Search results for: root uptake models
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 8343

Search results for: root uptake models

7383 Deep Learning Based, End-to-End Metaphor Detection in Greek with Recurrent and Convolutional Neural Networks

Authors: Konstantinos Perifanos, Eirini Florou, Dionysis Goutsos

Abstract:

This paper presents and benchmarks a number of end-to-end Deep Learning based models for metaphor detection in Greek. We combine Convolutional Neural Networks and Recurrent Neural Networks with representation learning to bear on the metaphor detection problem for the Greek language. The models presented achieve exceptional accuracy scores, significantly improving the previous state-of-the-art results, which had already achieved accuracy 0.82. Furthermore, no special preprocessing, feature engineering or linguistic knowledge is used in this work. The methods presented achieve accuracy of 0.92 and F-score 0.92 with Convolutional Neural Networks (CNNs) and bidirectional Long Short Term Memory networks (LSTMs). Comparable results of 0.91 accuracy and 0.91 F-score are also achieved with bidirectional Gated Recurrent Units (GRUs) and Convolutional Recurrent Neural Nets (CRNNs). The models are trained and evaluated only on the basis of training tuples, the related sentences and their labels. The outcome is a state-of-the-art collection of metaphor detection models, trained on limited labelled resources, which can be extended to other languages and similar tasks.

Keywords: metaphor detection, deep learning, representation learning, embeddings

Procedia PDF Downloads 153
7382 Chemometric QSRR Evaluation of Behavior of s-Triazine Pesticides in Liquid Chromatography

Authors: Lidija R. Jevrić, Sanja O. Podunavac-Kuzmanović, Strahinja Z. Kovačević

Abstract:

This study considers the selection of the most suitable in silico molecular descriptors that could be used for s-triazine pesticides characterization. Suitable descriptors among topological, geometrical and physicochemical are used for quantitative structure-retention relationships (QSRR) model establishment. Established models were obtained using linear regression (LR) and multiple linear regression (MLR) analysis. In this paper, MLR models were established avoiding multicollinearity among the selected molecular descriptors. Statistical quality of established models was evaluated by standard and cross-validation statistical parameters. For detection of similarity or dissimilarity among investigated s-triazine pesticides and their classification, principal component analysis (PCA) and hierarchical cluster analysis (HCA) were used and gave similar grouping. This study is financially supported by COST action TD1305.

Keywords: chemometrics, classification analysis, molecular descriptors, pesticides, regression analysis

Procedia PDF Downloads 393
7381 In vivo Antidiarrheal and ex-vivo Spasmolytic Activities of the Aqueous Extract of the Roots of Echinops kebericho Mesfin in Rodents and Isolated Guinea-Pig Ileum

Authors: Fisseha Shiferie (Bpharm, Mpharm)

Abstract:

Diarrhea is a common gastrointestinal disorder characterized by an increase in stool frequency and a change in stool consistency. Inspite of the availability of many drugs as antidiarrheal agents, the search for a drug with affordable cost and better efficacy is essential to overcome diarrheal problems. The root extract of Echinops kebericho, is used by traditional practitioners for the treatment of diarrhea. However, the scientific basis for this usage has not been yet established. The purpose of the present study was to evaluate the antidiarrheal and spasmolytic activities of the aqueous extract of the roots of E. kebericho in rodents and isolated guinea-pig ileum preparations. In the castor oil induced intestinal transit test, E. kebericho produced a significant (p < 0.01) dose dependent decrease in propulsion with peristaltic index values of 45.05±3.3, 42.71±2.25 and 33.17±3.3%, respectively at doses of 100, 200 and 400 mg/kg compared with 63.43±7.3% for control. In the castor oil-induced diarrhea test, the mean defecation was reduced from 1.81±0.18 to 0.99 ± 0.21 compared with 2.59 ±0.81 for control. The extract (at doses stated above) significantly decreased the volume of intestinal fluid secretion induced by castor oil (2.31±0.1 to 2.01±0.2) in relation to 3.28±0.3 for control. When tested on a guinea-pig ileum, root extract of Echinops kebericho exhibited a dose dependent spasmolytic effect, 23.07 % being its highest inhibitory effect. The results obtained in this study give some scientific support to the use of Echinops kebericho as an antidiarrheal agent due to its inhibitory effects on the different diarrheal parameters used in this study.

Keywords: antidiarrheal activity, E. kebericho, traditional medicine, diarrhea, enteropooling, and intestinal transit

Procedia PDF Downloads 319
7380 Organic Fertilizers Mitigate Microplastics Toxicity in Agricultural Soil

Authors: Ghulam Abbas Shah, Maqsood Sadiq, Ahsan Yasin

Abstract:

Massive global plastic production, combined with poor degradation and recycling, leads to significant environmental pollution from microplastics, whose effects on plants in the soil remain understudied. Besides, effective mitigation strategies and their impact on ammonia (NH₃) emissions under varying fertilizer management practices remains sketchy. Therefore, the objectives of the study were (i) to determine the impact of organic fertilizers on the toxicity of microplastics in sorghum and physicochemical characteristics of microplastics-contaminated soil and (ii) to assess the impacts of these fertilizers on NH₃ emissions from this soil. A field experiment was conducted using sorghum as a test crop. Treatments were: (i) Control (C), (ii) Microplastics (MP), (iii) Inorganic fertilizer (IF), (iv) MPIF, (v) Farmyard manure (FM), (vi) MPFM, (vii) Biochar (BC), and (viii) MPBC, arranged in a randomized complete block design (RCBD) with three replicates. Microplastics of polyvinyl chloride (PVC) were applied at a rate of 1.5 tons ha-¹, and all fertilizers were applied at the recommended dose of 90 kg N ha-¹. Soil sampling was done before sowing and after harvesting the sorghum, with samples analyzed for chemical properties and microbial biomass. Crop growth and yield attributes were measured. In a parallel pot experiment, NH₃ emissions were measured using passive flux samplers over 72 hours following the application of treatments similar to those used in the field experiment. Application of MPFM, MPBC and MPIF reduced soil mineral nitrogen by 8, 20 and 38% compared to their sole treatments, respectively. Microbial biomass carbon (MBC) was reduced by 19, 25 and 59% in MPIF, MPBC and MPFM as compared to their sole application, respectively. Similarly, the respective reduction in microbial biomass nitrogen (MBN) was 10, 27 and 66%. The toxicity of microplastics was mitigated by MPFM and MPBC, each with only a 5% reduction in grain yield of sorghum relative to their sole treatments. The differences in nitrogen uptake between BC vs. MPBC, FM vs. MPFM, and IF vs. MPIF were 8, 10, and 12 kg N ha-¹, respectively, indicating that organic fertilizers mitigate microplastic toxicity in the soil. NH₃ emission was reduced by 5, 11 and 20% after application of MPFM, MPBC and MPIF than their sole treatments, respectively. The study concludes that organic fertilizers such as FM and BC can effectively mitigate the toxicity of microplastics in soil, leading to improved crop growth and yield.

Keywords: microplastics, soil characteristics, crop n uptake, biochar, NH₃ emissions

Procedia PDF Downloads 39
7379 Influence of Genotypic Variability on Symbiotic and Agrophysiological Performances of Chickpea Under Mesorhizobium-PSB Inoculation and RP-Fertilization Likely Due to Shipping Rhizosphere Diversity

Authors: Rym Saidi, Pape Alioune Ndiaye, Mohamed Idbella, Ammar Ibnyasser, Zineb Rchiad, Issam Kadmiri Meftahi, Khalid Daoui, Adnane Bargaz

Abstract:

Chickpea (Cicer arietinum L.) is an important leguminous crop grown worldwide, and the second most important food legume in Morocco. In addition, that chickpea plays a significant role in humans’ dietary consumption, it has key ecological interest in terms of biological N-fixation (BNF) having the ability to symbiotically secure 20-80% of needed. Alongside nitrogen (N), low soil phosphorus (P) availability is one of the major factors limiting chickpea growth and productivity. After nitrogen, P is the most important macronutrient for plants growth and development as well as the BNF. In the context of improving chickpea symbiotic performance, co-application of beneficial bacterial inoculants (including Mesorhizobium) and Rock P-fertilizer could boost chickpea performance and productivity, owing to increasing P-utilization efficiency and overall nutrient acquisition under P-deficiency conditions. Greenhouse experiment was conducted to evaluate the response of two chickpea varieties (Arifi “A” and Bochra “B”) to co-application of RP-fertilizer alongside Mesorhizobium and phosphate solubilizing bacteria (PSB) consortium under P-deficient soil in Morocco. Our findings demonstrate that co-applying RP50 with bacterial inoculant significantly increased NDW by 85.71% and 109.09% in A and B chickpea varieties respectively, compared to uninoculated RP-fertilized plants. Nodule Pi and leghemoglobin (LHb) contents also increased in RP-fertilized bacterial inoculants plants. Likewise, shoot and root dry weights of both chickpea varieties increased with bacterial inoculation and RP-fertilization. This is due to enhanced Pi content in shoot (282.54% and 291.42%) and root (334.30% and 408.32%) in response to RP50-Inc compared to unfertilized uninoculated plants, for A and B chickpea varieties respectively. Rhizosphere available P was also increased by 173.86% and 182.25% in response to RP50-Inc as compared to RP-fertilized uninoculated plants, with a positive correlation between soil available P and root length in inoculated plants of A. and B. chickpea varieties (R= 0.49; 0.6) respectively. Furthermore, Mesorhizobium was among the dominant genera in rhizosphere bacterial diversity of both chickpea varieties. This can be attributed to its capacity to enhance plant growth traits, with a more pronounced effect observed in B. variety. Our research demonstrates that integrated fertilization with bacterial inoculation effectively improves biological N-fixation and P nutrition, enhancing the agrophysiological performance of Moroccan chickpea varieties, particularly in restricted P-availability conditions.

Keywords: chickpea varieties, bacterial consortium, inoculants, Mesorhizobium, Rock-P fertilizer, phosphorus deficiency, agrophysiological performance

Procedia PDF Downloads 20
7378 Variable-Fidelity Surrogate Modelling with Kriging

Authors: Selvakumar Ulaganathan, Ivo Couckuyt, Francesco Ferranti, Tom Dhaene, Eric Laermans

Abstract:

Variable-fidelity surrogate modelling offers an efficient way to approximate function data available in multiple degrees of accuracy each with varying computational cost. In this paper, a Kriging-based variable-fidelity surrogate modelling approach is introduced to approximate such deterministic data. Initially, individual Kriging surrogate models, which are enhanced with gradient data of different degrees of accuracy, are constructed. Then these Gradient enhanced Kriging surrogate models are strategically coupled using a recursive CoKriging formulation to provide an accurate surrogate model for the highest fidelity data. While, intuitively, gradient data is useful to enhance the accuracy of surrogate models, the primary motivation behind this work is to investigate if it is also worthwhile incorporating gradient data of varying degrees of accuracy.

Keywords: Kriging, CoKriging, Surrogate modelling, Variable- fidelity modelling, Gradients

Procedia PDF Downloads 558
7377 Tracing Sources of Sediment in an Arid River, Southern Iran

Authors: Hesam Gholami

Abstract:

Elevated suspended sediment loads in riverine systems resulting from accelerated erosion due to human activities are a serious threat to the sustainable management of watersheds and ecosystem services therein worldwide. Therefore, mitigation of deleterious sediment effects as a distributed or non-point pollution source in the catchments requires reliable provenance information. Sediment tracing or sediment fingerprinting, as a combined process consisting of sampling, laboratory measurements, different statistical tests, and the application of mixing or unmixing models, is a useful technique for discriminating the sources of sediments. From 1996 to the present, different aspects of this technique, such as grouping the sources (spatial and individual sources), discriminating the potential sources by different statistical techniques, and modification of mixing and unmixing models, have been introduced and modified by many researchers worldwide, and have been applied to identify the provenance of fine materials in agricultural, rural, mountainous, and coastal catchments, and in large catchments with numerous lakes and reservoirs. In the last two decades, efforts exploring the uncertainties associated with sediment fingerprinting results have attracted increasing attention. The frameworks used to quantify the uncertainty associated with fingerprinting estimates can be divided into three groups comprising Monte Carlo simulation, Bayesian approaches and generalized likelihood uncertainty estimation (GLUE). Given the above background, the primary goal of this study was to apply geochemical fingerprinting within the GLUE framework in the estimation of sub-basin spatial sediment source contributions in the arid Mehran River catchment in southern Iran, which drains into the Persian Gulf. The accuracy of GLUE predictions generated using four different sets of statistical tests for discriminating three sub-basin spatial sources was evaluated using 10 virtual sediments (VS) samples with known source contributions using the root mean square error (RMSE) and mean absolute error (MAE). Based on the results, the contributions modeled by GLUE for the western, central and eastern sub-basins are 1-42% (overall mean 20%), 0.5-30% (overall mean 12%) and 55-84% (overall mean 68%), respectively. According to the mean absolute fit (MAF; ≥ 95% for all target sediment samples) and goodness-of-fit (GOF; ≥ 99% for all samples), our suggested modeling approach is an accurate technique to quantify the source of sediments in the catchments. Overall, the estimated source proportions can help watershed engineers plan the targeting of conservation programs for soil and water resources.

Keywords: sediment source tracing, generalized likelihood uncertainty estimation, virtual sediment mixtures, Iran

Procedia PDF Downloads 74
7376 Effect of the Experimental Conditions on the Adsorption Capacities in the Removal of Pb2+ from Aqueous Solutions by the Hydroxyapatite Nanopowders

Authors: Oral Lacin, Turan Calban, Fatih Sevim, Taner Celik

Abstract:

In this study, Pb2+ uptake by the hydroxyapatite nanopowders (n-Hap) from aqueous solutions was investigated by using batch adsorption techniques. The adsorption equilibrium studies were carried out as a function of contact time, adsorbent dosage, pH, temperature, and initial Pb2+ concentration. The results showed that the equilibrium time of adsorption was achieved within 60 min, and the effective pH was selected to be 5 (natural pH). The maximum adsorption capacity of Pb2+ on n-Hap was found as 565 mg.g-1. It is believed that the results obtained for adsorption may provide a background for the detailed mechanism investigations and the pilot and industrial scale applications.

Keywords: nanopowders, hydroxyapatite, heavy metals, adsorption

Procedia PDF Downloads 294
7375 Measurement of CES Production Functions Considering Energy as an Input

Authors: Donglan Zha, Jiansong Si

Abstract:

Because of its flexibility, CES attracts much interest in economic growth and programming models, and the macroeconomics or micro-macro models. This paper focuses on the development, estimating methods of CES production function considering energy as an input. We leave for future research work of relaxing the assumption of constant returns to scale, the introduction of potential input factors, and the generalization method of the optimal nested form of multi-factor production functions.

Keywords: bias of technical change, CES production function, elasticity of substitution, energy input

Procedia PDF Downloads 282
7374 Analysis of Risk Factors Affecting the Motor Insurance Pricing with Generalized Linear Models

Authors: Puttharapong Sakulwaropas, Uraiwan Jaroengeratikun

Abstract:

Casualty insurance business, the optimal premium pricing and adequate cost for an insurance company are important in risk management. Normally, the insurance pure premium can be determined by multiplying the claim frequency with the claim cost. The aim of this research was to study in the application of generalized linear models to select the risk factor for model of claim frequency and claim cost for estimating a pure premium. In this study, the data set was the claim of comprehensive motor insurance, which was provided by one of the insurance company in Thailand. The results of this study found that the risk factors significantly related to pure premium at the 0.05 level consisted of no claim bonus (NCB) and used of the car (Car code).

Keywords: generalized linear models, risk factor, pure premium, regression model

Procedia PDF Downloads 466
7373 Ontologies for Social Media Digital Evidence

Authors: Edlira Kalemi, Sule Yildirim-Yayilgan

Abstract:

Online Social Networks (OSNs) are nowadays being used widely and intensively for crime investigation and prevention activities. As they provide a lot of information they are used by the law enforcement and intelligence. An extensive review on existing solutions and models for collecting intelligence from this source of information and making use of it for solving crimes has been presented in this article. The main focus is on smart solutions and models where ontologies have been used as the main approach for representing criminal domain knowledge. A framework for a prototype ontology named SC-Ont will be described. This defines terms of the criminal domain ontology and the relations between them. The terms and the relations are extracted during both this review and the discussions carried out with domain experts. The development of SC-Ont is still ongoing work, where in this paper, we report mainly on the motivation for using smart ontology models and the possible benefits of using them for solving crimes.

Keywords: criminal digital evidence, social media, ontologies, reasoning

Procedia PDF Downloads 388
7372 Groundwater Pollution Models for Hebron/Palestine

Authors: Hassan Jebreen

Abstract:

These models of a conservative pollutant in groundwater do not include representation of processes in soils and in the unsaturated zone, or biogeochemical processes in groundwater, These demonstration models can be used as the basis for more detailed simulations of the impacts of pollution sources at a local scale, but such studies should address processes related to specific pollutant species, and should consider local hydrogeology in more detail, particularly in relation to possible impacts on shallow systems which are likely to respond more quickly to changes in pollutant inputs. The results have demonstrated the interaction between groundwater flow fields and pollution sources in abstraction areas, and help to emphasise that wadi development is one of the key elements of water resources planning. The quality of groundwater in the Hebron area indicates a gradual increase in chloride and nitrate with time. Since the aquifers in Hebron districts are highly vulnerable due to their karstic nature, continued disposal of untreated domestic and industrial wastewater into the wadi will lead to unacceptably poor water quality in drinking water, which may ultimately require expensive treatment if significant health problems are to be avoided. Improvements are required in wastewater treatment at the municipal and domestic levels, the latter requiring increased public awareness of the issues, as well as improved understanding of the hydrogeological behaviour of the aquifers.

Keywords: groundwater, models, pollutants, wadis, hebron

Procedia PDF Downloads 439
7371 E-Consumers’ Attribute Non-Attendance Switching Behavior: Effect of Providing Information on Attributes

Authors: Leonard Maaya, Michel Meulders, Martina Vandebroek

Abstract:

Discrete Choice Experiments (DCE) are used to investigate how product attributes affect decision-makers’ choices. In DCEs, choice situations consisting of several alternatives are presented from which choice-makers select the preferred alternative. Standard multinomial logit models based on random utility theory can be used to estimate the utilities for the attributes. The overarching principle in these models is that respondents understand and use all the attributes when making choices. However, studies suggest that respondents sometimes ignore some attributes (commonly referred to as Attribute Non-Attendance/ANA). The choice modeling literature presents ANA as a static process, i.e., respondents’ ANA behavior does not change throughout the experiment. However, respondents may ignore attributes due to changing factors like availability of information on attributes, learning/fatigue in experiments, etc. We develop a dynamic mixture latent Markov model to model changes in ANA when information on attributes is provided. The model is illustrated on e-consumers’ webshop choices. The results indicate that the dynamic ANA model describes the behavioral changes better than modeling the impact of information using changes in parameters. Further, we find that providing information on attributes leads to an increase in the attendance probabilities for the investigated attributes.

Keywords: choice models, discrete choice experiments, dynamic models, e-commerce, statistical modeling

Procedia PDF Downloads 140
7370 Mathematical Models for Drug Diffusion Through the Compartments of Blood and Tissue Medium

Authors: M. A. Khanday, Aasma Rafiq, Khalid Nazir

Abstract:

This paper is an attempt to establish the mathematical models to understand the distribution of drug administration in the human body through oral and intravenous routes. Three models were formulated based on diffusion process using Fick’s principle and the law of mass action. The rate constants governing the law of mass action were used on the basis of the drug efficacy at different interfaces. The Laplace transform and eigenvalue methods were used to obtain the solution of the ordinary differential equations concerning the rate of change of concentration in different compartments viz. blood and tissue medium. The drug concentration in the different compartments has been computed using numerical parameters. The results illustrate the variation of drug concentration with respect to time using MATLAB software. It has been observed from the results that the drug concentration decreases in the first compartment and gradually increases in other subsequent compartments.

Keywords: Laplace transform, diffusion, eigenvalue method, mathematical model

Procedia PDF Downloads 334
7369 Effect of Minimalist Footwear on Running Economy Following Exercise-Induced Fatigue

Authors: Jason Blair, Adeboye Adebayo, Mohamed Saad, Jeannette M. Byrne, Fabien A. Basset

Abstract:

Running economy is a key physiological parameter of an individual’s running efficacy and a valid tool for predicting performance outcomes. Of the many factors known to influence running economy (RE), footwear certainly plays a role owing to its characteristics that vary substantially from model to model. Although minimalist footwear is believed to enhance RE and thereby endurance performance, conclusive research reports are scarce. Indeed, debates remain as to which footwear characteristics most alter RE. The purposes of this study were, therefore, two-fold: (a) to determine whether wearing minimalist shoes results in better RE compared to shod and to identify relationships with kinematic and muscle activation patterns; (b) to determine whether changes in RE with minimalist shoes are still evident following a fatiguing bout of exercise. Well-trained male distance runners (n=10; 29.0 ± 7.5 yrs; 71.0 ± 4.8 kg; 176.3 ± 6.5 cm) partook first in a maximal O₂ uptake determination test (VO₂ₘₐₓ = 61.6 ± 7.3 ml min⁻¹ kg⁻¹) 7 days prior to the experimental sessions. Second, in a fully randomized fashion, an RE test consisting of three 8-min treadmill runs in shod and minimalist footwear were performed prior to and following exercise induced fatigue (EIF). The minimalist and shod conditions were tested with a minimum of 7-day wash-out period between conditions. The RE bouts, interspaced by 2-min rest periods, were run at 2.79, 3.33, and 3.89 m s⁻¹ with a 1% grade. EIF consisted of 7 times 1000 m at 94-97% VO₂ₘₐₓ interspaced with 3-min recovery. Cardiorespiratory, electromyography (EMG), kinematics, rate of perceived exertion (RPE) and blood lactate were measured throughout the experimental sessions. A significant main speed effect on RE (p=0.001) and stride frequency (SF) (p=0.001) was observed. The pairwise comparisons showed that running at 2.79 m s⁻¹ was less economic compared to 3.33, and 3.89 m s⁻¹ (3.56 ± 0.38, 3.41 ± 0.45, 3.40 ± 0.45 ml O₂ kg⁻¹ km⁻¹; respectively) and that SF increased as a function of speed (79 ± 5, 82 ± 5, 84 ± 5 strides min⁻¹). Further, EMG analyses revealed that root mean square EMG significantly increased as a function of speed for all muscles (Biceps femoris, Gluteus maximus, Gastrocnemius, Tibialis anterior, Vastus lateralis). During EIF, the statistical analysis revealed a significant main effect of time on lactate production (from 2.7 ± 5.7 to 11.2 ± 6.2 mmol L⁻¹), RPE scores (from 7.6 ± 4.0 to 18.4 ± 2.7) and peak HR (from 171 ± 30 to 181 ± 20 bpm), expect for the recovery period. Surprisingly, a significant main footwear effect was observed on running speed during intervals (p=0.041). Participants ran faster with minimalist shoes compared to shod (3:24 ± 0:44 min [95%CI: 3:14-3:34] vs. 3:30 ± 0:47 min [95%CI: 3:19-3:41]). Although EIF altered lactate production and RPE scores, no other effect was noticeable on RE, EMG, and SF pre- and post-EIF, except for the expected speed effect. The significant footwear effect on running speed during EIF was unforeseen but could be due to shoe mass and/or heel-toe-drop differences. We also cannot discard the effect of speed on foot-strike pattern and therefore, running performance.

Keywords: exercise-induced fatigue, interval training, minimalist footwear, running economy

Procedia PDF Downloads 248
7368 Deep Learning Approach for Chronic Kidney Disease Complications

Authors: Mario Isaza-Ruget, Claudia C. Colmenares-Mejia, Nancy Yomayusa, Camilo A. González, Andres Cely, Jossie Murcia

Abstract:

Quantification of risks associated with complications development from chronic kidney disease (CKD) through accurate survival models can help with patient management. A retrospective cohort that included patients diagnosed with CKD from a primary care program and followed up between 2013 and 2018 was carried out. Time-dependent and static covariates associated with demographic, clinical, and laboratory factors were included. Deep Learning (DL) survival analyzes were developed for three CKD outcomes: CKD stage progression, >25% decrease in Estimated Glomerular Filtration Rate (eGFR), and Renal Replacement Therapy (RRT). Models were evaluated and compared with Random Survival Forest (RSF) based on concordance index (C-index) metric. 2.143 patients were included. Two models were developed for each outcome, Deep Neural Network (DNN) model reported C-index=0.9867 for CKD stage progression; C-index=0.9905 for reduction in eGFR; C-index=0.9867 for RRT. Regarding the RSF model, C-index=0.6650 was reached for CKD stage progression; decreased eGFR C-index=0.6759; RRT C-index=0.8926. DNN models applied in survival analysis context with considerations of longitudinal covariates at the start of follow-up can predict renal stage progression, a significant decrease in eGFR and RRT. The success of these survival models lies in the appropriate definition of survival times and the analysis of covariates, especially those that vary over time.

Keywords: artificial intelligence, chronic kidney disease, deep neural networks, survival analysis

Procedia PDF Downloads 134
7367 Modelling Conceptual Quantities Using Support Vector Machines

Authors: Ka C. Lam, Oluwafunmibi S. Idowu

Abstract:

Uncertainty in cost is a major factor affecting performance of construction projects. To our knowledge, several conceptual cost models have been developed with varying degrees of accuracy. Incorporating conceptual quantities into conceptual cost models could improve the accuracy of early predesign cost estimates. Hence, the development of quantity models for estimating conceptual quantities of framed reinforced concrete structures using supervised machine learning is the aim of the current research. Using measured quantities of structural elements and design variables such as live loads and soil bearing pressures, response and predictor variables were defined and used for constructing conceptual quantities models. Twenty-four models were developed for comparison using a combination of non-parametric support vector regression, linear regression, and bootstrap resampling techniques. R programming language was used for data analysis and model implementation. Gross soil bearing pressure and gross floor loading were discovered to have a major influence on the quantities of concrete and reinforcement used for foundations. Building footprint and gross floor loading had a similar influence on beams and slabs. Future research could explore the modelling of other conceptual quantities for walls, finishes, and services using machine learning techniques. Estimation of conceptual quantities would assist construction planners in early resource planning and enable detailed performance evaluation of early cost predictions.

Keywords: bootstrapping, conceptual quantities, modelling, reinforced concrete, support vector regression

Procedia PDF Downloads 206
7366 Therapeutic Effect of Indane 1,3-Dione Derivatives in the Restoration of Insulin Resistance in Human Liver Cells and in Db/Db Mice Model: Biochemical, Physiological and Molecular Insights of Investigation

Authors: Gulnaz Khan, Meha F. Aftab, Munazza Murtaza, Rizwana S. Waraich

Abstract:

Advanced glycation end products (AGEs) precursor and its abnormal accumulation cause damage to various tissues and organs. AGEs have pathogenic implication in several diseases including diabetes. Existing AGEs inhibitors are not in clinical use, and there is a need for development of novel inhibitors. The present investigation aimed at identifying the novel AGEs inhibitors and assessing their mechanism of action for treating insulin resistance in mice model of diabetes. Novel derivatives of benzylidene of indan-1,3-dione were synthesized. The compounds were selected to study their action mechanism in improving insulin resistance, in vitro, in human hepatocytes and murine adipocytes and then, in vivo, in mice genetic model of diabetes (db/db). Mice were treated with novel derivatives of benzylidene of indane 1,3-dione. AGEs mediated ROS production was measured by dihydroethidium fluorescence assay. AGEs level in the serum of treated mice was observed by ELISA. Gene expression of receptor for AGEs (RAGE), PPAR-gamma, TNF-alpha and GLUT-4 was evaluated by RT-PCR. Glucose uptake was measured by fluorescent method. Microscopy was used to analyze glycogen synthesis in muscle. Among several derivatives of benzylidene of indan-1,3-dione, IDD-24, demonstrated highest inhibition of AGESs. IDD-24 significantly reduced AGEs formation and expression of receptor for advanced glycation end products (RAGE) in fat, liver of db/db mice. Suppression of AGEs mediated ROS production was also observed in hepatocytes and fat cell, after treatment with IDD-24. Glycogen synthesis was increased in muscle tissue of mice treated with IDD-24. In adipocytes, IDD-24 prevented AGEs induced reduced glucose uptake. Mice treated with IDD-24 exhibited increased glucose tolerance, serum adiponectin levels and decreased insulin resistance. The result of present study suggested that IDD-24 can be a possible treatment target to address glycotoxins induced insulin resistance.

Keywords: advance glycation end product, hyperglycemia, indan-1, 3-dione, insulin resistance

Procedia PDF Downloads 158
7365 Development of a Humanized Anti-CEA Antibody for the Near Infrared Optical Imaging of Cancer

Authors: Paul J Yazaki, Michael Bouvet, John Shively

Abstract:

Surgery for solid gastrointestinal (GI) cancers such as pancreatic, colorectal, and gastric adenocarcinoma remains the mainstay of curative therapy. Complete resection of the primary tumor with negative margins (R0 resection), its draining lymph nodes, and distant metastases offers the optimal surgical benefit. Real-time fluorescence guided surgery (FGS) promises to improve GI cancer outcomes and is rapidly advancing with tumor-specific antibody conjugated fluorophores that can be imaged using near infrared (NIR) technology. Carcinoembryonic Antigen (CEA) is a non-internalizing tumor antigen validated as a surface tumor marker expressed in >95% of colorectal, 80% of gastric, and 60% of pancreatic adenocarcinomas. Our humanized anti-CEA hT84.66-M5A (M5A) monoclonal antibody (mAb)was conjugated with the NHS-IRDye800CW fluorophore and shown it can rapidly and effectively NIRoptical imageorthotopically implanted human colon and pancreatic cancer in mouse models. A limitation observed is that these NIR-800 dye conjugated mAbs have a rapid clearance from the blood, leading to a narrow timeframe for FGS and requiring high doses for effective optical imaging. We developed a novel antibody-fluorophore conjugate by incorporating a PEGylated sidearm linker to shield or mask the IR800 dye’s hydrophobicity which effectively extended the agent’s blood circulation half-life leading to increased tumor sensitivity and lowered normal hepatic uptake. We hypothesized that our unique anti-CEA linked to the fluorophore, IR800 by PEGylated sidewinder, M5A-SW-IR800 will become the next generation optical imaging agent, safe, effective, and widely applicable for intraoperative image guided surgery in CEA expressing GI cancers.

Keywords: optical imaging, anti-CEA, cancer, fluorescence-guided surgery

Procedia PDF Downloads 147
7364 Models of Environmental, Crack Propagation of Some Aluminium Alloys (7xxx)

Authors: H. A. Jawan

Abstract:

This review describes the models of environmental-related crack propagation of aluminum alloys (7xxx) during the last few decades. Acknowledge on effects of different factors on the susceptibility to SCC permits to propose valuable mechanisms on crack advancement. The reliable mechanism of cracking give a possibility to propose the optimum chemical composition and thermal treatment conditions resulting in microstructure the most suitable for real environmental condition and stress state.

Keywords: microstructure, environmental, propagation, mechanism

Procedia PDF Downloads 418
7363 Application of the Micropolar Beam Theory for the Construction of the Discrete-Continual Model of Carbon Nanotubes

Authors: Samvel H. Sargsyan

Abstract:

Together with the study of electron-optical properties of nanostructures and proceeding from experiment-based data, the study of the mechanical properties of nanostructures has become quite actual. For the study of the mechanical properties of fullerene, carbon nanotubes, graphene and other nanostructures one of the crucial issues is the construction of their adequate mathematical models. Among all mathematical models of graphene or carbon nano-tubes, this so-called discrete-continuous model is specifically important. It substitutes the interactions between atoms by elastic beams or springs. The present paper demonstrates the construction of the discrete-continual beam model for carbon nanotubes or graphene, where the micropolar beam model based on the theory of moment elasticity is accepted. With the account of the energy balance principle, the elastic moment constants for the beam model, expressed by the physical and geometrical parameters of carbon nanotube or graphene, are determined. By switching from discrete-continual beam model to the continual, the models of micropolar elastic cylindrical shell and micropolar elastic plate are confirmed as continual models for carbon nanotube and graphene respectively.

Keywords: carbon nanotube, discrete-continual, elastic, graphene, micropolar, plate, shell

Procedia PDF Downloads 159
7362 Pricing European Options under Jump Diffusion Models with Fast L-stable Padé Scheme

Authors: Salah Alrabeei, Mohammad Yousuf

Abstract:

The goal of option pricing theory is to help the investors to manage their money, enhance returns and control their financial future by theoretically valuing their options. Modeling option pricing by Black-School models with jumps guarantees to consider the market movement. However, only numerical methods can solve this model. Furthermore, not all the numerical methods are efficient to solve these models because they have nonsmoothing payoffs or discontinuous derivatives at the exercise price. In this paper, the exponential time differencing (ETD) method is applied for solving partial integrodifferential equations arising in pricing European options under Merton’s and Kou’s jump-diffusion models. Fast Fourier Transform (FFT) algorithm is used as a matrix-vector multiplication solver, which reduces the complexity from O(M2) into O(M logM). A partial fraction form of Pad`e schemes is used to overcome the complexity of inverting polynomial of matrices. These two tools guarantee to get efficient and accurate numerical solutions. We construct a parallel and easy to implement a version of the numerical scheme. Numerical experiments are given to show how fast and accurate is our scheme.

Keywords: Integral differential equations, , L-stable methods, pricing European options, Jump–diffusion model

Procedia PDF Downloads 151
7361 Modeling and Simulation Methods Using MATLAB/Simulink

Authors: Jamuna Konda, Umamaheswara Reddy Karumuri, Sriramya Muthugi, Varun Pishati, Ravi Shakya,

Abstract:

This paper investigates the challenges involved in mathematical modeling of plant simulation models ensuring the performance of the plant models much closer to the real time physical model. The paper includes the analysis performed and investigation on different methods of modeling, design and development for plant model. Issues which impact the design time, model accuracy as real time model, tool dependence are analyzed. The real time hardware plant would be a combination of multiple physical models. It is more challenging to test the complete system with all possible test scenarios. There are possibilities of failure or damage of the system due to any unwanted test execution on real time.

Keywords: model based design (MBD), MATLAB, Simulink, stateflow, plant model, real time model, real-time workshop (RTW), target language compiler (TLC)

Procedia PDF Downloads 343
7360 Application of Human Biomonitoring and Physiologically-Based Pharmacokinetic Modelling to Quantify Exposure to Selected Toxic Elements in Soil

Authors: Eric Dede, Marcus Tindall, John W. Cherrie, Steve Hankin, Christopher Collins

Abstract:

Current exposure models used in contaminated land risk assessment are highly conservative. Use of these models may lead to over-estimation of actual exposures, possibly resulting in negative financial implications due to un-necessary remediation. Thus, we are carrying out a study seeking to improve our understanding of human exposure to selected toxic elements in soil: arsenic (As), cadmium (Cd), chromium (Cr), nickel (Ni), and lead (Pb) resulting from allotment land-use. The study employs biomonitoring and physiologically-based pharmacokinetic (PBPK) modelling to quantify human exposure to these elements. We recruited 37 allotment users (adults > 18 years old) in Scotland, UK, to participate in the study. Concentrations of the elements (and their bioaccessibility) were measured in allotment samples (soil and allotment produce). Amount of produce consumed by the participants and participants’ biological samples (urine and blood) were collected for up to 12 consecutive months. Ethical approval was granted by the University of Reading Research Ethics Committee. PBPK models (coded in MATLAB) were used to estimate the distribution and accumulation of the elements in key body compartments, thus indicating the internal body burden. Simulating low element intake (based on estimated ‘doses’ from produce consumption records), predictive models suggested that detection of these elements in urine and blood was possible within a given period of time following exposure. This information was used in planning biomonitoring, and is currently being used in the interpretation of test results from biological samples. Evaluation of the models is being carried out using biomonitoring data, by comparing model predicted concentrations and measured biomarker concentrations. The PBPK models will be used to generate bioavailability values, which could be incorporated in contaminated land exposure models. Thus, the findings from this study will promote a more sustainable approach to contaminated land management.

Keywords: biomonitoring, exposure, PBPK modelling, toxic elements

Procedia PDF Downloads 319
7359 Comparisons of Co-Seismic Gravity Changes between GRACE Observations and the Predictions from the Finite-Fault Models for the 2012 Mw = 8.6 Indian Ocean Earthquake Off-Sumatra

Authors: Armin Rahimi

Abstract:

The Gravity Recovery and Climate Experiment (GRACE) has been a very successful project in determining math redistribution within the Earth system. Large deformations caused by earthquakes are in the high frequency band. Unfortunately, GRACE is only capable to provide reliable estimate at the low-to-medium frequency band for the gravitational changes. In this study, we computed the gravity changes after the 2012 Mw8.6 Indian Ocean earthquake off-Sumatra using the GRACE Level-2 monthly spherical harmonic (SH) solutions released by the University of Texas Center for Space Research (UTCSR). Moreover, we calculated gravity changes using different fault models derived from teleseismic data. The model predictions showed non-negligible discrepancies in gravity changes. However, after removing high-frequency signals, using Gaussian filtering 350 km commensurable GRACE spatial resolution, the discrepancies vanished, and the spatial patterns of total gravity changes predicted from all slip models became similar at the spatial resolution attainable by GRACE observations, and predicted-gravity changes were consistent with the GRACE-detected gravity changes. Nevertheless, the fault models, in which give different slip amplitudes, proportionally lead to different amplitude in the predicted gravity changes.

Keywords: undersea earthquake, GRACE observation, gravity change, dislocation model, slip distribution

Procedia PDF Downloads 355
7358 A Demonstration of How to Employ and Interpret Binary IRT Models Using the New IRT Procedure in SAS 9.4

Authors: Ryan A. Black, Stacey A. McCaffrey

Abstract:

Over the past few decades, great strides have been made towards improving the science in the measurement of psychological constructs. Item Response Theory (IRT) has been the foundation upon which statistical models have been derived to increase both precision and accuracy in psychological measurement. These models are now being used widely to develop and refine tests intended to measure an individual's level of academic achievement, aptitude, and intelligence. Recently, the field of clinical psychology has adopted IRT models to measure psychopathological phenomena such as depression, anxiety, and addiction. Because advances in IRT measurement models are being made so rapidly across various fields, it has become quite challenging for psychologists and other behavioral scientists to keep abreast of the most recent developments, much less learn how to employ and decide which models are the most appropriate to use in their line of work. In the same vein, IRT measurement models vary greatly in complexity in several interrelated ways including but not limited to the number of item-specific parameters estimated in a given model, the function which links the expected response and the predictor, response option formats, as well as dimensionality. As a result, inferior methods (a.k.a. Classical Test Theory methods) continue to be employed in efforts to measure psychological constructs, despite evidence showing that IRT methods yield more precise and accurate measurement. To increase the use of IRT methods, this study endeavors to provide a comprehensive overview of binary IRT models; that is, measurement models employed on test data consisting of binary response options (e.g., correct/incorrect, true/false, agree/disagree). Specifically, this study will cover the most basic binary IRT model, known as the 1-parameter logistic (1-PL) model dating back to over 50 years ago, up until the most recent complex, 4-parameter logistic (4-PL) model. Binary IRT models will be defined mathematically and the interpretation of each parameter will be provided. Next, all four binary IRT models will be employed on two sets of data: 1. Simulated data of N=500,000 subjects who responded to four dichotomous items and 2. A pilot analysis of real-world data collected from a sample of approximately 770 subjects who responded to four self-report dichotomous items pertaining to emotional consequences to alcohol use. Real-world data were based on responses collected on items administered to subjects as part of a scale-development study (NIDA Grant No. R44 DA023322). IRT analyses conducted on both the simulated data and analyses of real-world pilot will provide a clear demonstration of how to construct, evaluate, and compare binary IRT measurement models. All analyses will be performed using the new IRT procedure in SAS 9.4. SAS code to generate simulated data and analyses will be available upon request to allow for replication of results.

Keywords: instrument development, item response theory, latent trait theory, psychometrics

Procedia PDF Downloads 357
7357 Implementation of Knowledge and Attitude Management Based on Holistic Approach in Andragogy Learning, as an Effort to Solve the Environmental Problems of Post-Coal Mining Activity

Authors: Aloysius Hardoko, Susilo

Abstract:

The root cause of the problem after the environmental damage due to coal mining activities defined as the province of East Kalimantan corridor masterplan economic activity accelerated the expansion of Indonesia's economic development (MP3EI) is the behavior of adults. Adult behavior can be changed through knowledge management and attitude. Based on the root of the problem, the objective of the research is to apply knowledge management and attitude based on holistic approach in learning andragogy as an effort to solve environmental problems after coal mining activities. Research methods to achieve the objective of using quantitative research with pretest postes group design. Knowledge management and attitudes based on a holistic approach in adult learning are applied through initial learning activities, core and case-based cover of environmental damage. The research instrument is a description of the case of environmental damage. The data analysis uses t-test to see the effect of knowledge management attitude based on holistic approach before and after adult learning. Location and sample of representative research of adults as many as 20 people in Kutai Kertanegara District, one of the districts in East Kalimantan province, which suffered the worst environmental damage. The conclusion of the research result is the application of knowledge management and attitude in adult learning influence to adult knowledge and attitude to overcome environmental problem post-coal mining activity.

Keywords: knowledge management and attitude, holistic approach, andragogy learning, environmental Issue

Procedia PDF Downloads 207
7356 Enhancing Temporal Extrapolation of Wind Speed Using a Hybrid Technique: A Case Study in West Coast of Denmark

Authors: B. Elshafei, X. Mao

Abstract:

The demand for renewable energy is significantly increasing, major investments are being supplied to the wind power generation industry as a leading source of clean energy. The wind energy sector is entirely dependable and driven by the prediction of wind speed, which by the nature of wind is very stochastic and widely random. This s0tudy employs deep multi-fidelity Gaussian process regression, used to predict wind speeds for medium term time horizons. Data of the RUNE experiment in the west coast of Denmark were provided by the Technical University of Denmark, which represent the wind speed across the study area from the period between December 2015 and March 2016. The study aims to investigate the effect of pre-processing the data by denoising the signal using empirical wavelet transform (EWT) and engaging the vector components of wind speed to increase the number of input data layers for data fusion using deep multi-fidelity Gaussian process regression (GPR). The outcomes were compared using root mean square error (RMSE) and the results demonstrated a significant increase in the accuracy of predictions which demonstrated that using vector components of the wind speed as additional predictors exhibits more accurate predictions than strategies that ignore them, reflecting the importance of the inclusion of all sub data and pre-processing signals for wind speed forecasting models.

Keywords: data fusion, Gaussian process regression, signal denoise, temporal extrapolation

Procedia PDF Downloads 136
7355 Automatic and High Precise Modeling for System Optimization

Authors: Stephanie Chen, Mitja Echim, Christof Büskens

Abstract:

To describe and propagate the behavior of a system mathematical models are formulated. Parameter identification is used to adapt the coefficients of the underlying laws of science. For complex systems this approach can be incomplete and hence imprecise and moreover too slow to be computed efficiently. Therefore, these models might be not applicable for the numerical optimization of real systems, since these techniques require numerous evaluations of the models. Moreover not all quantities necessary for the identification might be available and hence the system must be adapted manually. Therefore, an approach is described that generates models that overcome the before mentioned limitations by not focusing on physical laws, but on measured (sensor) data of real systems. The approach is more general since it generates models for every system detached from the scientific background. Additionally, this approach can be used in a more general sense, since it is able to automatically identify correlations in the data. The method can be classified as a multivariate data regression analysis. In contrast to many other data regression methods this variant is also able to identify correlations of products of variables and not only of single variables. This enables a far more precise and better representation of causal correlations. The basis and the explanation of this method come from an analytical background: the series expansion. Another advantage of this technique is the possibility of real-time adaptation of the generated models during operation. Herewith system changes due to aging, wear or perturbations from the environment can be taken into account, which is indispensable for realistic scenarios. Since these data driven models can be evaluated very efficiently and with high precision, they can be used in mathematical optimization algorithms that minimize a cost function, e.g. time, energy consumption, operational costs or a mixture of them, subject to additional constraints. The proposed method has successfully been tested in several complex applications and with strong industrial requirements. The generated models were able to simulate the given systems with an error in precision less than one percent. Moreover the automatic identification of the correlations was able to discover so far unknown relationships. To summarize the above mentioned approach is able to efficiently compute high precise and real-time-adaptive data-based models in different fields of industry. Combined with an effective mathematical optimization algorithm like WORHP (We Optimize Really Huge Problems) several complex systems can now be represented by a high precision model to be optimized within the user wishes. The proposed methods will be illustrated with different examples.

Keywords: adaptive modeling, automatic identification of correlations, data based modeling, optimization

Procedia PDF Downloads 409
7354 Adaptation of Requirement Engineering Practices in Pakistan

Authors: Waqas Ali, Nadeem Majeed

Abstract:

Requirement engineering is an essence of software development life cycle. The more time we spend on requirement engineering, higher the probability of success. Effective requirement engineering ensures and predicts successful software product. This paper presents the adaptation of requirement engineering practices in small and medium size companies of Pakistan. The study is conducted by questionnaires to show how much of requirement engineering models and practices are followed in Pakistan.

Keywords: requirement engineering, Pakistan, models, practices, organizations

Procedia PDF Downloads 719