and efficient performance of the code in parallel computing.

Keywords: computational fluid dynamics, direct numerical simulation, spectral element, turbulent flow

Procedia PDF Downloads 136
1692 Determination of the Phosphate Activated Glutaminase Localization in the Astrocyte Mitochondria Using Kinetic Approach

Authors: N. V. Kazmiruk, Y. R. Nartsissov

Abstract:

Phosphate activated glutaminase (GA, E.C. 3.5.1.2) plays a key role in glutamine/glutamate homeostasis in mammalian brain, catalyzing the hydrolytic deamidation of glutamine to glutamate and ammonium ions. GA is mainly localized in mitochondria, where it has the catalytically active form on the inner mitochondrial membrane (IMM) and the other soluble form, which is supposed to be dormant. At present time, the exact localization of the membrane glutaminase active site remains a controversial and an unresolved issue. The first hypothesis called c-side localization suggests that the catalytic site of GA faces the inter-membrane space and products of the deamidation reaction have immediate access to cytosolic metabolism. According to the alternative m-side localization hypothesis, GA orients to the matrix, making glutamate and ammonium available for the tricarboxylic acid cycle metabolism in mitochondria directly. In our study, we used a multi-compartment kinetic approach to simulate metabolism of glutamate and glutamine in the astrocytic cytosol and mitochondria. We used physiologically important ratio between the concentrations of glutamine inside the matrix of mitochondria [Glnₘᵢₜ] and glutamine in the cytosol [Glncyt] as a marker for precise functioning of the system. Since this ratio directly depends on the mitochondrial glutamine carrier (MGC) flow parameters, key observation was to investigate the dependence of the [Glnmit]/[Glncyt] ratio on the maximal velocity of MGC at different initial concentrations of mitochondrial glutamate. Another important task was to observe the similar dependence at different inhibition constants of the soluble GA. The simulation results confirmed the experimental c-side localization hypothesis, in which the glutaminase active site faces the outer surface of the IMM. Moreover, in the case of such localization of the enzyme, a 3-fold decrease in ammonium production was predicted.

Keywords: glutamate metabolism, glutaminase, kinetic approach, mitochondrial membrane, multi-compartment modeling

Procedia PDF Downloads 123
1691 Optimal Maintenance Policy for a Three-Unit System

Authors: A. Abbou, V. Makis, N. Salari

Abstract:

We study the condition-based maintenance (CBM) problem of a system subject to stochastic deterioration. The system is composed of three units (or modules): (i) Module 1 deterioration follows a Markov process with two operational states and one failure state. The operational states are partially observable through periodic condition monitoring. (ii) Module 2 deterioration follows a Gamma process with a known failure threshold. The deterioration level of this module is fully observable through periodic inspections. (iii) Only the operating age information is available of Module 3. The lifetime of this module has a general distribution. A CBM policy prescribes when to initiate a maintenance intervention and which modules to repair during intervention. Our objective is to determine the optimal CBM policy minimizing the long-run expected average cost of operating the system. This is achieved by formulating a Markov decision process (MDP) and developing the value iteration algorithm for solving the MDP. We provide numerical examples illustrating the cost-effectiveness of the optimal CBM policy through a comparison with heuristic policies commonly found in the literature.

Keywords: reliability, maintenance optimization, Markov decision process, heuristics

Procedia PDF Downloads 223
1690 A Novel Meta-Heuristic Algorithm Based on Cloud Theory for Redundancy Allocation Problem under Realistic Condition

Authors: H. Mousavi, M. Sharifi, H. Pourvaziri

Abstract:

Redundancy Allocation Problem (RAP) is a well-known mathematical problem for modeling series-parallel systems. It is a combinatorial optimization problem which focuses on determining an optimal assignment of components in a system design. In this paper, to be more practical, we have considered the problem of redundancy allocation of series system with interval valued reliability of components. Therefore, during the search process, the reliabilities of the components are considered as a stochastic variable with a lower and upper bounds. In order to optimize the problem, we proposed a simulated annealing based on cloud theory (CBSAA). Also, the Monte Carlo simulation (MCS) is embedded to the CBSAA to handle the random variable components’ reliability. This novel approach has been investigated by numerical examples and the experimental results have shown that the CBSAA combining MCS is an efficient tool to solve the RAP of systems with interval-valued component reliabilities.

Keywords: redundancy allocation problem, simulated annealing, cloud theory, monte carlo simulation

Procedia PDF Downloads 416
1689 Balanced Scorecard (BSC) Project : A Methodological Proposal for Decision Support in a Corporate Scenario

Authors: David de Oliveira Costa, Miguel Ângelo Lellis Moreira, Carlos Francisco Simões Gomes, Daniel Augusto de Moura Pereira, Marcos dos Santos

Abstract:

Strategic management is a fundamental process for global companies that intend to remain competitive in an increasingly dynamic and complex market. To do so, it is necessary to maintain alignment with their principles and values. The Balanced Scorecard (BSC) proposes to ensure that the overall business performance is based on different perspectives (financial, customer, internal processes, and learning and growth). However, relying solely on the BSC may not be enough to ensure the success of strategic management. It is essential that companies also evaluate and prioritize strategic projects that need to be implemented to ensure they are aligned with the business vision and contribute to achieving established goals and objectives. In this context, the proposition involves the incorporation of the SAPEVO-M multicriteria method to indicate the degree of relevance between different perspectives. Thus, the strategic objectives linked to these perspectives have greater weight in the classification of structural projects. Additionally, it is proposed to apply the concept of the Impact & Probability Matrix (I&PM) to structure and ensure that strategic projects are evaluated according to their relevance and impact on the business. By structuring the business's strategic management in this way, alignment and prioritization of projects and actions related to strategic planning are ensured. This ensures that resources are directed towards the most relevant and impactful initiatives. Therefore, the objective of this article is to present the proposal for integrating the BSC methodology, the SAPEVO-M multicriteria method, and the prioritization matrix to establish a concrete weighting of strategic planning and obtain coherence in defining strategic projects aligned with the business vision. This ensures a robust decision-making support process.

Keywords: MCDA process, prioritization problematic, corporate strategy, multicriteria method

Procedia PDF Downloads 86
1688 The Impact of β Nucleating Agents and Carbon-Based Nanomaterials on Water Vapor Permeability of Polypropylene Composite Films

Authors: Glykeria A. Visvini, George Ν. Mathioudakis, Amaia Soto Beobide, George A. Voyiatzis

Abstract:

Polymer nanocomposites are materials in which a polymer matrix is reinforced with nanoscale inclusions, such as nanoparticles, nanoplates, or nanofibers. These nanoscale inclusions can significantly enhance the mechanical, thermal, electrical, and other properties of the polymer matrix, making them attractive for a wide range of industrial applications. These properties can be tailored by adjusting the type and the concentration of the nanoinclusions, which provides a high degree of flexibility in their design and development. An important property that polymeric membranes can exhibit is water vapor permeability (WVP). This can be accomplished by various methods, including the incorporation of micro/nano-fillers into the polymer matrix. In this way, a micro/nano-pore network can be formed, allowing water vapor to permeate through the membrane. At the same time, the membrane can be stretched uni- or bi-axially, creating aligned or cross-linked micropores in the composite, respectively, which can also increase the WVP. Nowadays, in industry, stretched films reinforced with CaCO3 develop micro-porosity sufficient to give them breathability characteristics. Carbon-based nanomaterials, such as graphene oxide (GO), are tentatively expected to be able to effectively improve the WVP of corresponding composite polymer films. The presence in the GO structure of various functional oxidizing groups enhances its ability to attract and channel water molecules, exploiting the unique large surface area of graphene that allows the rapid transport of water molecules. Polypropylene (PP) is widely used in various industrial applications due to its desirable properties, including good chemical resistance, excellent thermal stability, low cost, and easy processability. The specific properties of PP are highly influenced by its crystalline behavior, which is determined by its processing conditions. The development of the β-crystalline phase in PP, in combination with stretching, is anticipating improving the microporosity of the polymer matrix, thereby enhancing its WVP. The aim of present study is to create breathable PP composite membranes using carbon-based nanomaterials, such as graphene oxide (GO), reduced graphene oxide (rGO), and graphene nanoplatelets (GNPs). Unlike traditional methods that rely on the drawing process to enhance the WVP of PP, this study intents to develop a low-cost approach using melt mixing with β-nucleating agents and carbon fillers to create highly breathable PP composite membranes. The study aims to investigate how the concentration of these additives affects the water vapor transport properties of the resulting PP films/membranes. The presence of β-nucleating agents and carbon fillers is expected to enhance β-phase growth in PP, while an alternation between β- and α-phase is expected to lead to improved microporosity and WVP. Our ambition is to develop highly breathable PP composite films with superior performance and at a lower cost compared to the benchmark. Acknowledgment: This research has been co‐financed by the European Union and Greek national funds through the Operational Program Competitiveness, Entrepreneurship and Innovation, under the call «Special Actions "AQUACULTURE"-"INDUSTRIAL MATERIALS"-"OPEN INNOVATION IN CULTURE"» (project code: Τ6YBP-00337)

Keywords: carbon based nanomaterials, nanocomposites, nucleating agent, polypropylene, water vapor permeability

Procedia PDF Downloads 90
1687 Spectral Properties of Fiber Bragg Gratings

Authors: Y. Hamaizi, H. Triki, A. El-Akrmi

Abstract:

In this paper, the reflection spectra, group delay and dispersion of a uniform fiber Bragg grating (FBG) are obtained. FBGs with two types of apodized variations of the refractive index were modeled to show how the side-lobes can be suppressed. Apodization techniques are used to get optimized reflection spectra. The simulation is based on solving coupled mode equations together with the transfer matrix method.

Keywords: fiber bragg gratings, coupled-mode theory, reflectivity, apodization

Procedia PDF Downloads 710
1686 Quadrature Mirror Filter Bank Design Using Population Based Stochastic Optimization

Authors: Ju-Hong Lee, Ding-Chen Chung

Abstract:

The paper deals with the optimal design of two-channel linear-phase (LP) quadrature mirror filter (QMF) banks using a metaheuristic based optimization technique. Based on the theory of two-channel QMF banks using two recursive digital all-pass filters (DAFs), the design problem is appropriately formulated to result in an objective function which is a weighted sum of the group delay error of the designed QMF bank and the magnitude response error of the designed low-pass analysis filter. Through a frequency sampling and a weighted least squares approach, the optimization problem of the objective function can be solved by utilizing a particle swarm optimization algorithm. The resulting two-channel QMF banks can possess approximately LP response without magnitude distortion. Simulation results are presented for illustration and comparison.

Keywords: quadrature mirror filter bank, digital all-pass filter, weighted least squares algorithm, particle swarm optimization

Procedia PDF Downloads 526
1685 Encapsulated Western Red Cedar (Thuja Plicata) Essential Oil as a Prospective Biopesticide against Phytophthora Pathogens

Authors: Aleksandar M. Radojković, Jovana M. Ćirković, Sanja Z. Perać, Jelena N. Jovanović, Zorica M. Branković, Slobodan D. Milanović, Ivan Lj. Milenković, Jovan N. Dobrosavljević, Nemanja V. Simović, Vanja M. Tadić, Ana R. Žugić, Goran O. Branković

Abstract:

In many parts of the world, various Phytophthora species pose a serious threat to forests and crops. With the rapidly growing international trade in plants and the ongoing impacts of climate change, the harmful effects of plant pathogens of the genus Phytophthora are increasing, damaging the biodiversity and sustainability of forest ecosystems. This genus is one of the most destructive plant pathogens, causing the majority of fine root (66%) and collar rot diseases (90%) of woody plant species worldwide. Eco-friendly biopesticides, based on plant-derived products, such as essential oils (EOs), are one of the promising solutions to this problem. In this study, among three different EOs investigated (Chamaecyparis lawsoniana (A. Murr.) Parl., Thuja plicata Donn ex D.Don and Juniperus communis L.), western red cedar (Thuja plicata) essential oil almost completely inhibited the growth of three Phytophthora species (P. plurivora Jung and Burgess, P. quercina Jung, and P. ×cambivora (Petri) Buisman) during seven days of exposure for the EO concentrations of 0.1% and 0.5% (v/v). To prolong the inhibiting effect, Thuja plicata EO was encapsulated into a biopolymer matrix consisting of a chitosan-gelatin mixture to form a water-in-oil emulsion. This approach allowed the prolonged effect of the essential oil by its slow release from the biopolymer matrix and protection of the active components from atmospheric influences. Thus, it was demonstrated that encapsulated Thuja plicata EO consisting of sustainable bioproducts is efficient in controlling of Phytophthora species and can be considered a means of protection in natural and semi-natural ecosystems.

Keywords: emulsions, essential oils, phytophthora, thuja plicata

Procedia PDF Downloads 98
1684 Consequence of Multi-Templating of Closely Related Structural Analogues on a Chitosan-Methacryllic Acid Molecularly Imprinted Polymer Matrix-Thermal and Chromatographic Traits

Authors: O.Ofoegbu, S. Roongnapa, A.N. Eboatu

Abstract:

Most polluted environments, most challengingly, aerosol types, contain a cocktail of different toxicants. Multi-templating of matrices have been the recent target by researchers in a bid to solving complex mixed-toxicant challenges using single or common remediation systems. This investigation looks at the effect of such multi-templated system vis-a-vis the synthesis by non-covalent interaction, of a molecularly imprinted polymer architecture using nicotine and its structural analogue Phenylalanine amide individually and, in the blend, (50:50), as template materials in a Chitosan-Methacrylic acid functional monomer matrix. The temperature for polymerization is 60OC and time for polymerization, 12hrs (water bath heating), 4mins for (microwave heating). The characteristic thermal properties of the molecularly imprinted materials are investigated using Simultaneous Thermal Analysis (STA) profiling, while the absorption and separation efficiencies based on the relative retention times and peak areas of templates were studied amongst other properties. Transmission Electron Microscopy (TEM) results obtained, show the creation of heterogeneous nanocavities, regardless, the introduction of Caffeine a close structural analogue presented near-zero perfusion. This confirms the selectivity and specificity of the templated polymers despite its dual-templated nature. The STA results presented the materials as having decomposition temperatures above 250OC and a relative loss in mass of less than19% over a period within 50mins of heating. Consequent to this outcome, multi-templated systems can be fabricated to sequester specifically and selectively targeted toxicants in a mixed toxicant populated system effectively.

Keywords: chitosan, dual-templated, methacrylic acid, mixed-toxicants, molecularly-imprinted-polymer

Procedia PDF Downloads 118
1683 Design and Implementation of Pseudorandom Number Generator Using Android Sensors

Authors: Mochamad Beta Auditama, Yusuf Kurniawan

Abstract:

A smartphone or tablet require a strong randomness to establish secure encrypted communication, encrypt files, etc. Therefore, random number generation is one of the main keys to provide secrecy. Android devices are equipped with hardware-based sensors, such as accelerometer, gyroscope, etc. Each of these sensors provides a stochastic process which has a potential to be used as an extra randomness source, in addition to /dev/random and /dev/urandom pseudorandom number generators. Android sensors can provide randomness automatically. To obtain randomness from Android sensors, each one of Android sensors shall be used to construct an entropy source. After all entropy sources are constructed, output from these entropy sources are combined to provide more entropy. Then, a deterministic process is used to produces a sequence of random bits from the combined output. All of these processes are done in accordance with NIST SP 800-22 and the series of NIST SP 800-90. The operation conditions are done 1) on Android user-space, and 2) the Android device is placed motionless on a desk.

Keywords: Android hardware-based sensor, deterministic process, entropy source, random number generation/generators

Procedia PDF Downloads 379
1682 Delay-Dependent Passivity Analysis for Neural Networks with Time-Varying Delays

Authors: H. Y. Jung, Jing Wang, J. H. Park, Hao Shen

Abstract:

This brief addresses the passivity problem for neural networks with time-varying delays. The aim is focus on establishing the passivity condition of the considered neural networks.

Keywords: neural networks, passivity analysis, time-varying delays, linear matrix inequality

Procedia PDF Downloads 575
1681 Scoring System for the Prognosis of Sepsis Patients in Intensive Care Units

Authors: Javier E. García-Gallo, Nelson J. Fonseca-Ruiz, John F. Duitama-Munoz

Abstract:

Sepsis is a syndrome that occurs with physiological and biochemical abnormalities induced by severe infection and carries a high mortality and morbidity, therefore the severity of its condition must be interpreted quickly. After patient admission in an intensive care unit (ICU), it is necessary to synthesize the large volume of information that is collected from patients in a value that represents the severity of their condition. Traditional severity of illness scores seeks to be applicable to all patient populations, and usually assess in-hospital mortality. However, the use of machine learning techniques and the data of a population that shares a common characteristic could lead to the development of customized mortality prediction scores with better performance. This study presents the development of a score for the one-year mortality prediction of the patients that are admitted to an ICU with a sepsis diagnosis. 5650 ICU admissions extracted from the MIMICIII database were evaluated, divided into two groups: 70% to develop the score and 30% to validate it. Comorbidities, demographics and clinical information of the first 24 hours after the ICU admission were used to develop a mortality prediction score. LASSO (least absolute shrinkage and selection operator) and SGB (Stochastic Gradient Boosting) variable importance methodologies were used to select the set of variables that make up the developed score; each of this variables was dichotomized and a cut-off point that divides the population into two groups with different mean mortalities was found; if the patient is in the group that presents a higher mortality a one is assigned to the particular variable, otherwise a zero is assigned. These binary variables are used in a logistic regression (LR) model, and its coefficients were rounded to the nearest integer. The resulting integers are the point values that make up the score when multiplied with each binary variables and summed. The one-year mortality probability was estimated using the score as the only variable in a LR model. Predictive power of the score, was evaluated using the 1695 admissions of the validation subset obtaining an area under the receiver operating characteristic curve of 0.7528, which outperforms the results obtained with Sequential Organ Failure Assessment (SOFA), Oxford Acute Severity of Illness Score (OASIS) and Simplified Acute Physiology Score II (SAPSII) scores on the same validation subset. Observed and predicted mortality rates within estimated probabilities deciles were compared graphically and found to be similar, indicating that the risk estimate obtained with the score is close to the observed mortality, it is also observed that the number of events (deaths) is indeed increasing as the outcome go from the decile with the lowest probabilities to the decile with the highest probabilities. Sepsis is a syndrome that carries a high mortality, 43.3% for the patients included in this study; therefore, tools that help clinicians to quickly and accurately predict a worse prognosis are needed. This work demonstrates the importance of customization of mortality prediction scores since the developed score provides better performance than traditional scoring systems.

Keywords: intensive care, logistic regression model, mortality prediction, sepsis, severity of illness, stochastic gradient boosting

Procedia PDF Downloads 226
1680 Using Google Distance Matrix Application Programming Interface to Reveal and Handle Urban Road Congestion Hot Spots: A Case Study from Budapest

Authors: Peter Baji

Abstract:

In recent years, a growing body of literature emphasizes the increasingly negative impacts of urban road congestion in the everyday life of citizens. Although there are different responses from the public sector to decrease traffic congestion in urban regions, the most effective public intervention is using congestion charges. Because travel is an economic asset, its consumption can be controlled by extra taxes or prices effectively, but this demand-side intervention is often unpopular. Measuring traffic flows with the help of different methods has a long history in transport sciences, but until recently, there was not enough sufficient data for evaluating road traffic flow patterns on the scale of an entire road system of a larger urban area. European cities (e.g., London, Stockholm, Milan), in which congestion charges have already been introduced, designated a particular zone in their downtown for paying, but it protects only the users and inhabitants of the CBD (Central Business District) area. Through the use of Google Maps data as a resource for revealing urban road traffic flow patterns, this paper aims to provide a solution for a fairer and smarter congestion pricing method in cities. The case study area of the research contains three bordering districts of Budapest which are linked by one main road. The first district (5th) is the original downtown that is affected by the congestion charge plans of the city. The second district (13th) lies in the transition zone, and it has recently been transformed into a new CBD containing the biggest office zone in Budapest. The third district (4th) is a mainly residential type of area on the outskirts of the city. The raw data of the research was collected with the help of Google’s Distance Matrix API (Application Programming Interface) which provides future estimated traffic data via travel times between freely fixed coordinate pairs. From the difference of free flow and congested travel time data, the daily congestion patterns and hot spots are detectable in all measured roads within the area. The results suggest that the distribution of congestion peak times and hot spots are uneven in the examined area; however, there are frequently congested areas which lie outside the downtown and their inhabitants also need some protection. The conclusion of this case study is that cities can develop a real-time and place-based congestion charge system that forces car users to avoid frequently congested roads by changing their routes or travel modes. This would be a fairer solution for decreasing the negative environmental effects of the urban road transportation instead of protecting a very limited downtown area.

Keywords: Budapest, congestion charge, distance matrix API, application programming interface, pilot study

Procedia PDF Downloads 204
1679 Biocompatibility assessment of different origin Barrier Membranes for Guided Bone Regeneration

Authors: Antonio Munar-Frau, Sascha Klismoch, Manfred Schmolz, Federico Hernandez-Alfaro, Jordi Caballe-Serrano

Abstract:

Introduction: Biocompatibility of biomaterials has been proposed as one of the main criteria for treatment success. For guided bone regeneration (GBR), barrier membranes present a conflict given the number of origins and modifications of these materials. The biologic response to biomaterials is orchestrated by a series of events leading to the integration or rejection of the biomaterial, posing questions such as if a longer occlusive property may trigger an inflammatory reaction. Whole blood cultures are a solution to study the immune response to drugs or biomaterials during the first 24-48 hours. The aim of this study is to determine the early immune response of different origins and chemical modifications of barrier membranes. Materials & Methods: 5 different widely used barrier membranes were included in this study: Acellular dermal matrix (AlloDerm, LifeCell®), Porcine Peritoneum (BioGide, Geistlich Pharma®), Porcine Pericardium (Jason, Botiss Biomaterials GmbH®), Porcine Cross-linked collagen (Ossix Plus, Datum Dental®) and d-PTFE (Cytoplast TXT, Osteogenics Biomedical®). Blood samples were extracted from 3 different healthy donors and incubated with the different samples of barrier membranes for 24 hours. After the incubation time, serum samples were obtained and analyzed by means of biocompatibility assays taking into account 42 markers. Results: In an early stage of the inflammatory response, the Acellular dermal matrix, porcine peritoneum and porcine cross-linked collagen expressed similar patterns of cytokine expression with a great manifestation of ENA 78. Porcine pericardium and d-PTFE presented similar cytokine activation, especially for MMP-3 and MMP-9, although other cytokines were highlighted with lower expression. For the later immune response, Porcine peritoneum and acellular dermal matrix MCP-1 and IL-15 were evident. Porcine pericardium, porcine cross-linked collagen and d-PTFE presented a high expression of IL-16 and lower manifestation of other cytokines. Different behaviors depending on an earlier or later stage of the inflammation process were observed. Barrier membrane inflammatory expression does not only differ depending on the origin, variables such as treatment of the collagen and polymers may also have a great impact on the cytokine expression of the studied barrier membranes during inflammation. Conclusions: Surface treatment and modifications might affect the biocompatibility of the membranes, as different cytokine expressions were evidently depending on the origin of the biomaterial. This study is only a brushstroke regarding the biocompatibility of materials, as it is one of the pioneer studies for ex vivo barrier membranes assays. Studies regarding surface modification are needed in order to clarify mystifications of barrier membrane science.

Keywords: biomaterials, bone regeneration, biocompatibility, inflammation

Procedia PDF Downloads 163
1678 Preparation of Novel Silicone/Graphene-based Nanostructured Surfaces as Fouling Release Coatings

Authors: Mohamed S. Selim, Nesreen A. Fatthallah, Shimaa A. Higazy, Zhifeng Hao, Ping Jing Mo

Abstract:

As marine fouling-release (FR) surfaces, two new superhydrophobic nanocomposite series of polydimethylsiloxane (PDMS) loaded with reduced graphene oxide (RGO) and graphene oxide/boehmite nanorods (GO-γ-AlOOH) nanofillers were created. The self-cleaning and antifouling capabilities were modified by controlling the nanofillers' shapes and distribution in the silicone matrix. With an average diameter of 10-20 nm and a length of 200 nm, γ-AlOOH nanorods showed a single crystallinity. RGO was made using a hydrothermal process, whereas GO-γ-AlOOH nanocomposites were made using a chemical deposition method for use as fouling-release coating materials. These nanofillers were disseminated in the silicone matrix using the solution casting method to explore the synergetic effects of graphene-based materials on the surface, mechanical, and FR characteristics. Water contact angle (WCA), scanning electron, and atomic force microscopes were used to investigate the surface's hydrophobicity and antifouling capabilities (SEM and AFM). The roughness, superhydrophobicity, and surface mechanical characteristics of coatings all increased the homogeneity of the nanocomposite dispersion. To examine the antifouling effects of the coating systems, laboratory tests were conducted for 30 days using specified bacteria.PDMS/GO-γ-AlOOH nanorod composite demonstrated superior antibacterial efficacy against several bacterial strains than PDMS/RGO nanocomposite. The high surface area and stabilizing effects of the GO-γ-AlOOH hybrid nanofillers are to blame for this. The biodegradability percentage of the PDMS/GO-γ-AlOOH nanorod composite (3 wt.%) was the lowest (1.6%), while the microbial endurability percentages for gram-positive, gram-negative, and fungi were 86.42%, 97.94%, and 85.97%, respectively. The homogeneity of the GO-γ-AlOOH (3 wt.%) dispersion, which had a WCA of 151° and a rough surface, was the most profound superhydrophobic antifouling nanostructured coating.

Keywords: superhydrophobic nanocomposite, fouling release, nanofillers, surface coating

Procedia PDF Downloads 239