Search results for: shock sensitivity
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 2247

Search results for: shock sensitivity

1287 Flux-Gate vs. Anisotropic Magneto Resistance Magnetic Sensors Characteristics in Closed-Loop Operation

Authors: Neoclis Hadjigeorgiou, Spyridon Angelopoulos, Evangelos V. Hristoforou, Paul P. Sotiriadis

Abstract:

The increasing demand for accurate and reliable magnetic measurements over the past decades has paved the way for the development of different types of magnetic sensing systems as well as of more advanced measurement techniques. Anisotropic Magneto Resistance (AMR) sensors have emerged as a promising solution for applications requiring high resolution, providing an ideal balance between performance and cost. However, certain issues of AMR sensors such as non-linear response and measurement noise are rarely discussed in the relevant literature. In this work, an analog closed loop compensation system is proposed, developed and tested as a means to eliminate the non-linearity of AMR response, reduce the 1/f noise and enhance the sensitivity of magnetic sensor. Additional performance aspects, such as cross-axis and hysteresis effects are also examined. This system was analyzed using an analytical model and a P-Spice model, considering both the sensor itself as well as the accompanying electronic circuitry. In addition, a commercial closed loop architecture Flux-Gate sensor (calibrated and certified), has been used for comparison purposes. Three different experimental setups have been constructed for the purposes of this work, each one utilized for DC magnetic field measurements, AC magnetic field measurements and Noise density measurements respectively. The DC magnetic field measurements have been conducted in laboratory environment employing a cubic Helmholtz coil setup in order to calibrate and characterize the system under consideration. A high-accuracy DC power supply has been used for providing the operating current to the Helmholtz coils. The results were recorded by a multichannel voltmeter The AC magnetic field measurements have been conducted in laboratory environment employing a cubic Helmholtz coil setup in order to examine the effective bandwidth not only of the proposed system but also for the Flux-Gate sensor. A voltage controlled current source driven by a function generator has been utilized for the Helmholtz coil excitation. The result was observed by the oscilloscope. The third experimental apparatus incorporated an AC magnetic shielding construction composed of several layers of electric steel that had been demagnetized prior to the experimental process. Each sensor was placed alone and the response was captured by the oscilloscope. The preliminary experimental results indicate that closed loop AMR response presented a maximum deviation of 0.36% with respect to the ideal linear response, while the corresponding values for the open loop AMR system and the Fluxgate sensor reached 2% and 0.01% respectively. Moreover, the noise density of the proposed close loop AMR sensor system remained almost as low as the noise density of the AMR sensor itself, yet considerably higher than that of the Flux-Gate sensor. All relevant numerical data are presented in the paper.

Keywords: AMR sensor, chopper, closed loop, electronic noise, magnetic noise, memory effects, flux-gate sensor, linearity improvement, sensitivity improvement

Procedia PDF Downloads 407
1286 Delamination of Scale in a Fe Carbon Steel Surface by Effect of Interface Roughness and Oxide Scale Thickness

Authors: J. M. Lee, W. R. Noh, C. Y. Kim, M. G. Lee

Abstract:

Delamination of oxide scale has been often discovered at the interface between Fe carbon steel and oxide scale. Among several mechanisms of this delamination behavior, the normal tensile stress to the substrate-scale interface has been described as one of the main factors. The stress distribution at the interface is also known to be affected by thermal expansion mismatch between substrate and oxide scale, creep behavior during cooling and the geometry of the interface. In this study, stress states near the interface in a Fe carbon steel with oxide scale have been investigated using FE simulations. The thermal and mechanical properties of oxide scales are indicated in literature and Fe carbon steel is measured using tensile testing machine. In particular, the normal and shear stress components developed at the interface during bending are investigated. Preliminary numerical sensitivity analyses are provided to explain the effects of the interface geometry and oxide thickness on the delamination behavior.

Keywords: oxide scale, delamination, Fe analysis, roughness, thickness, stress state

Procedia PDF Downloads 326
1285 Using Priority Order of Basic Features for Circumscribed Masses Detection in Mammograms

Authors: Minh Dong Le, Viet Dung Nguyen, Do Huu Viet, Nguyen Huu Tu

Abstract:

In this paper, we present a new method for circumscribed masses detection in mammograms. Our method is evaluated on 23 mammographic images of circumscribed masses and 20 normal mammograms from public Mini-MIAS database. The method is quite sanguine with sensitivity (SE) of 95% with only about 1 false positive per image (FPpI). To achieve above results we carry out a progression following: Firstly, the input images are preprocessed with the aim to enhance key information of circumscribed masses; Next, we calculate and evaluate statistically basic features of abnormal regions on training database; Then, mammograms on testing database are divided into equal blocks which calculated corresponding features. Finally, using priority order of basic features to classify blocks as an abnormal or normal regions.

Keywords: mammograms, circumscribed masses, evaluated statistically, priority order of basic features

Procedia PDF Downloads 314
1284 Smoker Recognition from Lung X-Ray Images Using Convolutional Neural Network

Authors: Moumita Chanda, Md. Fazlul Karim Patwary

Abstract:

Smoking is one of the most popular recreational drug use behaviors, and it contributes to birth defects, COPD, heart attacks, and erectile dysfunction. To completely eradicate this disease, it is imperative that it be identified and treated. Numerous smoking cessation programs have been created, and they demonstrate how beneficial it may be to help someone stop smoking at the ideal time. A tomography meter is an effective smoking detector. Other wearables, such as RF-based proximity sensors worn on the collar and wrist to detect when the hand is close to the mouth, have been proposed in the past, but they are not impervious to deceptive variables. In this study, we create a machine that can discriminate between smokers and non-smokers in real-time with high sensitivity and specificity by watching and collecting the human lung and analyzing the X-ray data using machine learning. If it has the highest accuracy, this machine could be utilized in a hospital, in the selection of candidates for the army or police, or in university entrance.

Keywords: CNN, smoker detection, non-smoker detection, OpenCV, artificial Intelligence, X-ray Image detection

Procedia PDF Downloads 62
1283 A Turn-on Fluorescent Sensor for Pb(II)

Authors: Ece Kök Yetimoğlu, Soner Çubuk, Neşe Taşci, M. Vezir Kahraman

Abstract:

Lead(II) is one of the most toxic environmental pollutants in the world, due to its high toxicity and non-biodegradability. Lead exposure causes severe risks to human health such as central brain damages, convulsions, kidney damages, and even death. To determine lead(II) in environmental or biological samples, scientists use atomic absorption spectrometry (AAS), inductively coupled plasma mass spectrometry (ICPMS), fluorescence spectrometry and electrochemical techniques. Among these systems the fluorescence spectrometry and fluorescent chemical sensors have attracted considerable attention because of their good selectivity and high sensitivity. The fluorescent polymers usually contain covalently bonded fluorophores. In this study imidazole based UV cured polymeric film was prepared and designed to act as a fluorescence chemo sensor for lead (II) analysis. The optimum conditions such as influence of pH value and time on the fluorescence intensity of the sensor have also been investigated. The sensor was highly sensitive with a detection limit as low as 1.87 × 10−8 mol L-1 and it was successful in the determination of Pb(II) in water samples.

Keywords: fluorescence, lead(II), photopolymerization, polymeric sensor

Procedia PDF Downloads 656
1282 Development of a Non-Dispersive Infrared Multi Gas Analyzer for a TMS

Authors: T. V. Dinh, I. Y. Choi, J. W. Ahn, Y. H. Oh, G. Bo, J. Y. Lee, J. C. Kim

Abstract:

A Non-Dispersive Infrared (NDIR) multi-gas analyzer has been developed to monitor the emission of carbon monoxide (CO) and sulfur dioxide (SO2) from various industries. The NDIR technique for gas measurement is based on the wavelength absorption in the infrared spectrum as a way to detect particular gasses. NDIR analyzers have popularly applied in the Tele-Monitoring System (TMS). The advantage of the NDIR analyzer is low energy consumption and cost compared with other spectroscopy methods. However, zero/span drift and interference are its urgent issues to be solved. Multi-pathway technique based on optical White cell was employed to improve the sensitivity of the analyzer in this work. A pyroelectric detector was used to detect the Infrared radiation. The analytical range of the analyzer was 0 ~ 200 ppm. The instrument response time was < 2 min. The detection limits of CO and SO2 were < 4 ppm and < 6 ppm, respectively. The zero and span drift of 24 h was less than 3%. The linearity of the analyzer was less than 2.5% of reference values. The precision and accuracy of both CO and SO2 channels were < 2.5% of relative standard deviation. In general, the analyzer performed well. However, the detection limit and 24h drift should be improved to be a more competitive instrument.

Keywords: analyzer, CEMS, monitoring, NDIR, TMS

Procedia PDF Downloads 235
1281 Accuracy of Fitbit Charge 4 for Measuring Heart Rate in Parkinson’s Patients During Intense Exercise

Authors: Giulia Colonna, Jocelyn Hoye, Bart de Laat, Gelsina Stanley, Jose Key, Alaaddin Ibrahimy, Sule Tinaz, Evan D. Morris

Abstract:

Parkinson’s disease (PD) is the second most common neurodegenerative disease and affects approximately 1% of the world’s population. Increasing evidence suggests that aerobic physical exercise can be beneficial in mitigating both motor and non-motor symptoms of the disease. In a recent pilot study of the role of exercise on PD, we sought to confirm exercise intensity by monitoring heart rate (HR). For this purpose, we asked participants to wear a chest strap heart rate monitor (Polar Electro Oy, Kempele). The device sometimes proved uncomfortable. Looking forward to larger clinical trials, it would be convenient to employ a more comfortable and user friendly device. The Fitbit Charge 4 (Fitbit Inc) is a potentially comfortable, user-friendly solution since it is a wrist-worn heart rate monitor. Polar H10 has been used in large trials, and for our purposes, we treated it as the gold standard for the beat-to-beat period (R-R interval) assessment. In previous literature, it has been shown that Fitbit Charge 4 has comparable accuracy to Polar H10 in healthy subjects. It has yet to be determined if the Fitbit is as accurate as the Polar H10 in subjects with PD or in clinical populations, generally. Goal: To compare the Fitbit Charge 4 to the Polar H10 for monitoring HR in PD subjects engaging in an intensive exercise program. Methods: A total of 596 exercise sessions from 11 subjects (6 males) were collected simultaneously by both devices. Subjects with early-stage PD (Hoehn & Yahr <=2) were enrolled in a 6 months exercise training program designed for PD patients. Subjects participated in 3 one-hour exercise sessions per week. They wore both Fitbit and Polar H10 during each session. Sessions included rest, warm-up, intensive exercise, and cool-down periods. We calculated the bias in the HR via Fitbit under rest (5min) and intensive exercise (20min) by comparing the mean HR during each of the periods to the respective means measured by the Polar (HRFitbit – HRPolar). We also measured the sensitivity and specificity of Fitbit for detecting HRs that exceed the threshold for intensive exercise, defined as 70% of an individual’s theoretical maximum HR. Different types of correlation between the two devices were investigated. Results: The mean bias was 1.68 bpm at rest and 6.29 bpm during high intensity exercise, with an overestimation by Fitbit in both conditions. The mean bias of Fitbit across both rest and intensive exercise periods was 3.98 bpm. The sensitivity of the device in identifying high intensity exercise sessions was 97.14 %. The correlation between the two devices was non-linear, suggesting a saturation tendency of Fitbit to saturate at high values of HR. Conclusion: The performance of Fitbit Charge 4 is comparable to Polar H10 for assessing exercise intensity in a cohort of PD subjects. The device should be considered a reasonable replacement for the more cumbersome chest strap technology in future similar studies of clinical populations.

Keywords: fitbit, heart rate measurements, parkinson’s disease, wrist-wearable devices

Procedia PDF Downloads 82
1280 Treatment Outcome Of Corneal Ulcers Using Levofloxacin Hydrate 1.5% Ophthalmic Solution And Adjuvant Oral Ciprofloxacin, A Treatment Strategy Applicable To Primary Healthcare

Authors: Celine Shi Ying Lee, Jong Jian Lee

Abstract:

Background: Infectious keratitis is one of the leading causes of blindness worldwide. Prompt treatment with effective medication will control the infection early, preventing corneal scarring and visual loss. fluoroquinolones ophthalmic medication is used because of its broad-spectrum properties, potency, good intraocular penetration, and low toxicity. The study aims to evaluate the treatment outcome of corneal ulcers using Levofloxacin 1.5% ophthalmic solution (LVFX) with adjuvant oral ciprofloxacin when indicated and apply this treatment strategy in primary health care as first-line treatment. Methods: Patients with infective corneal ulcer treated in an eye center were recruited. Inclusion criteria includes Corneal infection consistent with bacterial keratitis, single or multiple small corneal ulcers. Treatment regime: LVFX hourly for the first 2 days, 2 hourly from the 3rd day, and 3 hourly on the 5th day of review. Adjuvant oral ciprofloxacin 500mg BD was administered for 5 days if there were multiple corneal ulcers or when the location of the cornea ulcer was central or paracentral. Results: 47 subjects were recruited. There were 16 (34%) males and 31 (66%) females. 40 subjects (85%) were contact lens (CL) related to corneal ulcer, and 7 subjects (15%) were non-contact lens related. 42 subjects (89%) presented with one ulcer, of which 20 of them (48%) needed adjuvant therapy. 5 subjects presented with 2 or 3 ulcers, of which 3 needed adjuvant therapy. A total of 23 subjects (49%) was given adjuvant therapy (oral ciprofloxacin 500mg BD for 5 days).21 of them (91%) were CL related. All subjects recovered fully, and the average duration of treatment was 3.7 days, with 49% of the subjects resolved on the 3rd day, 38% on the 5thday of and 13% on the 7thday. All subjects showed symptoms of relief of pain, light-sensitivity, and redness on the 3rd day with full visual recovery post-treatment. No adverse drug reactions were recorded. Conclusion: Our treatment regime demonstrated good clinical outcome as first-line treatment for corneal ulcers. A corneal ulcer is a common eye condition in Singapore, mainly due to CL wear. Pseudomonas aeruginosa is the most frequent and potentially sight-threatening pathogen involved in CL related corneal ulcer. Coagulase-negative Staphylococci, Staphylococcus aureus, and Streptococcus Pneumoniae were seen in non-CL users. All these bacteria exhibit good sensitivity rates to ciprofloxacin and levofloxacin. It is therefore logical in our study to use LVFX Eyedrops and adjuvant ciprofloxacin oral antibiotics when indicated as first line treatment for most corneal ulcers. Our study of patients, both CL related and non-CL related, have shown good clinical response and full recovery using the above treatment strategy. There was also a full restoration of visual acuity in all the patients. Eye-trained primary Healthcare practitioners can consider adopting this treatment strategy as first line treatment in patients with corneal ulcers. This is relevant during the COVID pandemic, where hospitals are overwhelmed with patients and in regions with limited access to specialist eye care. This strategy would enable early treatment with better clinical outcome.

Keywords: corneal ulcer, levofloxacin hydrate, treatment strategy, ciprofloxacin

Procedia PDF Downloads 159
1279 Indoor Temperature, Relative Humidity and CO₂ Level Assessment in a Publically Managed Hospital Building

Authors: Ayesha Asif, Muhammad Zeeshan

Abstract:

The sensitivity of hospital-microenvironments for all types of pollutants, due to the presence of patients with immune deficiencies, makes them complex indoor spaces. Keeping in view, this study investigated indoor air quality (IAQ) of two most sensitive places, i.e., operation theater (OT) and intensive care unit (ICU), of a publically managed hospital. Taking CO₂ concentration as air quality indicator and temperature (T) and relative humidity (RH) as thermal comfort parameters, continuous monitoring of the three variables was carried out. Measurements were recorded at an interval of 1 min for weekdays and weekends, including occupational and non-occupational hours. Outdoor T and RH measurements were also used in the analysis. Results show significant variation (p < 0.05) in CO₂, T and RH values over the day during weekdays while no significant variation (p > 0.05) have been observed during weekends of both the monitored sites. Maximum observed values of CO₂ in OT and ICU were found to be 2430 and 624 ppm, T as 24.7ºC and 28.9ºC and RH as 29.6% and 32.2% respectively.

Keywords: indoor air quality, CO₂ concentration, hospital building, comfort assessment

Procedia PDF Downloads 117
1278 PRISM: An Analytical Tool for Forest Plan Development

Authors: Dung Nguyen, Yu Wei, Eric Henderson

Abstract:

Analytical tools have been used for decades to assist in the development of forest plans. In 2016, a new decision support system, PRISM, was jointly developed by United States Forest Service (USFS) Northern Region and Colorado State University to support the forest planning process. Prism has a friendly user interface with functionality for database management, model development, data visualization, and sensitivity analysis. The software is tailored for USFS planning, but it is flexible enough to support planning efforts by other forestland owners and managers. Here, the core capability of PRISM and its applications in developing plans for several United States national forests are presented. The strengths of PRISM are also discussed to show its potential of being a preferable tool for managers and experts in the domain of forest management and planning.

Keywords: decision support, forest management, forest plan, graphical user interface, software

Procedia PDF Downloads 93
1277 Application of Customized Bioaugmentation Inocula to Alleviate Ammonia Toxicity in CSTR Anaerobic Digesters

Authors: Yixin Yan, Miao Yan, Irini Angelidaki, Ioannis Fotidis

Abstract:

Ammonia, which derives from the degradation of urea and protein-substrates, is the major toxicant of the commercial anaerobic digestion reactors causing loses of up to 1/3 of their practical biogas production, which reflects directly on the overall revenue of the plants. The current experimental work is aiming to alleviate the ammonia inhibition in anaerobic digestion (AD) process by developing an innovative bioaugmentation method of ammonia tolerant methanogenic consortia. The ammonia tolerant consortia were cultured in batch reactors and immobilized together with biochar in agar (customized inocula). Three continuous stirred-tank reactors (CSTR), fed with the organic fraction of municipal solid waste at a hydraulic retention time of 15 days and operated at thermophilic (55°C) conditions were assessed. After an ammonia shock of 4 g NH4+-N L-1, the customized inocula were bioaugmented into the CSTR reactors to alleviate ammonia toxicity effect on AD process. Recovery rate of methane production and methanogenic activity will be assessed to evaluate the bioaugmentation performance, while 16s rRNA gene sequence will be used to reveal the difference of microbial community changes through bioaugmentation. At the microbial level, the microbial community structures of the four reactors will be analysed to find the mechanism of bioaugmentation. Changes in hydrogen formation potential will be used to predict direct interspecies electron transfer (DIET) between ammonia tolerant methanogens and syntrophic bacteria. This experimental work is expected to create bioaugmentation inocula that will be easy to obtain, transport, handled and bioaugment in AD reactors to efficiently alleviate the ammonia toxicity, without alternating any of the other operational parameters including the ammonia-rich feedstocks.

Keywords: artisanal fishing waste, acidogenesis, volatile fatty acids, pH, inoculum/substrate ratio

Procedia PDF Downloads 105
1276 The Effect of Costus igneus Extract on Learning and Memory in Normal and Diabetic Rats

Authors: Shalini Adiga, Shashikant Chetty, Jisha, Shobha Kamath

Abstract:

Background: Moderate impairment of learning and memory has been observed in both type 1 and 2 diabetes mellitus in humans and experimental animals. A Change in glucose utilization and oxidative stress that occur in diabetes are considered the main reasons for cognitive dysfunction. Objective: Costus igneus (CI) which is known to possess hypoglycemic activity was evaluated in this study for its effect on learning and memory in normal and diabetic rats. Methods: Wistar rats were divided into control, CI-alcoholic extract treated normal (250 and 500mg/kg), diabetic control and CI-treated diabetic groups. CI treatment was continued for 4 weeks. For induction of diabetes, a single dose of streptozotocin was injected (30 mg/kg i.p). Entrance latency and time spent in the dark room during acquisition and at 24 and 48h after an aversive shock in a passive avoidance model was used as an index of learning and memory. Glutathione and malondialdehyde levels in brain and blood glucose were measured. Data was analysed using ANOVA. Results: During the three trials in exploration test, the diabetic control rats exhibited no significant change in entrance latency or in the total time spent in the dark compartment. During retention testing, the entrance latency of the diabetic treated groups was two times less at 24h and three times less at 48h after aversive stimulus as compared to diabetic rats. The normal drug-treated rats showed similar behaviour as the saline control. Treatment with CI significantly reduced the raised blood sugar and MDA levels of diabetic rats. Conclusion: Costus igneus prevented the cognitive dysfunction in diabetic rats which can be attributed to its antioxidant and antihyperglycemic activities.

Keywords: Costus igneous, diabetes, learning and memory, cognitive dysfunction

Procedia PDF Downloads 335
1275 Detection of Nutrients Using Honeybee-Mimic Bioelectronic Tongue Systems

Authors: Soo Ho Lim, Minju Lee, Dong In Kim, Gi Youn Han, Seunghun Hong, Hyung Wook Kwon

Abstract:

We report a floating electrode-based bioelectronic tongue mimicking honeybee taste systems for the detection and discrimination of various nutrients. Here, carbon nanotube field effect transistors with floating electrodes (CNT-FET) were hybridized with nanovesicles containing honeybee nutrient receptors, gustatory receptors of Apis mellifera. This strategy enables us to detect nutrient substance with a high sensitivity and selectivity. It could also be utilized for the detection of nutrients in liquid food. This floating electrode-based bioelectronic tongue mimicking insect taste systems can be a simple, but highly effective strategy in many different basic research areas about sensory systems. Moreover, our research provides opportunities to develop various applications such as food screening, and it also can provide valuable insights on insect taste systems.

Keywords: taste system, CNT-FET, insect gustatory receptor, biolelectronic tongue

Procedia PDF Downloads 195
1274 Green Synthesis of Silver Nanoparticles by Olive Leaf Extract: Application in the Colorimetric Detection of Fe+3 Ions

Authors: Nasibeh Azizi Khereshki

Abstract:

Olive leaf (OL) extract as a green reductant agent was utilized for the biogenic synthesis of silver nanoparticles (Ag NPs) for the first time in this study, and then its performance was evaluated for colorimetric detection of Fe3+ in different media. Some analytical methods were used to characterize the nanosensor. The effective sensing parameters were optimized by central composite design (CCD) combined with response surface methodology (RSM) application. Then, the prepared material's applicability in antibacterial and optical chemical sensing for naked-eye detection of Fe3+ ions in aqueous solutions were evaluated. Furthermore, OL-Ag NPs-loaded paper strips were successfully applied to the colorimetric visualization of Fe3+. The colorimetric probe based on OL-AgNPs illustrated excellent selectivity and sensitivity towards Fe3+ ions, with LOD and LOQ of 0.81 μM and 2.7 μM, respectively. In addition, the developed method was applied to detect Fe3+ ions in real water samples and validated with a 95% confidence level against a reference spectroscopic method.

Keywords: Ag NPs, colorimetric detection, Fe(III) ions, green synthesis, olive leaves

Procedia PDF Downloads 54
1273 Clinical and Analytical Performance of Glial Fibrillary Acidic Protein and Ubiquitin C-Terminal Hydrolase L1 Biomarkers for Traumatic Brain Injury in the Alinity Traumatic Brain Injury Test

Authors: Raj Chandran, Saul Datwyler, Jaime Marino, Daniel West, Karla Grasso, Adam Buss, Hina Syed, Zina Al Sahouri, Jennifer Yen, Krista Caudle, Beth McQuiston

Abstract:

The Alinity i TBI test is Therapeutic Goods Administration (TGA) registered and is a panel of in vitro diagnostic chemiluminescent microparticle immunoassays for the measurement of glial fibrillary acidic protein (GFAP) and ubiquitin C-terminal hydrolase L1 (UCH-L1) in plasma and serum. The Alinity i TBI performance was evaluated in a multi-center pivotal study to demonstrate the capability to assist in determining the need for a CT scan of the head in adult subjects (age 18+) presenting with suspected mild TBI (traumatic brain injury) with a Glasgow Coma Scale score of 13 to 15. TBI has been recognized as an important cause of death and disability and is a growing public health problem. An estimated 69 million people globally experience a TBI annually1. Blood-based biomarkers such as glial fibrillary acidic protein (GFAP) and ubiquitin C-terminal hydrolase L1 (UCH-L1) have shown utility to predict acute traumatic intracranial injury on head CT scans after TBI. A pivotal study using prospectively collected archived (frozen) plasma specimens was conducted to establish the clinical performance of the TBI test on the Alinity i system. The specimens were originally collected in a prospective, multi-center clinical study. Testing of the specimens was performed at three clinical sites in the United States. Performance characteristics such as detection limits, imprecision, linearity, measuring interval, expected values, and interferences were established following Clinical and Laboratory Standards Institute (CLSI) guidance. Of the 1899 mild TBI subjects, 120 had positive head CT scan results; 116 of the 120 specimens had a positive TBI interpretation (Sensitivity 96.7%; 95% CI: 91.7%, 98.7%). Of the 1779 subjects with negative CT scan results, 713 had a negative TBI interpretation (Specificity 40.1%; 95% CI: 37.8, 42.4). The negative predictive value (NPV) of the test was 99.4% (713/717, 95% CI: 98.6%, 99.8%). The analytical measuring interval (AMI) extends from the limit of quantitation (LoQ) to the upper LoQ and is determined by the range that demonstrates acceptable performance for linearity, imprecision, and bias. The AMI is 6.1 to 42,000 pg/mL for GFAP and 26.3 to 25,000 pg/mL for UCH-L1. Overall, within-laboratory imprecision (20 day) ranged from 3.7 to 5.9% CV for GFAP and 3.0 to 6.0% CV for UCH-L1, when including lot and instrument variances. The Alinity i TBI clinical performance results demonstrated high sensitivity and high NPV, supporting the utility to assist in determining the need for a head CT scan in subjects presenting to the emergency department with suspected mild TBI. The GFAP and UCH-L1 assays show robust analytical performance across a broad concentration range of GFAP and UCH-L1 and may serve as a valuable tool to help evaluate TBI patients across the spectrum of mild to severe injury.

Keywords: biomarker, diagnostic, neurology, TBI

Procedia PDF Downloads 53
1272 The Mechanical Behavior of a Cement-Fiber Composite Material

Authors: K. Harrat, M. Hidjeb, M. T’kint

Abstract:

The aim of the present research work is to characterize a cement palm date fiber composite in order to be used in isolation and in the manufacture of new structural materials. This technique may possibly participate seriously in the preservation of the environment and develop a growing need for plant products. On one hand, It has been shown that the presence of natural fiber in the composite materials manufacture, based on hydraulic binder, has improved the mechanical behaviour of the material. On the Other hand, It has been proven that the durability of composite materials reinforced with untreated fibers was largely affected by the presence of organic matter. In order to extract the organic material, the fibers were treated with boiling water and then coated with different types of products. A considerable improvement in the sensitivity to water of the fibers, as well as in the mechanical strength and in the ductility of the composite material was observed. The fiber being sensitive to water, the study put the emphasis on its dimensional stability.

Keywords: cement composite, durability, heat treatment, mechanical behaviour, vegetal fiber

Procedia PDF Downloads 436
1271 Microwave Assisted Synthesis and Metal Complexes of Some Copolymers Based on Itaconic Acid

Authors: Mohamed H. El-Newehy, Sameh M. Osman, Moamen S. Refat, Salem S. Al-Deyab, Ayman El-Faham

Abstract:

The two copolymers itaconic acid-methyl methacrylate and itaconic acid-acrylamide have been prepared in different ratio by radical copolymerization in the presence of azobisisobutyronitrile (AIBN) as initiator and using 2-butanone as reaction medium using microwave irradiation. The microwave technique is safe, fast, and gives high yield of the products with high purity in an optimum time, comparing to the traditional conventional heating. All the prepared copolymers were characterized by FT-IR, thermal analysis and elemental microanalysis. The itaconic acid-based copolymers showed a good sensitivity in alkaline media for scavenging Cu (II) and Pb (II). The chelation behavior of both Cu (II) and Pb (II) complexes were checked using FT-IR, thermogravimetric analysis (TGA), and differential scanning calorimetery (DSC). The infrared data are in a good agreement with the coordination through carboxylate-to-metal, in which the copolymers acting as a bidentate ligand.

Keywords: microwave synthesis, itaconic acid, copolymerization, scavenging, thermal stability

Procedia PDF Downloads 437
1270 National Plans for Recovery and Resilience between National Recovery and EU Cohesion Objectives: Insights from European Countries

Authors: Arbolino Roberta, Boffardi Raffaele

Abstract:

Achieving the highest effectiveness for the National Plans for Recovery and Resilience (NPRR) while strengthening the objectives of cohesion and reduction of intra-EU unbalances is only possible by means of strategic, coordinated, and coherent policy planning. Therefore, the present research aims at assessing and quantifying the potential impact of NPRRs across the twenty-seven European Member States in terms of economic convergence, considering disaggregated data on industrial, construction, and service sectors. The first step of the research involves a performance analysis of the main macroeconomic indicators describing the trends of twenty-seven EU economies before the pandemic outbreak. Subsequently, in order to define the potential effect of the resources allocated, we perform an impact analysis of previous similar EU investment policies, estimating national-level sectoral elasticity associated with the expenditure of the 2007-2013 and 2014-2020 Cohesion programmes funds. These coefficients are then exploited to construct adjustment scenarios. Finally, convergence analysis is performed on the data used for constructing scenarios in order to understand whether the expenditure of funds might be useful to foster economic convergence besides driving recovery. The results of our analysis show that the allocation of resources largely mirrors the aims of the policy framework underlying the NPRR, thus reporting the largest investments in both those sectors most affected by the economic shock (services) and those considered fundamental for the digital and green transition. Notwithstanding an overall positive effect, large differences exist among European countries, while no convergence process seems to be activated or fostered by these interventions.

Keywords: NPRR, policy evaluation, cohesion policy, scenario Nalsysi

Procedia PDF Downloads 62
1269 Molding Properties of Cobalt-Chrome-Based Feedstocks Used in Low-Pressure Powder Injection Molding

Authors: Ehsan Gholami, Vincent Demers

Abstract:

Low-pressure powder injection molding is an emerging technology for cost-effectively producing complex shape metallic parts with the proper dimensional tolerances, either in high or in low production volumes. In this study, the molding properties of cobalt-chrome-based feedstocks were evaluated for use in a low-pressure powder injection molding process. The rheological properties of feedstock formulations were obtained by mixing metallic powder with a proprietary wax-based binder system. Rheological parameters such as reference viscosity, shear rate sensitivity index, and activation energy for viscous flow, were extracted from the viscosity profiles and introduced into the Weir model to calculate the moldability index. Feedstocks were experimentally injected into a spiral mold cavity to validate the injection performance calculated with the model.

Keywords: binder, feedstock, moldability, powder injection molding, viscosity

Procedia PDF Downloads 255
1268 Ensemble-Based SVM Classification Approach for miRNA Prediction

Authors: Sondos M. Hammad, Sherin M. ElGokhy, Mahmoud M. Fahmy, Elsayed A. Sallam

Abstract:

In this paper, an ensemble-based Support Vector Machine (SVM) classification approach is proposed. It is used for miRNA prediction. Three problems, commonly associated with previous approaches, are alleviated. These problems arise due to impose assumptions on the secondary structural of premiRNA, imbalance between the numbers of the laboratory checked miRNAs and the pseudo-hairpins, and finally using a training data set that does not consider all the varieties of samples in different species. We aggregate the predicted outputs of three well-known SVM classifiers; namely, Triplet-SVM, Virgo and Mirident, weighted by their variant features without any structural assumptions. An additional SVM layer is used in aggregating the final output. The proposed approach is trained and then tested with balanced data sets. The results of the proposed approach outperform the three base classifiers. Improved values for the metrics of 88.88% f-score, 92.73% accuracy, 90.64% precision, 96.64% specificity, 87.2% sensitivity, and the area under the ROC curve is 0.91 are achieved.

Keywords: MiRNAs, SVM classification, ensemble algorithm, assumption problem, imbalance data

Procedia PDF Downloads 324
1267 Psychological Well Being of Female Prisoners

Authors: Sujata Gupta Kedar, J. N. Tulika

Abstract:

Early researchers suggested that imprisonment had negative psychological and physical effects on its inmates, leading to psychological deterioration. The term “prisons” in the Consensus Statement of WHO is intended to denote, as those institutions which hold people who have been sentenced to a period of imprisonment by the courts for offences against the law. Thus “prisons” if local circumstances justify it, may also be taken to include secure institutions holding on a compulsory basis on any of the following categories of people: remand prisoners; civil prisoners; juvenile detainees; immigration detainees; some categories of mentally disordered patients; asylum seekers; refugees; people detained pending expulsion, deportation, exile, exclusion or any other form of compulsory transfer to other countries or areas of the country; people detained in police cells; and any other compulsorily detained group. Prisons are aimed to cure the criminal and their behavior but their records are not encouraging. Instead the imprisonment affects all prisoners in different way. From withstanding the shock of entry to the new culture, which is very different from their own, prisoners must try to determine how to spend the time in prison, since the hours appears to be endless in prisons. There is also the fear of deterioration. This article aims to provide an overview of the psychological well being of female prisoners in the prison environment in five areas- satisfaction, efficiency, sociability, mental health and interpersonal relations. Research was done on two different types of imprisonment- under trial prisoner and convict. Total sample included 22 female prisoners of Nagaon Special Jail of Assam. The instrument used for the study was based on Psychological Well Being Scale. Statistical analysis was done with t-test and one way anova test. The result demonstrated that there is no significant difference in the psychological wellbeing of female prisoners in the prison and that there is no significant difference in the psychological well being of different types of female prisoners involved in different crimes but there is significant difference in the mental health of the female prisoners in prison.

Keywords: psychological effect, female prisoners, prison, well being of prisoners

Procedia PDF Downloads 384
1266 Feature Selection for Production Schedule Optimization in Transition Mines

Authors: Angelina Anani, Ignacio Ortiz Flores, Haitao Li

Abstract:

The use of underground mining methods have increased significantly over the past decades. This increase has also been spared on by several mines transitioning from surface to underground mining. However, determining the transition depth can be a challenging task, especially when coupled with production schedule optimization. Several researchers have simplified the problem by excluding operational features relevant to production schedule optimization. Our research objective is to investigate the extent to which operational features of transition mines accounted for affect the optimal production schedule. We also provide a framework for factors to consider in production schedule optimization for transition mines. An integrated mixed-integer linear programming (MILP) model is developed that maximizes the NPV as a function of production schedule and transition depth. A case study is performed to validate the model, with a comparative sensitivity analysis to obtain operational insights.

Keywords: underground mining, transition mines, mixed-integer linear programming, production schedule

Procedia PDF Downloads 151
1265 Multiscale Modelization of Multilayered Bi-Dimensional Soils

Authors: I. Hosni, L. Bennaceur Farah, N. Saber, R Bennaceur

Abstract:

Soil moisture content is a key variable in many environmental sciences. Even though it represents a small proportion of the liquid freshwater on Earth, it modulates interactions between the land surface and the atmosphere, thereby influencing climate and weather. Accurate modeling of the above processes depends on the ability to provide a proper spatial characterization of soil moisture. The measurement of soil moisture content allows assessment of soil water resources in the field of hydrology and agronomy. The second parameter in interaction with the radar signal is the geometric structure of the soil. Most traditional electromagnetic models consider natural surfaces as single scale zero mean stationary Gaussian random processes. Roughness behavior is characterized by statistical parameters like the Root Mean Square (RMS) height and the correlation length. Then, the main problem is that the agreement between experimental measurements and theoretical values is usually poor due to the large variability of the correlation function, and as a consequence, backscattering models have often failed to predict correctly backscattering. In this study, surfaces are considered as band-limited fractal random processes corresponding to a superposition of a finite number of one-dimensional Gaussian process each one having a spatial scale. Multiscale roughness is characterized by two parameters, the first one is proportional to the RMS height, and the other one is related to the fractal dimension. Soil moisture is related to the complex dielectric constant. This multiscale description has been adapted to two-dimensional profiles using the bi-dimensional wavelet transform and the Mallat algorithm to describe more correctly natural surfaces. We characterize the soil surfaces and sub-surfaces by a three layers geo-electrical model. The upper layer is described by its dielectric constant, thickness, a multiscale bi-dimensional surface roughness model by using the wavelet transform and the Mallat algorithm, and volume scattering parameters. The lower layer is divided into three fictive layers separated by an assumed plane interface. These three layers were modeled by an effective medium characterized by an apparent effective dielectric constant taking into account the presence of air pockets in the soil. We have adopted the 2D multiscale three layers small perturbations model including, firstly air pockets in the soil sub-structure, and then a vegetable canopy in the soil surface structure, that is to simulate the radar backscattering. A sensitivity analysis of backscattering coefficient dependence on multiscale roughness and new soil moisture has been performed. Later, we proposed to change the dielectric constant of the multilayer medium because it takes into account the different moisture values of each layer in the soil. A sensitivity analysis of the backscattering coefficient, including the air pockets in the volume structure with respect to the multiscale roughness parameters and the apparent dielectric constant, was carried out. Finally, we proposed to study the behavior of the backscattering coefficient of the radar on a soil having a vegetable layer in its surface structure.

Keywords: multiscale, bidimensional, wavelets, backscattering, multilayer, SPM, air pockets

Procedia PDF Downloads 106
1264 Preparation of Essential Oil Capsule (Carum Copticum) In Chitosan Nanoparticles and Investigation of Its Biological Properties

Authors: Akbar Esmaeili, Azadeh Asgari

Abstract:

Essential oils’ unique and practical properties have been widely reported in recent years. Still, the sensitivity of critical oils to environmental factors and their poor solubility in aqueous solutions have limited their use in industries. Therefore, we encapsulated C. copticum essential oil in chitosan nanoparticles by emulsion-ionic gelation with sodium tripolyphosphate and sodium hexametaphosphate cross-linkers. The nanoparticles showed a round shape with an average size of 30-80 nm and a regular distribution. The release profile in the laboratory environment showed a burst in the initial release and then a stable release of C. copticum essential oil from chitosan nanoparticles at different pH. Antioxidant and antibacterial properties of C. copticum essential oil before and after the encapsulation process were evaluated by 2,2-diphenyl-1-picrylhydrazyl radical and disc diffusion methods, respectively. The results showed that the encapsulation of C. copticum essential oil in chitosan nanoparticles could protect its quality and bioactive compounds and improve the properties of the crucial oil.

Keywords: essential oils, Carum copticum, biological activities, nanotechnology

Procedia PDF Downloads 70
1263 Development of Hit Marks on Clothes Using Amino Acid Reagents

Authors: Hyo-Su Lim, Ye-Eun Song, Eun-Bi Lee, Sang-Yoon Lee, Young-Il Seo, Jin-Pyo Kim, Nam-Kyu Park

Abstract:

If we analogize any physical external force given to victims in many crimes including violence, it would be possible not only to presume mutual action between victims and suspects, but to make a deduction of more various facts in cases. Therefore, the aim of this study is to identify criminal tools through secretion on clothes by using amino acid reagents such as Ninhydrin, DFO(1,8-dizafluoren-9-one), 1,2 – IND (1,2-indanedione) which are reacting to skin secretion. For more effective collecting condition, porcine skin which is physiologically similar to human was used. Although there were little differences of shape identification according to sensitivity, amino acid reagents were able to identify the fist, foot, and baseball bat. Furthermore, we conducted the experiments for developmental variations through change over time setting up 5-weeks period including first damage as variation factor, and developing materials in each action through certain reagents. Specimen level of development depending on change over time was identified. As a result, each of initial level of development was seen no changes.

Keywords: hit marks, amino acid reagents, porcine skin, criminal tool

Procedia PDF Downloads 249
1262 Numerical Investigation of Multiphase Flow in Pipelines

Authors: Gozel Judakova, Markus Bause

Abstract:

We present and analyze reliable numerical techniques for simulating complex flow and transport phenomena related to natural gas transportation in pipelines. Such kind of problems are of high interest in the field of petroleum and environmental engineering. Modeling and understanding natural gas flow and transformation processes during transportation is important for the sake of physical realism and the design and operation of pipeline systems. In our approach a two fluid flow model based on a system of coupled hyperbolic conservation laws is considered for describing natural gas flow undergoing hydratization. The accurate numerical approximation of two-phase gas flow remains subject of strong interest in the scientific community. Such hyperbolic problems are characterized by solutions with steep gradients or discontinuities, and their approximation by standard finite element techniques typically gives rise to spurious oscillations and numerical artefacts. Recently, stabilized and discontinuous Galerkin finite element techniques have attracted researchers’ interest. They are highly adapted to the hyperbolic nature of our two-phase flow model. In the presentation a streamline upwind Petrov-Galerkin approach and a discontinuous Galerkin finite element method for the numerical approximation of our flow model of two coupled systems of Euler equations are presented. Then the efficiency and reliability of stabilized continuous and discontinous finite element methods for the approximation is carefully analyzed and the potential of the either classes of numerical schemes is investigated. In particular, standard benchmark problems of two-phase flow like the shock tube problem are used for the comparative numerical study.

Keywords: discontinuous Galerkin method, Euler system, inviscid two-fluid model, streamline upwind Petrov-Galerkin method, twophase flow

Procedia PDF Downloads 308
1261 Volatility Index, Fear Sentiment and Cross-Section of Stock Returns: Indian Evidence

Authors: Pratap Chandra Pati, Prabina Rajib, Parama Barai

Abstract:

The traditional finance theory neglects the role of sentiment factor in asset pricing. However, the behavioral approach to asset-pricing based on noise trader model and limit to arbitrage includes investor sentiment as a priced risk factor in the assist pricing model. Investor sentiment affects stock more that are vulnerable to speculation, hard to value and risky to arbitrage. It includes small stocks, high volatility stocks, growth stocks, distressed stocks, young stocks and non-dividend-paying stocks. Since the introduction of Chicago Board Options Exchange (CBOE) volatility index (VIX) in 1993, it is used as a measure of future volatility in the stock market and also as a measure of investor sentiment. CBOE VIX index, in particular, is often referred to as the ‘investors’ fear gauge’ by public media and prior literature. The upward spikes in the volatility index are associated with bouts of market turmoil and uncertainty. High levels of the volatility index indicate fear, anxiety and pessimistic expectations of investors about the stock market. On the contrary, low levels of the volatility index reflect confident and optimistic attitude of investors. Based on the above discussions, we investigate whether market-wide fear levels measured volatility index is priced factor in the standard asset pricing model for the Indian stock market. First, we investigate the performance and validity of Fama and French three-factor model and Carhart four-factor model in the Indian stock market. Second, we explore whether India volatility index as a proxy for fearful market-based sentiment indicators affect the cross section of stock returns after controlling for well-established risk factors such as market excess return, size, book-to-market, and momentum. Asset pricing tests are performed using monthly data on CNX 500 index constituent stocks listed on the National stock exchange of India Limited (NSE) over the sample period that extends from January 2008 to March 2017. To examine whether India volatility index, as an indicator of fear sentiment, is a priced risk factor, changes in India VIX is included as an explanatory variable in the Fama-French three-factor model as well as Carhart four-factor model. For the empirical testing, we use three different sets of test portfolios used as the dependent variable in the in asset pricing regressions. The first portfolio set is the 4x4 sorts on the size and B/M ratio. The second portfolio set is the 4x4 sort on the size and sensitivity beta of change in IVIX. The third portfolio set is the 2x3x2 independent triple-sorting on size, B/M and sensitivity beta of change in IVIX. We find evidence that size, value and momentum factors continue to exist in Indian stock market. However, VIX index does not constitute a priced risk factor in the cross-section of returns. The inseparability of volatility and jump risk in the VIX is a possible explanation of the current findings in the study.

Keywords: India VIX, Fama-French model, Carhart four-factor model, asset pricing

Procedia PDF Downloads 231
1260 Bi-Directional Evolutionary Topology Optimization Based on Critical Fatigue Constraint

Authors: Khodamorad Nabaki, Jianhu Shen, Xiaodong Huang

Abstract:

This paper develops a method for considering the critical fatigue stress as a constraint in the Bi-directional Evolutionary Structural Optimization (BESO) method. Our aim is to reach an optimal design in which high cycle fatigue failure does not occur for a specific life time. The critical fatigue stress is calculated based on modified Goodman criteria and used as a stress constraint in our topology optimization problem. Since fatigue generally does not occur for compressive stresses, we use the p-norm approach of the stress measurement that considers the highest tensile principal stress in each point as stress measure to calculate the sensitivity numbers. The BESO method has been extended to minimize volume an object subjected to the critical fatigue stress constraint. The optimization results are compared with the results from the compliance minimization problem which shows clearly the merits of our newly developed approach.

Keywords: topology optimization, BESO method, p-norm, fatigue constraint

Procedia PDF Downloads 278
1259 A Reinforcement Learning Approach for Evaluation of Real-Time Disaster Relief Demand and Network Condition

Authors: Ali Nadi, Ali Edrissi

Abstract:

Relief demand and transportation links availability is the essential information that is needed for every natural disaster operation. This information is not in hand once a disaster strikes. Relief demand and network condition has been evaluated based on prediction method in related works. Nevertheless, prediction seems to be over or under estimated due to uncertainties and may lead to a failure operation. Therefore, in this paper a stochastic programming model is proposed to evaluate real-time relief demand and network condition at the onset of a natural disaster. To address the time sensitivity of the emergency response, the proposed model uses reinforcement learning for optimization of the total relief assessment time. The proposed model is tested on a real size network problem. The simulation results indicate that the proposed model performs well in the case of collecting real-time information.

Keywords: disaster management, real-time demand, reinforcement learning, relief demand

Procedia PDF Downloads 284
1258 Analysis and Rule Extraction of Coronary Artery Disease Data Using Data Mining

Authors: Rezaei Hachesu Peyman, Oliyaee Azadeh, Salahzadeh Zahra, Alizadeh Somayyeh, Safaei Naser

Abstract:

Coronary Artery Disease (CAD) is one major cause of disability in adults and one main cause of death in developed. In this study, data mining techniques including Decision Trees, Artificial neural networks (ANNs), and Support Vector Machine (SVM) analyze CAD data. Data of 4948 patients who had suffered from heart diseases were included in the analysis. CAD is the target variable, and 24 inputs or predictor variables are used for the classification. The performance of these techniques is compared in terms of sensitivity, specificity, and accuracy. The most significant factor influencing CAD is chest pain. Elderly males (age > 53) have a high probability to be diagnosed with CAD. SVM algorithm is the most useful way for evaluation and prediction of CAD patients as compared to non-CAD ones. Application of data mining techniques in analyzing coronary artery diseases is a good method for investigating the existing relationships between variables.

Keywords: classification, coronary artery disease, data-mining, knowledge discovery, extract

Procedia PDF Downloads 637