Search results for: soil microbial biomass
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 4477

Search results for: soil microbial biomass

3517 Application of Electrochemically Prepared PPy/MWCNT:MnO2 Nano-Composite Film in Microbial Fuel Cells for Sustainable Power Generation

Authors: Rajeev jain, D. C. Tiwari, Praveena Mishra

Abstract:

Nano-composite of polypyrrole/multiwalled carbon nanotubes:mangenese oxide (PPy/MWCNT:MnO2) was electrochemically deposited on the surface of carbon cloth (CC). The nano-composite was structurally characterized by FTIR, SEM, TEM and UV-Vis studies. Nano-composite was also characterized by cyclic voltammetry (CV), current voltage measurements (I-V) and the optical band gaps of film were evaluated from UV-Vis absorption studies. The PPy/MWCNT:MnO2 nano-composite was used as anode in microbial fuel cell (MFC) for sewage waste water treatment, power and coulombic efficiency measurement. The prepared electrode showed good electrical conductivity (0.1185 S m-1). This was also supported by band gap measurements (direct 0.8 eV, indirect 1.3 eV). The obtained maximum power density was 1125.4 mW m-2, highest chemical oxygen demand (COD) removal efficiency was 93% and the maximum coulombic efficiency was 59%. For the first time PPy/MWCNT:MnO2 nano-composite for MFC prepared from nano-composite electrode having the potential for the use in MFC with good stability and better adhesion of microbes is being reported. The SEM images confirm the growth and development of microbe’s colony.

Keywords: carbon cloth, electro-polymerization, functionalization, microbial fuel cells, multi walled carbon nanotubes, polypyrrole

Procedia PDF Downloads 246
3516 The Effect of Additive Acid on the Phytoremediation Efficiency

Authors: G. Hosseini, A. Sadighzadeh, M. Rahimnejad, N. Hosseini, Z. Jamalzadeh

Abstract:

Metal pollutants, especially heavy metals from anthropogenic sources such as metallurgical industries’ waste including mining, smelting, casting or production of nuclear fuel, including mining, concentrate production and uranium processing ends in the environment contamination (water and soil) and risk to human health around the facilities of this type of industrial activity. There are different methods that can be used to remove these contaminants from water and soil. These are very expensive and time-consuming. In this case, the people have been forced to leave the area and the decontamination is not done. For example, in the case of Chernobyl accident, an area of 30 km around the plant was emptied of human life. A very efficient and cost-effective method for decontamination of the soil and the water is phytoremediation. In this method, the plants preferentially native plants which are more adaptive to the regional climate are well used. In this study, three types of plants including Alfalfa, Sunflower and wheat were used to Barium decontamination. Alfalfa and Sunflower were not grown good enough in Saghand mine’s soil sample. This can be due to non-native origin of these plants. But, Wheat rise in Saghand Uranium Mine soil sample was satisfactory. In this study, we have investigated the effect of 4 types of acids inclusive nitric acid, oxalic acid, acetic acid and citric acid on the removal efficiency of Barium by Wheat. Our results indicate the increase of Barium absorption in the presence of citric acid in the soil. In this paper, we will present our research and laboratory results.

Keywords: phytoremediation, heavy metal, wheat, soil

Procedia PDF Downloads 320
3515 A Review on Geomembrane Characteristics and Application in Geotechnical Engineering

Authors: Sandra Ghavam Shirazi, Komeil Valipourian, Mohammad Reza Golhashem

Abstract:

This paper represents the basic idea and mechanisms associated with the durability of geomembranes and discusses the factors influencing the service life and temperature of geomembrane liners. Geomembrane durability is stated as field performance and laboratory test outcomes under various conditions. Due to the high demand of geomembranes as landfill barriers and their crucial role in sensitive projects, sufficient service life of geomembranes is very important, therefore in this paper, the durability, the effect of temperature on geomembrane and the role of this type of reinforcement in different types of soil will be discussed. Also, the role of geomembrane in the earthquake will be considered in the last part of the paper.

Keywords: geomembrane, durability temperature soil mechanic, soil

Procedia PDF Downloads 287
3514 Production of Organic Solvent Tolerant Hydrolytic Enzymes (Amylase and Protease) by Bacteria Isolated from Soil of a Dairy Farm

Authors: Alok Kumar, Hari Ram, Lebin Thomas, Ved Pal Singh

Abstract:

Organic solvent tolerant amylases and proteases of microbial origin are in great demand for their application in transglycosylation of water-insoluble flavanoids and in peptide synthesizing reaction in organic media. Most of the amylases and proteases are unstable in presence of organic solvent. In the present work two different bacterial strains M-11 and VP-07 were isolated from the soil sample of a dairy farm in Delhi, India, for the efficient production of extracellular amylase and protease through their screening on starch agar (SA) and skimmed milk agar (SMA) plates, respectively. Both the strains (M-11 and VP-07) were identified based on morphological, biochemical and 16S rRNA gene sequencing methods. After analysis through Ez-Taxon software, the strains M-11 and VP-07 were found to have maximum pairwise similarity of 98.63% and 100% with Bacillus subtilis subsp. inaquosorum BGSC 3A28 and Bacillus anthracis ATCC 14578 and were therefore identified as Bacillus sp. UKS1 and Bacillus sp. UKS2, respectively. Time course study of enzyme activity and bacterial growth has shown that both strains exhibited typical sigmoid growth behavior and maximum production of amylase (180 U/ml) and protease (78 U/ml) by these strains (UKS1 and UKS2) was commenced during stationary phase of growth at 24 and 20 h, respectively. Thereafter, both amylase and protease were tested for their tolerance towards organic solvents and were found to be active as well stable in p-xylene (130% and 115%), chloroform (110% and 112%), isooctane (119% and 107%), benzene (121% and 104%), n-hexane (116% and 103%) and toluene (112% and 101%, respectively). Owing to such properties, these enzymes can be exploited for their potential application in industries for organic synthesis.

Keywords: amylase, enzyme activity, industrial applications, organic solvent tolerant, protease

Procedia PDF Downloads 328
3513 Supercritical Hydrothermal and Subcritical Glycolysis Conversion of Biomass Waste to Produce Biofuel and High-Value Products

Authors: Chiu-Hsuan Lee, Min-Hao Yuan, Kun-Cheng Lin, Qiao-Yin Tsai, Yun-Jie Lu, Yi-Jhen Wang, Hsin-Yi Lin, Chih-Hua Hsu, Jia-Rong Jhou, Si-Ying Li, Yi-Hung Chen, Je-Lueng Shie

Abstract:

Raw food waste has a high-water content. If it is incinerated, it will increase the cost of treatment. Therefore, composting or energy is usually used. There are mature technologies for composting food waste. Odor, wastewater, and other problems are serious, but the output of compost products is limited. And bakelite is mainly used in the manufacturing of integrated circuit boards. It is hard to directly recycle and reuse due to its hard structure and also difficult to incinerate and produce air pollutants due to incomplete incineration. In this study, supercritical hydrothermal and subcritical glycolysis thermal conversion technology is used to convert biomass wastes of bakelite and raw kitchen wastes to carbon materials and biofuels. Batch carbonization tests are performed under high temperature and pressure conditions of solvents and different operating conditions, including wet and dry base mixed biomass. This study can be divided into two parts. In the first part, bakelite waste is performed as dry-based industrial waste. And in the second part, raw kitchen wastes (lemon, banana, watermelon, and pineapple peel) are used as wet-based biomass ones. The parameters include reaction temperature, reaction time, mass-to-solvent ratio, and volume filling rates. The yield, conversion, and recovery rates of products (solid, gas, and liquid) are evaluated and discussed. The results explore the benefits of synergistic effects in thermal glycolysis dehydration and carbonization on the yield and recovery rate of solid products. The purpose is to obtain the optimum operating conditions. This technology is a biomass-negative carbon technology (BNCT); if it is combined with carbon capture and storage (BECCS), it can provide a new direction for 2050 net zero carbon dioxide emissions (NZCDE).

Keywords: biochar, raw food waste, bakelite, supercritical hydrothermal, subcritical glycolysis, biofuels

Procedia PDF Downloads 160
3512 Microbial Pathogens Associated with Banded Sugar Ants (Camponotus consobrinus) in Calabar, Nigeria

Authors: Ofonime Ogba, Augustine Akpan

Abstract:

Objectives and Goals: The study was aimed at determining pathogenic microbial carriage on the external body parts of Camponotus consobrinus which is also known as the banded sugar ant because of its liking for sugar and sweet food. The level of pathogenic microbial carriage of Camponotus consobrinus in association to the environment in which they have been collected is not known. Methods: The ants were purposively collected from four locations including the kitchens, bedroom of various homes, food shops, and bakeries. The sample collection took place within the hours of 6:30 pm to 11:00 pm. The ants were trapped in transparent plastic containers of which sugar, pineapple peels, sugar cane and soft drinks were used as bait. The ants were removed with a sterile spatula and put in 10mls of peptone water in sterile universal bottles. The containers were vigorously shaken to wash the external surface of the ant. It was left overnight and transported to the Microbiology Laboratory, University of Calabar Teaching Hospital for analysis. The overnight peptone broths were inoculated on Chocolate agar, Blood agar, Cystine Lactose Electrolyte-Deficient agar (CLED) and Sabouraud dextrose agar. Incubation was done aerobically and in a carbon dioxide jar for 24 to 48 hours at 37°C. Isolates were identified based on colonial characteristics, Gram staining, and biochemical tests. Results: Out of the 250 Camponotus consobrinus caught for the study, 90(36.0%) were caught in the kitchen, 75(30.0%) in the bedrooms 40(16.0%) in the bakery while 45(18.0%) were caught in the shops. A total of 82.0% prevalence of different microbial isolates was associated with the ants. The kitchen had the highest number of isolates 75(36.6%) followed by the bedroom 55(26.8%) while the bakery recorded the lowest number of isolates 35(17.1%). The profile of micro-organisms associated with Camponotus consobrinus was Escherichia coli 73(30.0%), Morganella morganii 45(18.0%), Candida species 25(10.0%), Serratia marcescens 10(4.0%) and Citrobacter freundii 10(4.0%). Conclusion: Most of the Camponotus consobrinus examined in the four locations harboured potential pathogens. The presence of ants in homes and shops can facilitate the propagation and spread of pathogenic microorganisms. Therefore, the development of basic preventive measures and the control of ants must be taken seriously.

Keywords: Camponotus consobrinus, potential pathogens, microbial isolates, spread

Procedia PDF Downloads 147
3511 The Role of Microbe-Microplastics Associations in Marine Nematode Feeding Behaviors

Authors: A. Ridall, J. Ingels

Abstract:

Microplastics (MPs; < 5 mm) have been cited as exceptionally detrimental to marine organisms and ocean health. They can carry other pollutants and abundant microbes that can serve as food for other organisms. Their small particle size and high abundance means that non-discriminatory feeders may ingest MPs involuntarily and microbial colonization of the particles (a niche coined ‘Plastisphere’) could facilitate particle ingestion. To assess how marine nematodes, the most abundant member of the meiofauna (32-500 um), are affected by microbe-MP associations, an experiment was conducted with three MP concentrations (low, medium, and expected high values of MPs in a local bay system), and two levels of microbe-MP associations (absence or presence). MPs were introduced into sediment microcosms and treatments were removed at three distinct time points (0, 3, and 7 days) to measure mean MP consumption/individual nematode. The quantitative results from this work should inform on microbial facilitation of MP ingestion and MP effects on seafloor ecology. As most MP feeding experiments use straight-from-package or sterile MPs, this work represents an important step in realizing the effects of MPs and their plastispheres in coastal sediments where they likely accumulate microbial biofilms prior to their ingestion by marine metazoans. Furthermore, the results here convey realistic effects of MPs on faunal behaviors, as the MP concentrations used are based on field measurements rather than artificially high levels.

Keywords: ecosystem function, microbeads, plastisphere, pollution, polyethylene

Procedia PDF Downloads 79
3510 Assessment of Heavy Metal Contamination in Soil and Groundwater Due to Leachate Migration from an Open Dumping Site

Authors: Kali Prasad Sarma

Abstract:

Indiscriminate disposal of municipal solid waste (MSW) in open dumping site is a common scenario in developing countries like India which poses a risk to the environment as well as human health. The objective of the present investigation was to find out the concentration of heavy metals (Pb, Cr, Ni, Mn, Zn, Cu, and Cd) and other physicochemical parameters of leachate and soil collected from an open dumping site of Tezpur town, Assam, India and its associated potential ecological risk. Tezpur is an urban agglomeration coming under the category of Class I UAs/Towns with a population of 105,377 as per data released by Government of India for Census 2011. Impact of the leachate on the groundwater was also addressed in our study. The concentrations of heavy metals were determined using ICP-OES. Energy dispersive X-Ray (SEM-EDS) microanalysis was also conducted to see the presence of the studied metals in the soil. X-Ray diffraction analysis (XRD) and Fourier Transform Infrared (FTIR) spectroscopy were also used to identify dominant minerals present in the soil samples. The trend of measured heavy metals in the soil samples was found in the following order: Mn > Pb > Cu > Zn > Cr > Ni > Cd. The assessment of heavy metal contamination in the soil was carried out by calculating enrichment factor (EF), geo-accumulation index (Igeo), contamination factor (Cfi), degree of contamination (Cd), pollution load index (PLI) and ecological risk factor (Eri). The study showed that the concentrations of Pb, Cu, and Cd were much higher than their respective average shale value and the EF of the soil samples depicted very severe enrichment for Pb, Cu, and Cd; moderate enrichment for Cr and Zn. Calculated Igeo values indicated that the soil is moderate to strongly contaminated with Pb and uncontaminated to moderately contaminated with Cd and Cu. The Cfi value for Pb indicates a very strong contamination level of the metal in the soil. The Cfi values for Cu and Cd were 2.37 and 1.65 respectively indicating moderate contamination level. To apportion the possible sources of heavy metal contamination in soil, principal components analysis (PCA) has been adopted. From the leachate, heavy metals are accumulated at the dumping site soil which could easily percolate through the soil and reach the groundwater. The possible relation of groundwater contamination due to leachate percolation was examined by analyzing the heavy metal concentrations in groundwater with respect to distance from the dumping site. The concentrations of Cd and Pb in groundwater (at a distance of 20m from dumping site) exceeded the permissible limit for drinking water as set by WHO. Occurrence of elevated concentration of potentially toxic heavy metals such as Pb and Cd in groundwater and soil are much environmental concern as it is detrimental to human health and ecosystem.

Keywords: groundwater, heavy metal contamination, leachate, open dumping site

Procedia PDF Downloads 94
3509 The Role of Agroforestry Practices in Climate Change Mitigation in Western Kenya

Authors: Humphrey Agevi, Harrison Tsingalia, Richard Onwonga, Shem Kuyah

Abstract:

Most of the world ecosystems have been affected by the effects of climate change. Efforts have been made to mitigate against climate change effects. While most studies have been done in forest ecosystems and pure plant plantations, trees on farms including agroforestry have only received attention recently. Agroforestry systems and tree cover on agricultural lands make an important contribution to climate change mitigation but are not systematically accounted for in the global carbon budgets. This study sought to: (i) determine tree diversity in different agroforestry practices; (ii) determine tree biomass in different agroforestry practices. Study area was determined according to the Land degradation surveillance framework (LSDF). Two study sites were established. At each of the site, a 5km x 10km block was established on a map using Google maps and satellite images. Way points were then uploaded in a GPS helped locate the blocks on the ground. In each of the blocks, Nine (8) sentinel clusters measuring 1km x 1km were randomized. Randomization was done in a common spreadsheet program and later be downloaded to a Global Positioning System (GPS) so that during surveys the researchers were able to navigate to the sampling points. In each of the sentinel cluster, two farm boundaries were randomly identified for convenience and to avoid bias. This led to 16 farms in Kakamega South and 16 farms in Kakamega North totalling to 32 farms in Kakamega Site. Species diversity was determined using Shannon wiener index. Tree biomass was determined using allometric equation. Two agroforestry practices were found; homegarden and hedgerow. Species diversity ranged from 0.25-2.7 with a mean of 1.8 ± 0.10. Species diversity in homegarden ranged from 1-2.7 with a mean of 1.98± 0.14. Hedgerow species diversity ranged from 0.25-2.52 with a mean of 1.74± 0.11. Total Aboveground Biomass (AGB) determined was 13.96±0.37 Mgha-1. Homegarden with the highest abundance of trees had higher above ground biomass (AGB) compared to hedgerow agroforestry. This study is timely as carbon budgets in the agroforestry can be incorporated in the global carbon budgets and improve the accuracy of national reporting of greenhouse gases.

Keywords: agroforestry, allometric equations, biomass, climate change

Procedia PDF Downloads 340
3508 Modelling the Effect of Biomass Appropriation for Human Use on Global Biodiversity

Authors: Karina Reiter, Stefan Dullinger, Christoph Plutzar, Dietmar Moser

Abstract:

Due to population growth and changing patterns of production and consumption, the demand for natural resources and, as a result, the pressure on Earth’s ecosystems are growing. Biodiversity mapping can be a useful tool for assessing species endangerment or detecting hotspots of extinction risks. This paper explores the benefits of using the change in trophic energy flows as a consequence of the human alteration of the biosphere in biodiversity mapping. To this end, multiple linear regression models were developed to explain species richness in areas where there is no human influence (i.e. wilderness) for three taxonomic groups (birds, mammals, amphibians). The models were then applied to predict (I) potential global species richness using potential natural vegetation (NPPpot) and (II) global ‘actual’ species richness after biomass appropriation using NPP remaining in ecosystems after harvest (NPPeco). By calculating the difference between predicted potential and predicted actual species numbers, maps of estimated species richness loss were generated. Results show that biomass appropriation for human use can indeed be linked to biodiversity loss. Areas for which the models predicted high species loss coincide with areas where species endangerment and extinctions are recorded to be particularly high by the International Union for Conservation of Nature and Natural Resources (IUCN). Furthermore, the analysis revealed that while the species distribution maps of the IUCN Red List of Threatened Species used for this research can determine hotspots of biodiversity loss in large parts of the world, the classification system for threatened and extinct species needs to be revised to better reflect local risks of extinction.

Keywords: biodiversity loss, biomass harvest, human appropriation of net primary production, species richness

Procedia PDF Downloads 117
3507 Role of Microbial Pesticides in Pest Control and Their Advantages and Disadvantages in Nature

Authors: Fatimah M. Alshehrei

Abstract:

For many years, synthetic pesticides have been used to kill pests; due to their toxicity and pollution, they are now a risk to human and environmental health. Lately, biopesticides have emerged as possible substitutes for petrochemical pesticides. The sources of biopesticides are widely accessible, easily biodegradable, have a variety of modes of action, are less expensive, and have little toxicity toward humans and other creatures that aren't the intended targets. Plants, bacteria, and insects are used to create biopesticides, they used in controlling diseases in crops. Microbial pesticides are produced from different microorganisms such as Trichoderma, Bacillus, Pseudomonas, and Beauveria. Also, botanical pesticides have already been commercialized; they are extracted from neem, pyrethrum, azadirachtin, etc. This paper describes biopesticide categories, their sources, mode of action, advantages and disadvantages, and their role in sustainable agriculture.

Keywords: biopesticides categories, formulation, mode of action, pest control

Procedia PDF Downloads 45
3506 Potato Production under Brakish Water and Compost Use

Authors: Samih Abubaker, Amjad Abuserhan, Ghandi Anfoka

Abstract:

Potato yield reduction and soil salt accumulation are the main obstacles of using brackish water in irrigation. This study was carried out at Al- Balqa` Applied University research station, to investigate the impact of compost use on potato production and salt accumulation in the soil under brackish water, during 2014 growing season. Whole tubers of three imported potato cultivars (Spunta, Faluka and Ammbetion) were planted in pots with different soil and compost percentages (0, 20, 40, 60, 80, and 100%) and were irrigated with three water salinity levels (1.25, 5 and 10 ds/cm). A split-split plot design was used, where potato cultivars were arranged in the main plots, the brackish water treatments were in the sub-main and the soil amended treatments were in the sub-sub plots. Potato yield was generally decreased only when pots were irrigated by water of 10 ds/cm salinity compared with 1.25 and 5 ds/cm. Drainage water salinity, however, was increased as compost percentage increased. Nevertheless, salt accumulation in the growing media was decreased as the compost percentage level increased. Therefore, it can be concluded that brackish water, up to 5 ds/cm can be used to irrigate potato especially, when organic amendments were added to the soil to promote plant growth, yield and reduce salt accumulation.

Keywords: brackish water, compost, potato, salt accumulation

Procedia PDF Downloads 299
3505 Effect of Silt Presence on Shear Strength Parameters of Unsaturated Sandy Soils

Authors: R. Ziaie Moayed, E. Khavaninzadeh, M. Ghorbani Tochaee

Abstract:

Direct shear test is widely used in soil mechanics experiment to determine the shear strength parameters of granular soils. For analysis of soil stability problems such as bearing capacity, slope stability and lateral pressure on soil retaining structures, the shear strength parameters must be known well. In the present study, shear strength parameters are determined in silty-sand mixtures. Direct shear tests are performed on 161 Firoozkooh sand with different silt content at a relative density of 70% in three vertical stress of 100, 150, and 200 kPa. Wet tamping method is used for soil sample preparation, and the results include diagrams of shear stress versus shear deformation and sample height changes against shear deformation. Accordingly, in different silt percent, the shear strength parameters of the soil such as internal friction angle and dilation angle are calculated and compared. According to the results, when the sample contains up to 10% silt, peak shear strength and internal friction angle have an upward trend. However, if the sample contains 10% to 50% of silt a downward trend is seen in peak shear strength and internal friction angle.

Keywords: shear strength parameters, direct shear test, silty sand, shear stress, shear deformation

Procedia PDF Downloads 148
3504 Microwave-Assisted Torrefaction of Teakwood Biomass Residues: The Effect of Power Level and Fluid Flows

Authors: Lukas Kano Mangalla, Raden Rinova Sisworo, Luther Pagiling

Abstract:

Torrefaction is an emerging thermo-chemical treatment process that aims to improve the quality of biomass fuels. This study focused on upgrading the waste teakwood through microwave torrefaction processes and investigating the key operating parameters to improve energy density for the quality of biochar production. The experiments were carried out in a 250 mL reactor placed in a microwave cavity on two different media, inert and non-inert. The microwave was operated at a frequency of 2.45GHz with power level variations of 540W, 720W, and 900W, respectively. During torrefaction processes, the nitrogen gas flows into the reactor at a rate of 0.125 mL/min, and the air flows naturally. The temperature inside the reactor was observed every 0.5 minutes for 20 minutes using a K-Type thermocouple. Changes in the mass and the properties of the torrefied products were analyzed to predict the correlation between calorific value, mass yield, and level power of the microwave. The results showed that with the increase in the operating power of microwave torrefaction, the calorific value and energy density of the product increased significantly, while mass and energy yield tended to decrease. Air can be a great potential media for substituting the expensive nitrogen to perform the microwave torrefaction for teakwood biomass.

Keywords: torrefaction, microwave heating, energy enhancement, mass and energy yield

Procedia PDF Downloads 74
3503 Numerical Simulation of Different Configurations for a Combined Gasification/Carbonization Reactors

Authors: Mahmoud Amer, Ibrahim El-Sharkawy, Shinichi Ookawara, Ahmed Elwardany

Abstract:

Gasification and carbonization are two of the most common ways for biomass utilization. Both processes are using part of the waste to be accomplished, either by incomplete combustion or for heating for both gasification and carbonization, respectively. The focus of this paper is to minimize the part of the waste that is used for heating biomass for gasification and carbonization. This will occur by combining both gasifiers and carbonization reactors in a single unit to utilize the heat in the product biogas to heating up the wastes in the carbonization reactors. Three different designs are proposed for the combined gasification/carbonization (CGC) reactor. These include a parallel combination of two gasifiers and carbonized syngas, carbonizer and combustion chamber, and one gasifier, carbonizer, and combustion chamber. They are tested numerically using ANSYS Fluent Computational Fluid Dynamics to ensure homogeneity of temperature distribution inside the carbonization part of the CGC reactor. 2D simulations are performed for the three cases after performing both mesh-size and time-step independent solutions. The carbonization part is common among the three different cases, and the difference among them is how this carbonization reactor is heated. The simulation results showed that the first design could provide only partial homogeneous temperature distribution, not across the whole reactor. This means that the produced carbonized biomass will be reduced as it will only fill a specified height of the reactor. To keep the carbonized product production high, a series combination is proposed. This series configuration resulted in a uniform temperature distribution across the whole reactor as it has only one source for heat with no temperature distribution on any surface of the carbonization section. The simulations provided a satisfactory result that either the first parallel combination of gasifier and carbonization reactor could be used with a reduced carbonized amount or a series configuration to keep the production rate high.

Keywords: numerical simulation, carbonization, gasification, biomass, reactor

Procedia PDF Downloads 89
3502 Investigation of Static Stability of Soil Slopes Using Numerical Modeling

Authors: Seyed Abolhasan Naeini, Elham Ghanbari Alamooti

Abstract:

Static stability of soil slopes using numerical simulation by a finite element code, ABAQUS, has been investigated, and safety factors of the slopes achieved in the case of static load of a 10-storey building. The embankments have the same soil condition but different loading distance from the slope heel. The numerical method for estimating safety factors is 'Strength Reduction Method' (SRM). Mohr-Coulomb criterion used in the numerical simulations. Two steps used for measuring the safety factors of the slopes: first is under gravity loading, and the second is under static loading of a building near the slope heel. These safety factors measured from SRM, are compared with the values from Limit Equilibrium Method, LEM. Results show that there is good agreement between SRM and LEM. Also, it is seen that by increasing the distance from slope heel, safety factors increases.

Keywords: limit equilibrium method, static stability, soil slopes, strength reduction method

Procedia PDF Downloads 144
3501 The Composting Process from a Waste Management Method to a Remediation Procedure

Authors: G. Petruzzelli, F. Pedron, M. Grifoni, F. Gorini, I. Rosellini, B. Pezzarossa

Abstract:

Composting is a controlled technology to enhance the natural aerobic process of organic wastes degradation. The resulting product is a humified material that is principally recyclable for agricultural purpose. The composting process is one of the most important tools for waste management, by the European Community legislation. In recent years composting has been increasingly used as a remediation technology to remove biodegradable contaminants from soil, and to modulate heavy metals bioavailability in phytoremediation strategies. An optimization in the recovery of resources from wastes through composting could enhance soil fertility and promote its use in the remediation biotechnologies of contaminated soils.

Keywords: agriculture, biopile, compost, soil clean-up, waste recycling

Procedia PDF Downloads 300
3500 Methods for Preparation of Soil Samples for Determination of Trace Elements

Authors: S. Krustev, V. Angelova, K. Ivanov, P. Zaprjanova

Abstract:

It is generally accepted that only about ten microelements are vitally important to all plants, and approximately ten more elements are proved to be significant for the development of some species. The main methods for their determination in soils are the atomic spectral techniques - AAS and ICP-OAS. Critical stage to obtain correct results for content of heavy metals and nutrients in the soil is the process of mineralization. A comparative study of the most widely spread methods for soil sample preparation for determination of some trace elements was carried out. Three most commonly used methods for sample preparation were used as follows: ISO11466, EPA Method 3051 and BDS ISO 14869-1. Their capabilities were assessed and their bounds of applicability in determining the levels of the most important microelements in agriculture were defined.

Keywords: analysis, copper, methods, zinc

Procedia PDF Downloads 244
3499 Erosion Susceptibility Zoning and Prioritization of Micro-Watersheds: A Remote Sensing-Gis Based Study of Asan River Basin, Western Doon Valley, India

Authors: Pijush Roy, Vinay Kumar Rai

Abstract:

The present study highlights the estimation of soil loss and identification of critical area for implementation of best management practice is central to the success of soil conservation programme. The quantification of morphometric and Universal Soil Loss Equation (USLE) factors using remote sensing and GIS for prioritization of micro-watersheds in Asan River catchment, western Doon valley at foothills of Siwalik ranges in the Dehradun districts of Uttarakhand, India. The watershed has classified as a dendritic pattern with sixth order stream. The area is classified into very high, high, moderately high, medium and low susceptibility zones. High to very high erosion zone exists in the urban area and agricultural land. Average annual soil loss of 64 tons/ha/year has been estimated for the watershed. The optimum management practices proposed for micro-watersheds of Asan River basin are; afforestation, contour bunding suitable sites for water harvesting structure as check dam and soil conservation, agronomical measure and bench terrace.

Keywords: erosion susceptibility zones, morphometric characteristics, prioritization, remote sensing and GIS, universal soil loss equation

Procedia PDF Downloads 289
3498 Application of Phenol Degrading Microorganisms for the Treatment of Olive Mill Waste (OMW)

Authors: M. A. El-Khateeb

Abstract:

The growth of the olive oil production in Saudi Arabia peculiarly in Al Jouf region in recent years has been accompanied by an increase in the discharge of associated processing waste. Olive mill waste is produced throughout the extraction of oil from the olive fruit using the traditional mill and press process. Deterioration of the environment due to olive mill disposal wastes is a serious problem. When olive mill waste disposed into the soil, it affects soil quality, soil micro flora, and also toxic to plants. The aim of this work is to isolate microorganism (bacterial or fungal strains) from OMW capable of degrading phenols. Olive mill wastewater, olive mill waste and soil (beside oil production mill) contaminated with olive waste were used for isolation of phenol tolerant microorganisms. Four strains (two fungal and two bacterial) were isolated from olive mill waste. The isolated strains were Candida tropicalis and Phanerochaete chrysosporium (fungal strains) and Bacillus sp. and Rhodococcus sp. (bacterial strains). These strains were able to degrade phenols and could be used for bioremediation of olive mill waste.

Keywords: bioremediation, bacteria, fungi, Sakaka

Procedia PDF Downloads 347
3497 Influence of Gold Nanoparticles on NiAlZr Type Layered Double Hydroxide for the Catalytic Transfer Oxidation of Biomass Derived Aldehydes

Authors: Nihel Dib, Redouane Bachir, Ghezlane Berrahou, Chaima Zoulikha Tabet Zatla, Sumeya Bedrane, Ginessa Blanco Montilla, Jose Juan Calvino Gamez

Abstract:

In recent decades, the world’s population has rapidly increased annually, resulting in the consumption of huge amounts of conventional non-renewable petroleum-based resources at an alarming rate. The scarcity of such resources will shut down the corresponding industries and consequently have negative effects on the well-being of humanity. Accordingly, to combat the forthcoming crises and to serve the ever-growing demands, seeking potentially sustainable resources such as geothermal, wind, solar, and biomass has become an active field of study. Currently, lignocellulosic biomass, one of the world’s most plentiful resources, is acknowledged as a cost-effective material that has drawn great interest from many researchers since it has substantial energy potential as well as containing useful C5 and C6 sugars. These C5 and C6 sugars are the key reactants for the production of the valuable 16-platform chemicals such as 5-hydroxymethyl furfural, furfural, levulinic acid, succinic acid, and fumaric acid, all of which are crucial intermediates for synthesizing high-value bio-based chemicals and polymers. Succinic acid (SA) has been predicted to make a significant contribution to the global bio-based economy soon since it serves as a C4 building block that is used in a wide spectrum of industries, including biopolymers, solvents, and pharmaceuticals. In the present work, we modify the HDL MgAl with Zr to try to create acid sites on the supports and deposit gold by deposition precipitation with urea with a low gold content (0.25%). The catalyst was used to produce succinic acid by selective oxidation of furfuraldehyde with hydrogen peroxide under mild reaction conditions.

Keywords: hydrotalcite, catalysis, gold, biomass, furfural, oxidation

Procedia PDF Downloads 58
3496 Analyses of Extent of Effects of Siting Boreholes Nearby Open Landfill Dumpsite at Obosi Anambra Southeast of Nigeria

Authors: George Obinna Akuaka

Abstract:

Solid waste disposal techniques in Nigeria pose an environmental threat to the environment and to nearby resident. The presence of microbial physical and chemical concentration in boreholes samples nearby dumpsite implies that groundwater is normally contaminated by leachate infiltration from an open landfill dumpsite. In this study, the physicochemical and microbial analyses of water samples from hand dug well in the site and boreholes were carried out around the active landfill and from different distances (50 m to 200 m). leachate samples collected were used to ascertain the effect or extent of contamination on the groundwater quality. A total of 5 leachate samples and 5 samples of groundwater were collected, and all samples were analyzed for various physical and chemical parameters according to the standard methods. These include pH, Electrical conductivity, Total dissolved solid, BOD, OD, Temperature, major cations such as Mg²+ Ca²+, Fe²+ Cu²+, major anions NO³-, Cl-,SO⁴- PO⁴-, Zn, Ar, Cd, Cr, Hg, Pb, Ni are the heavy metals and metalloids. The mean values of the physical and chemical parameters obtained from both sites were compared with the established of the World Health Organization (WHO). The leachate samples were found to be higher in the concentration of the results obtained than that of the boreholes water, and the recorded mean values of heavy metals were above approved standard minimum limits. The results indicated that mercury and copper were not found in all the borehole water samples. Microbial analyses showed that total heterotrophic bacteria mean count ranged from 10.6 X10⁷ cfu/ml to 2.04x10⁷cfu/ml and 9.5 X 10⁷ cfu/ml to 18.9 X 10⁷ cfu/ml in leachate and borehole samples respectively. It also revealed that almost at the bacteria isolated in the leachate were also found in the water samples. This results indicated that heavy pollution in all the samples with most physicochemical parameters and microbes showed traceable pollution, which occurred as a result of leachate infiltration into the ground water.

Keywords: physicochemical, landfill dumpsite, microbial, leachate, groundwater

Procedia PDF Downloads 186
3495 Detection of Pollution in the Catchment Area of Baha Region by Using Some Common Plants as a Bioindicators

Authors: Saad M. Howladar

Abstract:

Although, there are a little data on the use of littoral plants as heavy metals bioaccumulators over large areas of the wetlands environment. So, soil samples and biomass of the five plant species: Pluchea dioscroides, Pulicaria crispa, Lavandula pubescens, Tarchononthus comporatus and Argemone ochroleuca were collected from two different sites (basin and mouth) of four dams at Baha province, KSA. Nutrients and heavy metals were extracted from plant samples (leaves and stems) for analyzing elements (Na, K, Ca, P and N) and heavy metals (Pb, Cu and Ni). The soils of the mouth of the dam had the highest concentrations of all elements, while that of basin had the highest ones of most heavy metals except Pb. The soil elements in relation to the two sites arranged as: Ca > K > P > Na > N; and the heavy metals as: Cu > Ni > Pb. The present study indicated that Pluchea dioscroides had the highest values of most elements and heavy metals, while Lavandula pubescens had the lowest. In general, leaves attain the highest concentrations of all nutrients and heavy metals in most studied species as compared with stem. It was indicated that Pluchea dioscroides showed a high transfer factor for almost elements and heavy metals such as K, Na, Cu, Ni and Pb, while Pulicaria crispa showed the highest translocation factor of N, P, Ca-Na ratio and Cu. All studied species growing in the basin had almost the highest concentrations of elements and heavy metals as compared with that in the mouth of dam except K in Pluchea dioscroides, Tarchononthus comporatus and Argemone ochroleuca tissues. Otherwise tissues of Tarchononthus comporatus growing in the basin had the lowest concentrations of K and Ni, while that growing in the mouth had the highest of P and N.

Keywords: Baha Region, bioindicators, plant, pollution, dams, heavy metals

Procedia PDF Downloads 441
3494 Rapid Soil Classification Using Computer Vision with Electrical Resistivity and Soil Strength

Authors: Eugene Y. J. Aw, J. W. Koh, S. H. Chew, K. E. Chua, P. L. Goh, Grace H. B. Foo, M. L. Leong

Abstract:

This paper presents the evaluation of various soil testing methods such as the four-probe soil electrical resistivity method and cone penetration test (CPT) that can complement a newly developed novel rapid soil classification scheme using computer vision, to improve the accuracy and productivity of on-site classification of excavated soil. In Singapore, excavated soils from the local construction industry are transported to Staging Grounds (SGs) to be reused as fill material for land reclamation. Excavated soils are mainly categorized into two groups (“Good Earth” and “Soft Clay”) based on particle size distribution (PSD) and water content (w) from soil investigation reports and on-site visual survey, such that proper treatment and usage can be exercised. However, this process is time-consuming and labor-intensive. Thus, a rapid classification method is needed at the SGs. Four-probe soil electrical resistivity and CPT were evaluated for their feasibility as suitable additions to the computer vision system to further develop this innovative non-destructive and instantaneous classification method. The computer vision technique comprises soil image acquisition using an industrial-grade camera; image processing and analysis via calculation of Grey Level Co-occurrence Matrix (GLCM) textural parameters; and decision-making using an Artificial Neural Network (ANN). It was found from the previous study that the ANN model coupled with ρ can classify soils into “Good Earth” and “Soft Clay” in less than a minute, with an accuracy of 85% based on selected representative soil images. To further improve the technique, the following three items were targeted to be added onto the computer vision scheme: the apparent electrical resistivity of soil (ρ) measured using a set of four probes arranged in Wenner’s array, the soil strength measured using a modified mini cone penetrometer, and w measured using a set of time-domain reflectometry (TDR) probes. Laboratory proof-of-concept was conducted through a series of seven tests with three types of soils – “Good Earth”, “Soft Clay,” and a mix of the two. Validation was performed against the PSD and w of each soil type obtained from conventional laboratory tests. The results show that ρ, w and CPT measurements can be collectively analyzed to classify soils into “Good Earth” or “Soft Clay” and are feasible as complementing methods to the computer vision system.

Keywords: computer vision technique, cone penetration test, electrical resistivity, rapid and non-destructive, soil classification

Procedia PDF Downloads 221
3493 Dissipation of Tebuconazole in Cropland Soils as Affected by Soil Factors

Authors: Bipul Behari Saha, Sunil Kumar Singh, P. Padmaja, Kamlesh Vishwakarma

Abstract:

Dissipation study of tebuconazole in alluvial, black and deep-black clayey soils collected from paddy, mango and peanut cropland of tropical agro-climatic zone of India at three concentration levels were carried out for monitoring the water contamination through persisted residual toxicity. The soil-slurry samples were analyzed by capillary GC-NPD methods followed by ultrasound-assisted extraction (UAE) technique and cleanup process. An excellent linear relationship between peak area and concentration obtained in the range 1 to 50 μgkg-1. The detection (S/N, 3 ± 0.5) and quantification (S/N, 7.5 ± 2.5) limits were 3 and 10 μgkg-1 respectively. Well spiked recoveries were achieved from 96.28 to 99.33 % at levels 5 and 20 μgkg-1 and method precision (% RSD) was ≤ 5%. The soils dissipation of tebuconazole was fitted in first order kinetic-model with half-life between 34.48 to 48.13 days. The soil organic-carbon (SOC) content correlated well with the dissipation rate constants (DRC) of the fungicide Tebuconazole. An increase in the SOC content resulted in faster dissipation. The results indicate that the soil organic carbon and tebuconazole concentrations plays dominant role in dissipation processes. The initial concentration illustrated that the degradation rate of tebuconazole in soils was concentration dependent.

Keywords: cropland soil, dissipation, laboratory incubation, tebuconazole

Procedia PDF Downloads 239
3492 Field Evaluation of Pile Behavior in Sandy Soil Underlain by Clay

Authors: R. Bakr, M. Elmeligy, A. Ibrahim

Abstract:

When the building loads are relatively small, challenges are often facing the foundation design especially when inappropriate soil conditions exist. These may be represented in the existence of soft soil in the upper layers of soil while sandy soil or firm cohesive soil exist in the deeper layers. In such cases, the design becomes infeasible if the piles are extended to the deeper layers, especially when there are sandy layers existing at shallower depths underlain by stiff clayey soil. In this research, models of piles terminated in sand underlain by clay soils are numerically simulated by different modelling theories. Finite element software, Plaxis 3-D Foundation was used to evaluate the pile behavior under different loading scenarios. The standard static load test according to ASTM D-1143 was simulated and compared with the real-life loading scenario. The results showed that the pile behavior obtained from the current static load test do not realistically represent that obtained from real-life loading. Attempts were carried out to capture the proper numerical loading scenario that simulates the pile behavior in real-life loading including the long-term effect. A modified method based on this research findings is proposed for the static pile loading tests. Field loading tests were carried out to validate the new method. Results obtained from both numerical and field tests by using the modified method prove that this method is more accurate in predicting the pile behavior in sand soil underlain by clay more than the current standard static load.

Keywords: numerical simulation, static load test, pile behavior, sand underlain with clay, creep

Procedia PDF Downloads 307
3491 Harnessing of Electricity from Distillery Effluent and Simultaneous Effluent Treatment by Microbial Fuel Cell

Authors: Hanish Mohammed, C. H. Muthukumar Muthuchamy

Abstract:

The advancement in the science and technology has made it possible to convert electrical energy into any desired form. It has given electrical energy a place of pride in the modern world. The survival of industrial undertakings and our social structure depends primarily upon low cost and uninterrupted supply of electrical energy. Microbial fuel cell (MFC) is a promising and emerging technique for sustainable bioelectricity generation and wastewater treatment. MFCs are devices which are capable of converting organic matter to electricity/hydrogen with help of microorganisms. Different kinds of wastewater could be used in this technique, distillery effluent is one of the most troublesome and complex and strong organic effluent with high chemical oxygen demand of 1,53,846 mg/L. A single cell MFC unit was designed and fabricated for the distillery effluent treatment and to generate electricity. Due to the high COD value of the distillery effluent helped in the production of energy for 74 days. The highest voltage got from the fuel cell is 206 mV on the 30th day. A maximum power density obtained from the MFC was 9.8 mW, treatment efficiency was evaluated in terms of COD removal and other parameters. COD removal efficiencies were around 68.5 % and other parameters such as Total Hardness (81.5%), turbidity (70 %), chloride (66%), phosphate (79.5%), Nitrate (77%) and sulphate (71%). MFC using distillery effluent is a promising new unexplored substrate for the power generation and sustainable treatment technique through harnessing of bioelectricity.

Keywords: microbial fuel cell (MFC), bioelectricity, distillery effluent, wastewater treatment

Procedia PDF Downloads 200
3490 The Investigation of Fiber Reinforcement Self-Compacting Concrete and Fiber Reinforcement Concrete

Authors: Orod Zarrin, Mohesn Ramezan Shirazi, Hassan Moniri

Abstract:

The use of pile foundations technique is developed to support structures and buildings on soft soil. The most important dynamic load that can affect the pile structure is earthquake vibrations. From the 1960s the comprehensive investigation of pile foundations during earthquake excitation indicate that, piles are subject to damage by affecting the superstructure integrity and serviceability. The main part of these research has been focused on the behavior of liquefiable soil and lateral spreading load on piles. During an earthquake, two types of stresses can damage the pile head, inertial load that is caused by superstructure and deformation which caused by the surrounding soil. Soil deformation and inertial load are associated with the acceleration developed in an earthquake. The acceleration amplitude at the ground surface depends on the magnitude of earthquakes, soil properties and seismic source distance. According to the investigation, the damage is between the liquefiable and non-liquefiable layers and also soft and stiff layers. This damage crushes the pile head by increasing the inertial load which is applied by the superstructure. On the other hand, the cracks on the piles due to the surrounding soil are directly related to the soil profile and causes cracks from small to large. And researchers have been listed the large cracks reason such as liquefaction, lateral spreading and inertial load. In the field of designing, elastic response of piles are always a challenge for designer in liquefaction soil, by allowing deflection at top of piles. Moreover, absence of plastic hinges in piles should be insured, because the damage in the piles is not observed directly. In this study, the performance and behavior of pile foundations during liquefaction and lateral spreading are investigated. And emphasize on the soil behavior in the liquefiable and non-liquefiable layers by different aspect of piles damage such as ranking, location and degree of damage are going to discuss.

Keywords: self-compacting concrete, fiber, tensile strength, post-cracking, direct and inverse technique

Procedia PDF Downloads 224
3489 Mechanism of Performance of Soil-Cement Columns under Shallow Foundations in Liquefiable Soil

Authors: Zaheer Ahmed Almani, Agha Faisal Habib Pathan, Aneel Kumar Hindu

Abstract:

In this study, the effects of ground reinforcement with stiff soil-cement columns on liquefiable ground and on the shallow foundation of structure were investigated. The modelling and analysis of shallow foundation of the structure founded on the composite reinforced ground were carried out with finite difference FLAC commercial software. The results showed that stiff columns were not effective to the redistribute the shear stresses in the composite ground, thus, were not effective to reduce shear stress and shear strain on the soil between the columns. The excessive pore pressure increase which is dependent on volumetric strain (contractive) tendency of loose sand upon shearing, was not reduced to a significant level that liquefaction potential could be remediated. Thus, mechanism of performance with reduction of pore pressure and consequent liquefaction was not predicted in numerical analysis. Nonetheless, the columns were effective to resist the load of structure in compression and reduced the liquefaction-induced large settlements of structure to tolerable limits when provided adjacent and beneath the pad of shallow foundation.

Keywords: earthquake, liquefaction, mechanism, soil-cement columns

Procedia PDF Downloads 138
3488 Impact of Zinc on Heavy Metals Content, Polyphenols and Antioxidant Capacity of Faba Bean in Milk Ripeness

Authors: M. Timoracká, A. Vollmannová., D.S. Ismael, J. Musilová

Abstract:

We investigated the effect of targeted contaminated soil by Zn model conditions. The soil used in the pot trial was uncontaminated. Faba beans (cvs Saturn, Zobor) were harvested in milk ripeness. With increased doses applied into the soil the strong statistical relationship between soil Zn content and Zn amount in seeds of both of faba bean cultivars was confirmed. Despite the high Zn doses applied into the soil in model conditions, in all variants the determined Zn amount in faba bean cv. Saturn was just below the maximal allowed content in foodstuffs given by the legislative. In cv. Zobor the determined Zn content was higher than maximal allowed amount (by 2% and 12%, respectively). Faba bean cvs. Saturn and Zobor accumulated (in all variants higher than hygienic limits) high amounts of Pb and Cd. The contents of all other heavy metals were lower than hygienic limits. With increased Zn doses applied into the soil the total polyphenols contents as well as the total antioxidant capacity determined in seeds of both cultivars Saturn and Zobor were increased. The strong statistical relationship between soil Zn content and the total polyphenols contents as well as the total antioxidant capacity in seeds of faba bean cultivars was confirmed.

Keywords: antioxidant capacity, faba bean, polyphenols, zinc

Procedia PDF Downloads 382