Search results for: sign subband adaptive filter (SSAF)
1231 Transformation of the Traditional Landscape of Kabul Old City: A Study for Its Conservation
Authors: Mohammad Umar Azizi, Tetsuya Ando
Abstract:
This study investigates the transformation of the traditional landscape of Kabul Old City through an examination of five case study areas. Based on physical observation, three types of houses are found: traditional, mixed and modern. Firstly, characteristics of the houses are described according to construction materials and the number of stories. Secondly, internal and external factors are considered in order to implement a conservation plan. Finally, an adaptive conservation plan is suggested to protect the traditional landscape of Kabul Old City.Keywords: conservation, district 1, Kabul Old City, landscape, transformation, traditional houses
Procedia PDF Downloads 2221230 Nonhomogeneous Linear Fractional Differential Equations Will Bessel Functions of the First Kind Giving Hypergeometric Functions Solutions
Authors: Fernando Maass, Pablo Martin, Jorge Olivares
Abstract:
Fractional derivatives have become very important in several areas of Engineering, however, the solutions of simple differential equations are not known. Here we are considering the simplest first order nonhomogeneous differential equations with Bessel regular functions of the first kind, in this way the solutions have been found which are hypergeometric solutions for any fractional derivative of order α, where α is rational number α=m/p, between zero and one. The way to find this result is by using Laplace transform and the Caputo definitions of fractional derivatives. This method is for values longer than one. However for α entire number the hypergeometric functions are Kumer type, no integer values of alpha, the hypergeometric function is more complicated is type ₂F₃(a,b,c, t2/2). The argument of the hypergeometric changes sign when we go from the regular Bessel functions to the modified Bessel functions of the first kind, however it integer seems that using precise values of α and considering no integers values of α, a solution can be obtained in terms of two hypergeometric functions. Further research is required for future papers in order to obtain the general solution for any rational value of α.Keywords: Caputo, fractional calculation, hypergeometric, linear differential equations
Procedia PDF Downloads 1971229 Detection and Tracking Approach Using an Automotive Radar to Increase Active Pedestrian Safety
Authors: Michael Heuer, Ayoub Al-Hamadi, Alexander Rain, Marc-Michael Meinecke
Abstract:
Vulnerable road users, e.g. pedestrians, have a high impact on fatal accident numbers. To reduce these statistics, car manufactures are intensively developing suitable safety systems. Hereby, fast and reliable environment recognition is a major challenge. In this paper we describe a tracking approach that is only based on a 24 GHz radar sensor. While common radar signal processing loses much information, we make use of a track-before-detect filter to incorporate raw measurements. It is explained how the Range-Doppler spectrum can help to indicated pedestrians and stabilize tracking even in occultation scenarios compared to sensors in series.Keywords: radar, pedestrian detection, active safety, sensor
Procedia PDF Downloads 5301228 Cost Overruns in Mega Projects: Project Progress Prediction with Probabilistic Methods
Authors: Yasaman Ashrafi, Stephen Kajewski, Annastiina Silvennoinen, Madhav Nepal
Abstract:
Mega projects either in construction, urban development or energy sectors are one of the key drivers that build the foundation of wealth and modern civilizations in regions and nations. Such projects require economic justification and substantial capital investment, often derived from individual and corporate investors as well as governments. Cost overruns and time delays in these mega projects demands a new approach to more accurately predict project costs and establish realistic financial plans. The significance of this paper is that the cost efficiency of megaprojects will improve and decrease cost overruns. This research will assist Project Managers (PMs) to make timely and appropriate decisions about both cost and outcomes of ongoing projects. This research, therefore, examines the oil and gas industry where most mega projects apply the classic methods of Cost Performance Index (CPI) and Schedule Performance Index (SPI) and rely on project data to forecast cost and time. Because these projects are always overrun in cost and time even at the early phase of the project, the probabilistic methods of Monte Carlo Simulation (MCS) and Bayesian Adaptive Forecasting method were used to predict project cost at completion of projects. The current theoretical and mathematical models which forecast the total expected cost and project completion date, during the execution phase of an ongoing project will be evaluated. Earned Value Management (EVM) method is unable to predict cost at completion of a project accurately due to the lack of enough detailed project information especially in the early phase of the project. During the project execution phase, the Bayesian adaptive forecasting method incorporates predictions into the actual performance data from earned value management and revises pre-project cost estimates, making full use of the available information. The outcome of this research is to improve the accuracy of both cost prediction and final duration. This research will provide a warning method to identify when current project performance deviates from planned performance and crates an unacceptable gap between preliminary planning and actual performance. This warning method will support project managers to take corrective actions on time.Keywords: cost forecasting, earned value management, project control, project management, risk analysis, simulation
Procedia PDF Downloads 4031227 Influence of the Refractory Period on Neural Networks Based on the Recognition of Neural Signatures
Authors: José Luis Carrillo-Medina, Roberto Latorre
Abstract:
Experimental evidence has revealed that different living neural systems can sign their output signals with some specific neural signature. Although experimental and modeling results suggest that neural signatures can have an important role in the activity of neural networks in order to identify the source of the information or to contextualize a message, the functional meaning of these neural fingerprints is still unclear. The existence of cellular mechanisms to identify the origin of individual neural signals can be a powerful information processing strategy for the nervous system. We have recently built different models to study the ability of a neural network to process information based on the emission and recognition of specific neural fingerprints. In this paper we further analyze the features that can influence on the information processing ability of this kind of networks. In particular, we focus on the role that the duration of a refractory period in each neuron after emitting a signed message can play in the network collective dynamics.Keywords: neural signature, neural fingerprint, processing based on signal identification, self-organizing neural network
Procedia PDF Downloads 4921226 Computational Approach to the Interaction of Neurotoxins and Kv1.3 Channel
Authors: Janneth González, George Barreto, Ludis Morales, Angélica Sabogal
Abstract:
Sea anemone neurotoxins are peptides that interact with Na+ and K+ channels, resulting in specific alterations on their functions. Some of these neurotoxins (1ROO, 1BGK, 2K9E, 1BEI) are important for the treatment of nearly eighty autoimmune disorders due to their specificity for Kv1.3 channel. The aim of this study was to identify the common residues among these neurotoxins by computational methods, and establish whether there is a pattern useful for the future generation of a treatment for autoimmune diseases. Our results showed eight new key common residues between the studied neurotoxins interacting with a histidine ring and the selectivity filter of the receptor, thus showing a possible pattern of interaction. This knowledge may serve as an input for the design of more promising drugs for autoimmune treatments.Keywords: neurotoxins, potassium channel, Kv1.3, computational methods, autoimmune diseases
Procedia PDF Downloads 3741225 Developing Logistics Indices for Turkey as an an Indicator of Economic Activity
Authors: Gizem İntepe, Eti Mizrahi
Abstract:
Investment and financing decisions are influenced by various economic features. Detailed analysis should be conducted in order to make decisions not only by companies but also by governments. Such analysis can be conducted either at the company level or on a sectoral basis to reduce risks and to maximize profits. Sectoral disaggregation caused by seasonality effects, subventions, data advantages or disadvantages may appear in sectors behaving parallel to BIST (Borsa Istanbul stock exchange) Index. Proposed logistic indices could serve market needs as a decision parameter in sectoral basis and also helps forecasting activities in import export volume changes. Also it is an indicator of logistic activity, which is also a sign of economic mobility at the national level. Publicly available data from “Ministry of Transport, Maritime Affairs and Communications” and “Turkish Statistical Institute” is utilized to obtain five logistics indices namely as; exLogistic, imLogistic, fLogistic, dLogistic and cLogistic index. Then, efficiency and reliability of these indices are tested.Keywords: economic activity, export trade data, import trade data, logistics indices
Procedia PDF Downloads 3371224 Levels and Trends of Under-Five Mortality in South Africa from 1998 to 2012
Authors: T. Motsima, K. Zuma, E Rapoo
Abstract:
Childhood mortality is a key sign of the coverage of child survival interventions, social and economic progressions. Although the level of under-five mortality has been declining, it is still unacceptably high. The primary aim of this paper is to establish and analyse the levels and trends of under-five mortality for the periods 1998, 2003 and 2012 in South Africa. Methods: The data used for analysis came from the 1998 SADHS, the 2003 SADHS and the 2012 SABSSM which collected information on the survival status of children. The Kaplan-Meier estimate of the survival function method was used to determine the probabilities of failure (death) from birth up to 59 months. Results and Conclusion: The overall U5MR declined by 28.2% from 53.1 in 1998 to 38.1 in 2012. The U5MR of male children declined from 59.2 in 1998 to 46.2 in 2003 and dropped further to 41.4 in 2012. The U5MR of children of mothers aged 40 years and older increased from 64.0 in 1998 to 89.0 in 2003 and rose further to 129.9 in 2012. The U5MR of children of mothers with education level of 12 years or more increased from 32.2 in 1998 to 35.2 in 2003 and declined substantially to 17.5 in 2012.Keywords: demographic and health survey, Kaplan-Meier, levels and trends, under-five mortality
Procedia PDF Downloads 1361223 Collaborative and Experimental Cultures in Virtual Reality Journalism: From the Perspective of Content Creators
Authors: Radwa Mabrook
Abstract:
Virtual Reality (VR) content creation is a complex and an expensive process, which requires multi-disciplinary teams of content creators. Grant schemes from technology companies help media organisations to explore the VR potential in journalism and factual storytelling. Media organisations try to do as much as they can in-house, but they may outsource due to time constraints and skill availability. Journalists, game developers, sound designers and creative artists work together and bring in new cultures of work. This study explores the collaborative experimental nature of VR content creation, through tracing every actor involved in the process and examining their perceptions of the VR work. The study builds on Actor Network Theory (ANT), which decomposes phenomena into their basic elements and traces the interrelations among them. Therefore, the researcher conducted 22 semi-structured interviews with VR content creators between November 2017 and April 2018. Purposive and snowball sampling techniques allowed the researcher to recruit fact-based VR content creators from production studios and media organisations, as well as freelancers. Interviews lasted up to three hours, and they were a mix of Skype calls and in-person interviews. Participants consented for their interviews to be recorded, and for their names to be revealed in the study. The researcher coded interviews’ transcripts in Nvivo software, looking for key themes that correspond with the research questions. The study revealed that VR content creators must be adaptive to change, open to learn and comfortable with mistakes. The VR content creation process is very iterative because VR has no established work flow or visual grammar. Multi-disciplinary VR team members often speak different languages making it hard to communicate. However, adaptive content creators perceive VR work as a fun experience and an opportunity to learn. The traditional sense of competition and the strive for information exclusivity are now replaced by a strong drive for knowledge sharing. VR content creators are open to share their methods of work and their experiences. They target to build a collaborative network that aims to harness VR technology for journalism and factual storytelling. Indeed, VR is instilling collaborative and experimental cultures in journalism.Keywords: collaborative culture, content creation, experimental culture, virtual reality
Procedia PDF Downloads 1271222 A Video Surveillance System Using an Ensemble of Simple Neural Network Classifiers
Authors: Rodrigo S. Moreira, Nelson F. F. Ebecken
Abstract:
This paper proposes a maritime vessel tracker composed of an ensemble of WiSARD weightless neural network classifiers. A failure detector analyzes vessel movement with a Kalman filter and corrects the tracking, if necessary, using FFT matching. The use of the WiSARD neural network to track objects is uncommon. The additional contributions of the present study include a performance comparison with four state-of-art trackers, an experimental study of the features that improve maritime vessel tracking, the first use of an ensemble of classifiers to track maritime vessels and a new quantization algorithm that compares the values of pixel pairs.Keywords: ram memory, WiSARD weightless neural network, object tracking, quantization
Procedia PDF Downloads 3101221 Separating Permanent and Induced Magnetic Signature: A Simple Approach
Authors: O. J. G. Somsen, G. P. M. Wagemakers
Abstract:
Magnetic signature detection provides sensitive detection of metal objects, especially in the natural environment. Our group is developing a tabletop setup for magnetic signatures of various small and model objects. A particular issue is the separation of permanent and induced magnetization. While the latter depends only on the composition and shape of the object, the former also depends on the magnetization history. With common deperming techniques, a significant permanent signature may still remain, which confuses measurements of the induced component. We investigate a basic technique of separating the two. Measurements were done by moving the object along an aluminum rail while the three field components are recorded by a detector attached near the center. This is done first with the rail parallel to the Earth magnetic field and then with anti-parallel orientation. The reversal changes the sign of the induced- but not the permanent magnetization so that the two can be separated. Our preliminary results on a small iron block show excellent reproducibility. A considerable permanent magnetization was indeed present, resulting in a complex asymmetric signature. After separation, a much more symmetric induced signature was obtained that can be studied in detail and compared with theoretical calculations.Keywords: magnetic signature, data analysis, magnetization, deperming techniques
Procedia PDF Downloads 4511220 Keypoint Detection Method Based on Multi-Scale Feature Fusion of Attention Mechanism
Authors: Xiaoxiao Li, Shuangcheng Jia, Qian Li
Abstract:
Keypoint detection has always been a challenge in the field of image recognition. This paper proposes a novelty keypoint detection method which is called Multi-Scale Feature Fusion Convolutional Network with Attention (MFFCNA). We verified that the multi-scale features with the attention mechanism module have better feature expression capability. The feature fusion between different scales makes the information that the network model can express more abundant, and the network is easier to converge. On our self-made street sign corner dataset, we validate the MFFCNA model with an accuracy of 97.8% and a recall of 81%, which are 5 and 8 percentage points higher than the HRNet network, respectively. On the COCO dataset, the AP is 71.9%, and the AR is 75.3%, which are 3 points and 2 points higher than HRNet, respectively. Extensive experiments show that our method has a remarkable improvement in the keypoint recognition tasks, and the recognition effect is better than the existing methods. Moreover, our method can be applied not only to keypoint detection but also to image classification and semantic segmentation with good generality.Keywords: keypoint detection, feature fusion, attention, semantic segmentation
Procedia PDF Downloads 1191219 Systematic Evaluation of Convolutional Neural Network on Land Cover Classification from Remotely Sensed Images
Authors: Eiman Kattan, Hong Wei
Abstract:
In using Convolutional Neural Network (CNN) for classification, there is a set of hyperparameters available for the configuration purpose. This study aims to evaluate the impact of a range of parameters in CNN architecture i.e. AlexNet on land cover classification based on four remotely sensed datasets. The evaluation tests the influence of a set of hyperparameters on the classification performance. The parameters concerned are epoch values, batch size, and convolutional filter size against input image size. Thus, a set of experiments were conducted to specify the effectiveness of the selected parameters using two implementing approaches, named pertained and fine-tuned. We first explore the number of epochs under several selected batch size values (32, 64, 128 and 200). The impact of kernel size of convolutional filters (1, 3, 5, 7, 10, 15, 20, 25 and 30) was evaluated against the image size under testing (64, 96, 128, 180 and 224), which gave us insight of the relationship between the size of convolutional filters and image size. To generalise the validation, four remote sensing datasets, AID, RSD, UCMerced and RSCCN, which have different land covers and are publicly available, were used in the experiments. These datasets have a wide diversity of input data, such as number of classes, amount of labelled data, and texture patterns. A specifically designed interactive deep learning GPU training platform for image classification (Nvidia Digit) was employed in the experiments. It has shown efficiency in both training and testing. The results have shown that increasing the number of epochs leads to a higher accuracy rate, as expected. However, the convergence state is highly related to datasets. For the batch size evaluation, it has shown that a larger batch size slightly decreases the classification accuracy compared to a small batch size. For example, selecting the value 32 as the batch size on the RSCCN dataset achieves the accuracy rate of 90.34 % at the 11th epoch while decreasing the epoch value to one makes the accuracy rate drop to 74%. On the other extreme, setting an increased value of batch size to 200 decreases the accuracy rate at the 11th epoch is 86.5%, and 63% when using one epoch only. On the other hand, selecting the kernel size is loosely related to data set. From a practical point of view, the filter size 20 produces 70.4286%. The last performed image size experiment shows a dependency in the accuracy improvement. However, an expensive performance gain had been noticed. The represented conclusion opens the opportunities toward a better classification performance in various applications such as planetary remote sensing.Keywords: CNNs, hyperparamters, remote sensing, land cover, land use
Procedia PDF Downloads 1691218 Real-time Rate and Rhythms Feedback Control System in Patients with Atrial Fibrillation
Authors: Mohammad A. Obeidat, Ayman M. Mansour
Abstract:
Capturing the dynamic behavior of the heart to improve control performance, enhance robustness, and support diagnosis is very important in establishing real time models for the heart. Control Techniques and strategies have been utilized to improve system costs, reliability, and estimation accuracy for different types of systems such as biomedical, industrial, and other systems that required tuning input/output relation and/or monitoring. Simulations are performed to illustrate potential applications of the technology. In this research, a new control technology scheme is used to enhance the performance of the Af system and meet the design specifications.Keywords: atrial fibrillation, dynamic behavior, closed loop, signal, filter
Procedia PDF Downloads 4211217 Simulink Library for Reference Current Generation in Active DC Traction Substations
Authors: Mihaela Popescu, Alexandru Bitoleanu
Abstract:
This paper is focused on the reference current calculation in the compensation mode of the active DC traction substations. The so-called p-q theory of the instantaneous reactive power is used as theoretical foundation. The compensation goal of total compensation is taken into consideration for the operation under both sinusoidal and nonsinusoidal voltage conditions, through the two objectives of unity power factor and perfect harmonic cancelation. Four blocks of reference current generation implement the conceived algorithms and they are included in a specific Simulink library, which is useful in a DSP dSPACE-based platform working under Matlab/Simulink. The simulation results validate the correctness of the implementation and fulfillment of the compensation tasks.Keywords: active power filter, DC traction, p-q theory, Simulink library
Procedia PDF Downloads 6741216 Design and Manufacture of Removable Nosecone Tips with Integrated Pitot Tubes for High Power Sounding Rocketry
Authors: Bjorn Kierulf, Arun Chundru
Abstract:
Over the past decade, collegiate rocketry teams have emerged across the country with various goals: space, liquid-fueled flight, etc. A critical piece of the development of knowledge within a club is the use of so-called "sounding rockets," whose goal is to take in-flight measurements that inform future rocket design. Common measurements include acceleration from inertial measurement units (IMU's), and altitude from barometers. With a properly tuned filter, these measurements can be used to find velocity, but are susceptible to noise, offset, and filter settings. Instead, velocity can be measured more directly and more instantaneously using a pitot tube, which operates by measuring the stagnation pressure. At supersonic speeds, an additional thermodynamic property is necessary to constrain the upstream state. One possibility is the stagnation temperature, measured by a thermocouple in the pitot tube. The routing of the pitot tube from the nosecone tip down to a pressure transducer is complicated by the nosecone's structure. Commercial-off-the-shelf (COTS) nosecones come with a removable metal tip (without a pitot tube). This provides the opportunity to make custom tips with integrated measurement systems without making the nosecone from scratch. The main design constraint is how the nosecone tip is held down onto the nosecone, using the tension in a threaded rod anchored to a bulkhead below. Because the threaded rod connects into a threaded hole in the center of the nosecone tip, the pitot tube follows a winding path, and the pressure fitting is off-center. Two designs will be presented in the paper, one with a curved pitot tube and a coaxial design that eliminates the need for the winding path by routing pressure through a structural tube. Additionally, three manufacturing methods will be presented for these designs: bound powder filament metal 3D printing, stereo-lithography (SLA) 3D printing, and traditional machining. These will employ three different materials, copper, steel, and proprietary resin. These manufacturing methods and materials are relatively low cost, thus accessible to student researchers. These designs and materials cover multiple use cases, based on how fast the sounding rocket is expected to travel and how important heating effects are - to measure and to avoid melting. This paper will include drawings showing key features and an overview of the design changes necessitated by the manufacture. It will also include a look at the successful use of these nosecone tips and the data they have gathered to date.Keywords: additive manufacturing, machining, pitot tube, sounding rocketry
Procedia PDF Downloads 1651215 First and Second Order Gm-C Filters
Authors: Rana Mahmoud
Abstract:
This study represents a systematic study of the Operational Transconductance Amplifiers capacitance (OTA-C) filters or as it is often called Gm-C filters. OTA-C filters have been paid a great attention for the last decades. As Gm-C filters operate in an open loop topology, this makes them flexible to perform in low and high frequencies. As such, Gm-C filters can be used in various wireless communication applications. Another property of Gm-C filters is its electronic tunability, thus different filter frequency characteristics can be obtained without changing the inductance and resistance values. This can be achieved by an OTA (Operational Transconductance Amplifier) and a capacitor. By tuning the OTA transconductance, the cut-off frequency will be tuned and different frequency responses are achieved. Different high-order analog filters can be design using Gm-C filters including low pass, high pass and band pass filters. 1st and 2nd order low pass, high pass and band pass filters are presented in this paper.Keywords: Gm-C, filters, low-pass, high-pass, band-pass
Procedia PDF Downloads 1301214 Waste Management in a Hot Laboratory of Japan Atomic Energy Agency – 2: Condensation and Solidification Experiments on Liquid Waste
Authors: Sou Watanabe, Hiromichi Ogi, Atsuhiro Shibata, Kazunori Nomura
Abstract:
As a part of STRAD project conducted by JAEA, condensation of radioactive liquid waste containing various chemical compounds using reverse osmosis (RO) membrane filter was examined for efficient and safety treatment of the liquid wastes accumulated inside hot laboratories. NH4+ ion in the feed solution was successfully concentrated, and NH4+ ion involved in the effluents became lower than target value; 100 ppm. Solidification of simulated aqueous and organic liquid wastes was also tested. Those liquids were successfully solidified by adding cement or coagulants. Nevertheless, optimization in materials for confinement of chemicals is required for long time storage of the final solidified wastes.Keywords: condensation, radioactive liquid waste, solidification, STRAD project
Procedia PDF Downloads 1581213 Subway Ridership Estimation at a Station-Level: Focus on the Impact of Bus Demand, Commercial Business Characteristics and Network Topology
Authors: Jungyeol Hong, Dongjoo Park
Abstract:
The primary purpose of this study is to develop a methodological framework to predict daily subway ridership at a station-level and to examine the association between subway ridership and bus demand incorporating commercial business facility in the vicinity of each subway station. The socio-economic characteristics, land-use, and built environment as factors may have an impact on subway ridership. However, it should be considered not only the endogenous relationship between bus and subway demand but also the characteristics of commercial business within a subway station’s sphere of influence, and integrated transit network topology. Regarding a statistical approach to estimate subway ridership at a station level, therefore it should be considered endogeneity and heteroscedastic issues which might have in the subway ridership prediction model. This study focused on both discovering the impacts of bus demand, commercial business characteristics, and network topology on subway ridership and developing more precise subway ridership estimation accounting for its statistical bias. The spatial scope of the study covers entire Seoul city in South Korea and includes 243 stations with the temporal scope set at twenty-four hours with one-hour interval time panels each. The data for subway and bus ridership was collected Seoul Smart Card data from 2015 and 2016. Three-Stage Least Square(3SLS) approach was applied to develop daily subway ridership model as capturing the endogeneity and heteroscedasticity between bus and subway demand. Independent variables incorporating in the modeling process were commercial business characteristics, social-economic characteristics, safety index, transit facility attributes, and dummies for seasons and time zone. As a result, it was found that bus ridership and subway ridership were endogenous each other and they had a significantly positive sign of coefficients which means one transit mode could increase another transportation mode’s ridership. In other words, two transit modes of subway and bus have a mutual relationship instead of the competitive relationship. The commercial business characteristics are the most critical dimension among the independent variables. The variables of commercial business facility rate in the paper containing six types; medical, educational, recreational, financial, food service, and shopping. From the model result, a higher rate in medical, financial buildings, shopping, and food service facility lead to increment of subway ridership at a station, while recreational and educational facility shows lower subway ridership. The complex network theory was applied for estimating integrated network topology measures that cover the entire Seoul transit network system, and a framework for seeking an impact on subway ridership. The centrality measures were found to be significant and showed a positive sign indicating higher centrality led to more subway ridership at a station level. The results of model accuracy tests by out of samples provided that 3SLS model has less mean square error rather than OLS and showed the methodological approach for the 3SLS model was plausible to estimate more accurate subway ridership. Acknowledgement: This research was supported by Basic Science Research Program through the National Research Foundation of Korea(NRF) funded by the Ministry of Science and ICT (2017R1C1B2010175).Keywords: subway ridership, bus ridership, commercial business characteristic, endogeneity, network topology
Procedia PDF Downloads 1441212 Visual Working Memory, Reading Abilities, and Vocabulary in Mexican Deaf Signers
Authors: A. Mondaca, E. Mendoza, D. Jackson-Maldonado, A. García-Obregón
Abstract:
Deaf signers usually show lower scores in Auditory Working Memory (AWM) tasks and higher scores in Visual Working Memory (VWM) tasks than their hearing pairs. Further, Working Memory has been correlated with reading abilities and vocabulary in Deaf and Hearing individuals. The aim of the present study is to compare the performance of Mexican Deaf signers and hearing adults in VWM, reading and Vocabulary tasks and observe if the latter are correlated to the former. 15 Mexican Deaf signers were assessed using the Corsi block test for VWM, four different subtests of PROLEC (Batería de Evaluación de los Procesos Lectores) for reading abilities, and the LexTale in its Spanish version for vocabulary. T-tests show significant differences between groups for VWM and Vocabulary but not for all the PROLEC subtests. A significant Pearson correlation was found between VWM and Vocabulary but not between VWM and reading abilities. This work is part of a larger research study and results are not yet conclusive. A discussion about the use of PROLEC as a tool to explore reading abilities in a Deaf population is included.Keywords: deaf signers, visual working memory, reading, Mexican sign language
Procedia PDF Downloads 1681211 An Efficient Strategy for Relay Selection in Multi-Hop Communication
Authors: Jung-In Baik, Seung-Jun Yu, Young-Min Ko, Hyoung-Kyu Song
Abstract:
This paper proposes an efficient relaying algorithm to obtain diversity for improving the reliability of a signal. The algorithm achieves time or space diversity gain by multiple versions of the same signal through two routes. Relays are separated between a source and destination. The routes between the source and destination are set adaptive in order to deal with different channels and noises. The routes consist of one or more relays and the source transmits its signal to the destination through the routes. The signals from the relays are combined and detected at the destination. The proposed algorithm provides a better performance than the conventional algorithms in bit error rate (BER).Keywords: multi-hop, OFDM, relay, relaying selection
Procedia PDF Downloads 4461210 Artificial Intelligence-Aided Extended Kalman Filter for Magnetometer-Based Orbit Determination
Authors: Gilberto Goracci, Fabio Curti
Abstract:
This work presents a robust, light, and inexpensive algorithm to perform autonomous orbit determination using onboard magnetometer data in real-time. Magnetometers are low-cost and reliable sensors typically available on a spacecraft for attitude determination purposes, thus representing an interesting choice to perform real-time orbit determination without the need to add additional sensors to the spacecraft itself. Magnetic field measurements can be exploited by Extended/Unscented Kalman Filters (EKF/UKF) for orbit determination purposes to make up for GPS outages, yielding errors of a few kilometers and tens of meters per second in the position and velocity of a spacecraft, respectively. While this level of accuracy shows that Kalman filtering represents a solid baseline for autonomous orbit determination, it is not enough to provide a reliable state estimation in the absence of GPS signals. This work combines the solidity and reliability of the EKF with the versatility of a Recurrent Neural Network (RNN) architecture to further increase the precision of the state estimation. Deep learning models, in fact, can grasp nonlinear relations between the inputs, in this case, the magnetometer data and the EKF state estimations, and the targets, namely the true position, and velocity of the spacecraft. The model has been pre-trained on Sun-Synchronous orbits (SSO) up to 2126 kilometers of altitude with different initial conditions and levels of noise to cover a wide range of possible real-case scenarios. The orbits have been propagated considering J2-level dynamics, and the geomagnetic field has been modeled using the International Geomagnetic Reference Field (IGRF) coefficients up to the 13th order. The training of the module can be completed offline using the expected orbit of the spacecraft to heavily reduce the onboard computational burden. Once the spacecraft is launched, the model can use the GPS signal, if available, to fine-tune the parameters on the actual orbit onboard in real-time and work autonomously during GPS outages. In this way, the provided module shows versatility, as it can be applied to any mission operating in SSO, but at the same time, the training is completed and eventually fine-tuned, on the specific orbit, increasing performances and reliability. The results provided by this study show an increase of one order of magnitude in the precision of state estimate with respect to the use of the EKF alone. Tests on simulated and real data will be shown.Keywords: artificial intelligence, extended Kalman filter, orbit determination, magnetic field
Procedia PDF Downloads 1051209 Using Probe Person Data for Travel Mode Detection
Authors: Muhammad Awais Shafique, Eiji Hato, Hideki Yaginuma
Abstract:
Recently GPS data is used in a lot of studies to automatically reconstruct travel patterns for trip survey. The aim is to minimize the use of questionnaire surveys and travel diaries so as to reduce their negative effects. In this paper data acquired from GPS and accelerometer embedded in smart phones is utilized to predict the mode of transportation used by the phone carrier. For prediction, Support Vector Machine (SVM) and Adaptive boosting (AdaBoost) are employed. Moreover a unique method to improve the prediction results from these algorithms is also proposed. Results suggest that the prediction accuracy of AdaBoost after improvement is relatively better than the rest.Keywords: accelerometer, AdaBoost, GPS, mode prediction, support vector machine
Procedia PDF Downloads 3591208 REDUCER: An Architectural Design Pattern for Reducing Large and Noisy Data Sets
Authors: Apkar Salatian
Abstract:
To relieve the burden of reasoning on a point to point basis, in many domains there is a need to reduce large and noisy data sets into trends for qualitative reasoning. In this paper we propose and describe a new architectural design pattern called REDUCER for reducing large and noisy data sets that can be tailored for particular situations. REDUCER consists of 2 consecutive processes: Filter which takes the original data and removes outliers, inconsistencies or noise; and Compression which takes the filtered data and derives trends in the data. In this seminal article, we also show how REDUCER has successfully been applied to 3 different case studies.Keywords: design pattern, filtering, compression, architectural design
Procedia PDF Downloads 2121207 Central Nervous System Lesion Differentiation in the Emergency Radiology Department
Authors: Angelis P. Barlampas
Abstract:
An 89 years old woman came to the emergency department complaining of long-lasting headaches and nausea. A CT examination was performed, and a homogeneous midline anterior cranial fossa lesion was revealed, which was situated near the base and measured 2,4 cm in diameter. The patient was allergic, and an i.v.c injection could not be done on the spot, and neither could an MRI exam because of metallic implants. How could someone narrow down the differential diagnosis? The interhemispheric meningioma is usually a silent midline lesion with no edema, and most often presents as a homogeneous, solid type, isodense, or slightly hyperdense mass ( usually the smallest lesions as this one ). Of them, 20-30% have some calcifications. Hyperostosis is typical for meningiomas that abut the base of the skull but is absent in the current case, presumably of a more cephalad location that is borderline away from the bone. Because further investigation could not be done, as the patient was allergic to the contrast media, some other differential options should be considered. Regarding the site of the lesion, the most common other entities to keep in mind are the following: Metastasis, tumor of skull base, abscess, primary brain tumors, meningioma, giant aneurysm of the anterior cerebral artery, olfactory neuroblastoma, interhemispheric meningioma, giant aneurysm of the anterior cerebral artery, midline lesion. Appearance will depend on whether the aneurysm is non-thrombosed, or partially, or completely thrombosed. Non-contrast: slightly hyperdense, well-defined round extra-axial mass, may demonstrate a peripheral calcified rim, olfactory neuroblastoma, midline lesion. The mass is of soft tissue attenuation and is relatively homogeneous. Focal calcifications are occasionally present. When an intracranial extension is present, peritumoral cysts between it and the overlying brain are often present. Final diagnosis interhemispheric meningioma (Known from the previous patient’s history). Meningiomas come from the meningocytes or the arachnoid cells of the meninges. They are usually found incidentally, have an indolent course, and their most common location is extra-axial, parasagittal, and supratentorial. Other locations include the sphenoid ridge, olfactory groove, juxtasellar, infratentorial, intraventricular, pineal gland area, and optic nerve meningioma. They are clinically silent entities, except for large ones, which can present with headaches, changes in personality status, paresis, or symptomatology according to their specific site and may cause edema of the surrounding brain tissue. Imaging findings include the presence of calcifications, the CSF cleft sign, hyperostosis of adjacent bone, dural tail, and white matter buckling sign. After i.v.c. injection, they enhance brightly and homogenously, except for large ones, which may exhibit necrotic areas or may be heavily calcified. Malignant or cystic variants demonstrate more heterogeneity and less intense enhancement. Sometimes, it is inevitable that the needed CT protocol cannot be performed, especially in the emergency department. In these cases, the radiologist must focus on the characteristic imaging features of the unenhanced lesion, as well as in previous examinations or a known lesion history, in order to come to the right report conclusion.Keywords: computed tomography, emergency radiology, metastasis, tumor of skull base, abscess, primary brain tumors, meningioma, giant aneurysm of the anterior cerebral artery, olfactory neuroblastoma, interhemispheric meningioma
Procedia PDF Downloads 691206 Study of Oxidative Stability, Cold Flow Properties and Iodine Value of Macauba Biodiesel Blends
Authors: Acacia A. Salomão, Willian L. Gomes da Silva, Gustavo G. Shimamoto, Matthieu Tubino
Abstract:
Biodiesel physical and chemical properties depend on the raw material composition used in its synthesis. Saturated fatty acid esters confer high oxidative stability, while unsaturated fatty acid esters improve the cold flow properties. In this study, an alternative vegetal source - the macauba kernel oil - was used in the biodiesel synthesis instead of conventional sources. Macauba can be collected from native palm trees and is found in several regions in Brazil. Its oil is a promising source when compared to several other oils commonly obtained from food products, such as soybean, corn or canola oil, due to its specific characteristics. However, the usage of biodiesel made from macauba oil alone is not recommended due to the difficulty of producing macauba in large quantities. For this reason, this project proposes the usage of blends of the macauba oil with conventional oils. These blends were prepared by mixing the macauba biodiesel with biodiesels obtained from soybean, corn, and from residual frying oil, in the following proportions: 20:80, 50:50 e 80:20 (w/w). Three parameters were evaluated, using the standard methods, in order to check the quality of the produced biofuel and its blends: oxidative stability, cold filter plugging point (CFPP), and iodine value. The induction period (IP) expresses the oxidative stability of the biodiesel, the CFPP expresses the lowest temperature in which the biodiesel flows through a filter without plugging the system and the iodine value is a measure of the number of double bonds in a sample. The biodiesels obtained from soybean, residual frying oil and corn presented iodine values higher than 110 g/100 g, low oxidative stability and low CFPP. The IP values obtained from these biodiesels were lower than 8 h, which is below the recommended standard value. On the other hand, the CFPP value was found within the allowed limit (5 ºC is the maximum). Regarding the macauba biodiesel, a low iodine value was observed (31.6 g/100 g), which indicates the presence of high content of saturated fatty acid esters. The presence of saturated fatty acid esters should imply in a high oxidative stability (which was found accordingly, with IP = 64 h), and high CFPP, but curiously the latter was not observed (-3 ºC). This behavior can be explained by looking at the size of the carbon chains, as 65% of this biodiesel is composed by short chain saturated fatty acid esters (less than 14 carbons). The high oxidative stability and the low CFPP of macauba biodiesel are what make this biofuel a promising source. The soybean, corn and residual frying oil biodiesels also have low CFPP, but low oxidative stability. Therefore the blends proposed in this work, if compared to the common biodiesels, maintain the flow properties but present enhanced oxidative stability.Keywords: biodiesel, blends, macauba kernel oil, stability oxidative
Procedia PDF Downloads 5391205 A Study of Microglitches in Hartebeesthoek Radio Pulsars
Authors: Onuchukwu Chika Christian, Chukwude Augustine Ejike
Abstract:
We carried out a statistical analyse of microglitches events on a sample of radio pulsars. The distribution of microglitch events in frequency (ν) and first frequency derivatives ν˙ indicates that the size of a microglitch and sign combinations of events in ν and ν˙ are purely randomized. Assuming that the probability of a given size of a microglitch event occurring scales inversely as the absolute size of the event in both ν and ν˙, we constructed a cumulative distribution function (CDF) for the absolute sizes of microglitches. In most of the pulsars, the theoretical CDF matched the observed values. This is an indication that microglitches in pulsar may be interpreted as an avalanche process in which angular momentum is transferred erratically from the flywheel-like superfliud interior to the slowly decelerating solid crust. Analysis of the waiting time indicates that it is purely Poisson distributed with mean microglitch rate <γ> ∼ 0.98year^−1 for all the pulsars in our sample and <γ> / <∆T> ∼ 1. Correlation analysis, showed that the relative absolute size of microglitch event strongly with the rotation period of the pulsar with correlation coefficient r ∼ 0.7 and r ∼ 0.5 respectively for events in ν and ν˙. The mean glitch rate and number of microglitches (Ng) showed some dependence on spin down rate (r ∼ −0.6) and the characteristic age of the pulsar (τ) with (r ∼ −0.4/− 0.5).Keywords: method-data analysis, star, neutron-pulsar, general
Procedia PDF Downloads 4601204 A Digital Twin Approach to Support Real-time Situational Awareness and Intelligent Cyber-physical Control in Energy Smart Buildings
Authors: Haowen Xu, Xiaobing Liu, Jin Dong, Jianming Lian
Abstract:
Emerging smart buildings often employ cyberinfrastructure, cyber-physical systems, and Internet of Things (IoT) technologies to increase the automation and responsiveness of building operations for better energy efficiency and lower carbon emission. These operations include the control of Heating, Ventilation, and Air Conditioning (HVAC) and lighting systems, which are often considered a major source of energy consumption in both commercial and residential buildings. Developing energy-saving control models for optimizing HVAC operations usually requires the collection of high-quality instrumental data from iterations of in-situ building experiments, which can be time-consuming and labor-intensive. This abstract describes a digital twin approach to automate building energy experiments for optimizing HVAC operations through the design and development of an adaptive web-based platform. The platform is created to enable (a) automated data acquisition from a variety of IoT-connected HVAC instruments, (b) real-time situational awareness through domain-based visualizations, (c) adaption of HVAC optimization algorithms based on experimental data, (d) sharing of experimental data and model predictive controls through web services, and (e) cyber-physical control of individual instruments in the HVAC system using outputs from different optimization algorithms. Through the digital twin approach, we aim to replicate a real-world building and its HVAC systems in an online computing environment to automate the development of building-specific model predictive controls and collaborative experiments in buildings located in different climate zones in the United States. We present two case studies to demonstrate our platform’s capability for real-time situational awareness and cyber-physical control of the HVAC in the flexible research platforms within the Oak Ridge National Laboratory (ORNL) main campus. Our platform is developed using adaptive and flexible architecture design, rendering the platform generalizable and extendable to support HVAC optimization experiments in different types of buildings across the nation.Keywords: energy-saving buildings, digital twins, HVAC, cyber-physical system, BIM
Procedia PDF Downloads 1101203 State of the Art on the Recommendation Techniques of Mobile Learning Activities
Authors: Nassim Dennouni, Yvan Peter, Luigi Lancieri, Zohra Slama
Abstract:
The objective of this article is to make a bibliographic study on the recommendation of mobile learning activities that are used as part of the field trip scenarios. Indeed, the recommendation systems are widely used in the context of mobility because they can be used to provide learning activities. These systems should take into account the history of visits and teacher pedagogy to provide adaptive learning according to the instantaneous position of the learner. To achieve this objective, we review the existing literature on field trip scenarios to recommend mobile learning activities.Keywords: mobile learning, field trip, mobile learning activities, collaborative filtering, recommendation system, point of interest, ACO algorithm
Procedia PDF Downloads 4461202 Designing Cultural-Creative Products with the Six Categories of Hanzi (Chinese Character Classification)
Authors: Pei-Jun Xue, Ming-Yu Hsiao
Abstract:
Chinese characters, or hanzi, represent a process of simplifying three-dimensional signs into plane signifiers. From pictograms at the beginning to logograms today, a Han linguist thus classified them into six categories known as the six categories of Chinese characters. Design is a process of signification, and cultural-creative design is a process translating ideas into design with creativity upon culture. Aiming to investigate the process of cultural-creative design transforming cultural text into cultural signs, this study analyzed existing cultural-creative products with the six categories of Chinese characters by treating such products as representations which accurately communicate the designer’s ideas to users through the categorization, simplification, and interpretation of sign features. This is a two-phase pilot study on designing cultural-creative products with the six categories of Chinese characters. Phase I reviews the related literature on the theory of the six categories of Chinese characters investigated and concludes with the process and principles of character evolution. Phase II analyzes the design of existing cultural-creative products with the six categories of Chinese characters and explores the conceptualization of product design.Keywords: six categories of Chinese characters, cultural-creative product design, cultural signs, cultural product
Procedia PDF Downloads 344