Search results for: quest based learning
31310 Identifying Game Variables from Students’ Surveys for Prototyping Games for Learning
Authors: N. Ismail, O. Thammajinda, U. Thongpanya
Abstract:
Games-based learning (GBL) has become increasingly important in teaching and learning. This paper explains the first two phases (analysis and design) of a GBL development project, ending up with a prototype design based on students’ and teachers’ perceptions. The two phases are part of a full cycle GBL project aiming to help secondary school students in Thailand in their study of Comprehensive Sex Education (CSE). In the course of the study, we invited 1,152 students to complete questionnaires and interviewed 12 secondary school teachers in focus groups. This paper found that GBL can serve students in their learning about CSE, enabling them to gain understanding of their sexuality, develop skills, including critical thinking skills and interact with others (peers, teachers, etc.) in a safe environment. The objectives of this paper are to outline the development of GBL variables from the research question(s) into the developers’ flow chart, to be responsive to the GBL beneficiaries’ preferences and expectations, and to help in answering the research questions. This paper details the steps applied to generate GBL variables that can feed into a game flow chart to develop a GBL prototype. In our approach, we detailed two models: (1) Game Elements Model (GEM) and (2) Game Object Model (GOM). There are three outcomes of this research – first, to achieve the objectives and benefits of GBL in learning, game design has to start with the research question(s) and the challenges to be resolved as research outcomes. Second, aligning the educational aims with engaging GBL end users (students) within the data collection phase to inform the game prototype with the game variables is essential to address the answer/solution to the research question(s). Third, for efficient GBL to bridge the gap between pedagogy and technology and in order to answer the research questions via technology (i.e. GBL) and to minimise the isolation between the pedagogists “P” and technologist “T”, several meetings and discussions need to take place within the team.Keywords: games-based learning, engagement, pedagogy, preferences, prototype
Procedia PDF Downloads 17031309 The Use of Learning Management Systems during Emerging the Tacit Knowledge
Authors: Ercan Eker, Muhammer Karaman, Akif Aslan, Hakan Tanrikuluoglu
Abstract:
Deficiency of institutional memory and knowledge management can result in information security breaches, loss of prestige and trustworthiness and the worst the loss of know-how and institutional knowledge. Traditional learning management within organizations is generally handled by personal efforts. That kind of struggle mostly depends on personal desire, motivation and institutional belonging. Even if an organization has highly motivated employees at a certain time, the institutional knowledge and memory life cycle will generally remain limited to these employees’ spending time in this organization. Having a learning management system in an organization can sustain the institutional memory, knowledge and know-how in the organization. Learning management systems are much more needed especially in public organizations where the job rotation is frequently seen and managers are appointed periodically. However, a learning management system should not be seen as an organizations’ website. It is a more comprehensive, interactive and user-friendly knowledge management tool for organizations. In this study, the importance of using learning management systems in the process of emerging tacit knowledge is underlined.Keywords: knowledge management, learning management systems, tacit knowledge, institutional memory
Procedia PDF Downloads 38031308 Impact of Grade Sensitivity on Learning Motivation and Academic Performance
Authors: Salwa Aftab, Sehrish Riaz
Abstract:
The objective of this study was to check the impact of grade sensitivity on learning motivation and academic performance of students and to remove the degree of difference that exists among students regarding the cause of their learning motivation and also to gain knowledge about this matter since it has not been adequately researched. Data collection was primarily done through the academic sector of Pakistan and was depended upon the responses given by students solely. A sample size of 208 university students was selected. Both paper and online surveys were used to collect data from respondents. The results of the study revealed that grade sensitivity has a positive relationship with the learning motivation of students and their academic performance. These findings were carried out through systematic correlation and regression analysis.Keywords: academic performance, correlation, grade sensitivity, learning motivation, regression
Procedia PDF Downloads 40031307 Model of Monitoring and Evaluation of Student’s Learning Achievement: Application of Value-Added Assessment
Authors: Jatuphum Ketchatturat
Abstract:
Value-added assessment has been used for developing the model of monitoring and evaluation of student's learning achievement. The steps of model development consist of 1) study and analyisis of the school and the district report system of student achievement and progress, 2) collecting the data of student achievement to develop the value added indicator, 3) developing the system of value-added assessment by participatory action research approach, 4) putting the system of value-added assessment into the educational district of secondary school, 5) determining the quality of the developed system of value-added assessment. The components of the developed model consist of 1) the database of value-added assessment of student's learning achievement, 2) the process of monitoring and evaluation the student's learning achievement, and 3) the reporting system of value-added assessment of student's learning achievement.Keywords: learning achievement, monitoring and evaluation, value-added assessment
Procedia PDF Downloads 42431306 The Emerging Global Judicial Ethics: Issues and Problems
Authors: Caroline Foulquier-Expert
Abstract:
In many states around the world, actions to improve judicial ethics are developing significantly through the production of professional standards for judges. The quest to improve the ethics of judges is legitimate. However, as this development tends to be very important at the moment, some risks it presents must be highlighted. Indeed, if the objective of improving Judges’ Ethics is legitimate, it can also lead to banalization of justice, reinforcement of criticism against the judiciary and to broach incidentally the question of the limits of judgment, which is most perilous for the independence of the judiciary. This research, based on case studies, interviews with judges and an analysis of the literature on this topic (mainly from the United States of America and European Union Member States), tends to draw attention to the fact that the result of the development of these professional standards is that the ethical requirements of judges become ethical requirements of justice, which is an undesirable effect of which we must be aware, in order to prevent it.Keywords: judicial ethics, codes of conduct, independence, limits of judgment
Procedia PDF Downloads 33931305 DeepOmics: Deep Learning for Understanding Genome Functioning and the Underlying Genetic Causes of Disease
Authors: Vishnu Pratap Singh Kirar, Madhuri Saxena
Abstract:
Advancement in sequence data generation technologies is churning out voluminous omics data and posing a massive challenge to annotate the biological functional features. With so much data available, the use of machine learning methods and tools to make novel inferences has become obvious. Machine learning methods have been successfully applied to a lot of disciplines, including computational biology and bioinformatics. Researchers in computational biology are interested to develop novel machine learning frameworks to classify the huge amounts of biological data. In this proposal, it plan to employ novel machine learning approaches to aid the understanding of how apparently innocuous mutations (in intergenic DNA and at synonymous sites) cause diseases. We are also interested in discovering novel functional sites in the genome and mutations in which can affect a phenotype of interest.Keywords: genome wide association studies (GWAS), next generation sequencing (NGS), deep learning, omics
Procedia PDF Downloads 9731304 Effectiveness of Online Language Learning
Authors: Shazi Shah Jabeen, Ajay Jesse Thomas
Abstract:
The study is aimed at understanding the learning trends of students who opt for online language courses and to assess the effectiveness of the same. Multiple factors including use of the latest available technology and the skills that are trained by these online methods have been assessed. An attempt has been made to answer how each of the various language skills is trained online and how effective the online methods are compared to the classroom methods when students interact with peers and instructor. A mixed method research design was followed for collecting information for the study where a survey by means of a questionnaire and in-depth interviews with a number of respondents were undertaken across the various institutes and study centers located in the United Arab Emirates. The questionnaire contained 19 questions which included 7 sub-questions. The study revealed that the students find learning with an instructor to be a lot more effective than learning alone in an online environment. They prefer classroom environment more than the online setting for language learning.Keywords: effectiveness, language, online learning, skills
Procedia PDF Downloads 58931303 A U-Net Based Architecture for Fast and Accurate Diagram Extraction
Authors: Revoti Prasad Bora, Saurabh Yadav, Nikita Katyal
Abstract:
In the context of educational data mining, the use case of extracting information from images containing both text and diagrams is of high importance. Hence, document analysis requires the extraction of diagrams from such images and processes the text and diagrams separately. To the author’s best knowledge, none among plenty of approaches for extracting tables, figures, etc., suffice the need for real-time processing with high accuracy as needed in multiple applications. In the education domain, diagrams can be of varied characteristics viz. line-based i.e. geometric diagrams, chemical bonds, mathematical formulas, etc. There are two broad categories of approaches that try to solve similar problems viz. traditional computer vision based approaches and deep learning approaches. The traditional computer vision based approaches mainly leverage connected components and distance transform based processing and hence perform well in very limited scenarios. The existing deep learning approaches either leverage YOLO or faster-RCNN architectures. These approaches suffer from a performance-accuracy tradeoff. This paper proposes a U-Net based architecture that formulates the diagram extraction as a segmentation problem. The proposed method provides similar accuracy with a much faster extraction time as compared to the mentioned state-of-the-art approaches. Further, the segmentation mask in this approach allows the extraction of diagrams of irregular shapes.Keywords: computer vision, deep-learning, educational data mining, faster-RCNN, figure extraction, image segmentation, real-time document analysis, text extraction, U-Net, YOLO
Procedia PDF Downloads 13731302 Towards Appreciating Knowing Body in the Future Schools: Developing Methods for School Teachers to Understand the Role of the Body in Teaching and Learning
Authors: Johanna Aromaa
Abstract:
This paper presents a development project aimed at enhancing student-teachers' awareness of the role of the body in teaching and learning. In this project, theory and practice are brought into dialogue through workshops of body work that utilize art-based and somatic methods. They are carried out in a special course for educating teachers in a Finnish University. Expected results from the project include: 1) the participants become aware of the multiple roles that the body has in educational encounters, and with it, develop a more holistic approach to teaching and learning, 2) the participants gain access to and learn to form bodily knowledge, 3) a working model on enhancing student-teachers' awareness of the role of bodily knowledge in teacher’s work is developed. Innovative methods as well as a radical rethinking of the nature of teaching and learning are needed if we are to appreciate knowing body in the future schools.Keywords: bodily knowledge, the body, somatic methods, teacher education
Procedia PDF Downloads 43631301 Innovation of e-Learning for Architectural Design Courses at the University of Jordan
Authors: Samer Abu Ghazaleh, Jawdat Gousous
Abstract:
E-learning in general started in Jordan around ten years ago in universities and at different departments and colleges. This paper will investigate the possibility to apply e-learning in architecture department at University of Jordan. As known architecture departments in general depend greatly in its syllabus upon design courses and studios, which consists nearly one third of its total credit hours. A survey has been conducted for architectural students at the University of Jordan and several conclusions have been reached irrespective of age, gender and nationality of the students, where the main problem was the way of the communication between the tutor and the student.Keywords: cellular telephone, design courses, e-learning, internet
Procedia PDF Downloads 47031300 Relationship between the Level of Perceived Self-Efficacy of Children with Learning Disability and Their Mother’s Perception about the Efficacy of Their Child, and Children’s Academic Achievement
Authors: Payal Maheshwari, Maheaswari Brindavan
Abstract:
The present study aimed at studying the level of perceived self-efficacy of children with learning disability and their mother’s perception about the efficacy of the child and the relationship between the two. The study further aimed at finding out the relationship between the level of perceived self-efficacy of children with learning disability and their academic achievement and their mother’s perception about the Efficacy of the child and child’s Academic Achievement. The sample comprised of 80 respondents (40 children with learning disability and their mothers). Children with learning disability as their primary condition, belonging to middle or upper middle class, living with both the parents, residing in Mumbai and their mothers were selected. Purposive or judgmental and snowball sampling technique was used to select the sample for the present study. Proformas in the form of questionnaires were used to obtain the background information of the children with learning disability and their mother’s. A self-constructed Mother’s Perceived Efficacy of their Child Assessment Scale was used to measure mothers perceived level of efficacy of their child with learning disability. Self-constructed Child’s Perceived Self-Efficacy Assessment Scale was used to measure the level of child’s perceived self-efficacy. Academic scores of the child were collected from the child’s parents or teachers and were converted into percentage. The data were analyzed quantitatively using frequencies, mean and standard deviation. Correlations were computed to ascertain the relationships between the different variables. The findings revealed that majority of the mother’s perceived efficacy about their child with learning disability was above average as well as majority of the children with learning disability also perceived themselves as having above average level of self-efficacy. Further in the domains of self-regulated learning and emotional self-efficacy majority of the mothers perceived their child as having average or below average efficacy, 50% of the children also perceived their self-efficacy in the two domains at average or below average level. A significant (r=.322, p < .05) weak correlation (Spearman’s rho) was found between mother’s perceived efficacy about their child, and child’s perceived self-efficacy and a significant (r=.377, p < .01) weak correlation (Pearson Correlation) was also found between mother’s perceived efficacy about their child and child’s academic achievement. Significant weak positive correlation was found between child’s perceived self-efficacy and academic achievement (r=.332, p < .05). Based on the findings, the study discussed the need for intervention program for children in non-academic skills like self-regulation and emotional competence.Keywords: learning disability, perceived self efficacy, academic achievement, mothers, children
Procedia PDF Downloads 32131299 Teaching Physics: History, Models, and Transformation of Physics Education Research
Authors: N. Didiş Körhasan, D. Kaltakçı Gürel
Abstract:
Many students have difficulty in learning physics from elementary to university level. In addition, students' expectancy, attitude, and motivation may be influenced negatively with their experience (failure) and prejudice about physics learning. For this reason, physics educators, who are also physics teachers, search for the best ways to make students' learning of physics easier by considering cognitive, affective, and psychomotor issues in learning. This research critically discusses the history of physics education, fundamental pedagogical approaches, and models to teach physics, and transformation of physics education with recent research.Keywords: pedagogy, physics, physics education, science education
Procedia PDF Downloads 26431298 Gamifying Content and Language Integrated Learning: A Study Exploring the Use of Game-Based Resources to Teach Primary Mathematics in a Second Language
Authors: Sarah Lister, Pauline Palmer
Abstract:
Research findings presented within this paper form part of a larger scale collaboration between academics at Manchester Metropolitan University and a technology company. The overarching aims of this project focus on developing a series of game-based resources to promote the teaching of aspects of mathematics through a second language (L2) in primary schools. This study explores the potential of game-based learning (GBL) as a dynamic way to engage and motivate learners, making learning fun and purposeful. The research examines the capacity of GBL resources to provide a meaningful and purposeful context for CLIL. GBL is a powerful learning environment and acts as an effective vehicle to promote the learning of mathematics through an L2. The fun element of GBL can minimise stress and anxiety associated with mathematics and L2 learning that can create barriers. GBL provides one of the few safe domains where it is acceptable for learners to fail. Games can provide a life-enhancing experience for learners, revolutionizing the routinized ways of learning through fusing learning and play. This study argues that playing games requires learners to think creatively to solve mathematical problems, using the L2 in order to progress, which can be associated with the development of higher-order thinking skills and independent learning. GBL requires learners to engage appropriate cognitive processes with increased speed of processing, sensitivity to environmental inputs, or flexibility in allocating cognitive and perceptual resources. At surface level, GBL resources provide opportunities for learners to learn to do things. Games that fuse subject content and appropriate learning objectives have the potential to make learning academic subjects more learner-centered, promote learner autonomy, easier, more enjoyable, more stimulating and engaging and therefore, more effective. Data includes observations of the children playing the games and follow up group interviews. Given that learning as a cognitive event cannot be directly observed or measured. A Cognitive Discourse Functions (CDF) construct was used to frame the research, to map the development of learners’ conceptual understanding in an L2 context and as a framework to observe the discursive interactions that occur learner to learner and between learner and teacher. Cognitively, the children were required to engage with mathematical content, concepts and language to make decisions quickly, to engage with the gameplay to reason, solve and overcome problems and learn through experimentation. The visual elements of the games supported the learning of new concepts. Children recognised the value of the games to consolidate their mathematical thinking and develop their understanding of new ideas. The games afforded them time to think and reflect. The teachers affirmed that the games provided meaningful opportunities for the learners to practise the language. The findings of this research support the view that using the game-based resources supported children’s grasp of mathematical ideas and their confidence and ability to use the L2. Engaging with the content and language through the games led to deeper learning.Keywords: CLIL, gaming, language, mathematics
Procedia PDF Downloads 14231297 Cryptographic Resource Allocation Algorithm Based on Deep Reinforcement Learning
Authors: Xu Jie
Abstract:
As a key network security method, cryptographic services must fully cope with problems such as the wide variety of cryptographic algorithms, high concurrency requirements, random job crossovers, and instantaneous surges in workloads. Its complexity and dynamics also make it difficult for traditional static security policies to cope with the ever-changing situation. Cyber Threats and Environment. Traditional resource scheduling algorithms are inadequate when facing complex decision-making problems in dynamic environments. A network cryptographic resource allocation algorithm based on reinforcement learning is proposed, aiming to optimize task energy consumption, migration cost, and fitness of differentiated services (including user, data, and task security) by modeling the multi-job collaborative cryptographic service scheduling problem as a multi-objective optimized job flow scheduling problem and using a multi-agent reinforcement learning method, efficient scheduling and optimal configuration of cryptographic service resources are achieved. By introducing reinforcement learning, resource allocation strategies can be adjusted in real-time in a dynamic environment, improving resource utilization and achieving load balancing. Experimental results show that this algorithm has significant advantages in path planning length, system delay and network load balancing and effectively solves the problem of complex resource scheduling in cryptographic services.Keywords: cloud computing, cryptography on-demand service, reinforcement learning, workflow scheduling
Procedia PDF Downloads 1331296 Training Program for Kindergarden Teachers on Learning through Project Approach
Authors: Dian Hartiningsih, Miranda Diponegoro, Evita Eddie Singgih
Abstract:
In facing the 21st century, children need to be prepared in reaching their optimum development level which encompasses all aspect of growth and to achieve the learning goals which include not only knowledge and skill, but also disposition and feeling. Teachers as the forefront of education need to be equipped with the understanding and skill of a learning method which can prepare the children to face this 21st century challenge. Project approach is an approach which utilizes active learning which is beneficial for the children. Subject to this research are kindergarten teachers at Dwi Matra Kindergarten and Kirana Preschool. This research is a quantitative research using before and after study design. The result suggest that through preliminary training program on learning with project approach, the kindergarten teachers ability to explain project approach including understanding, benefit and stages of project approach have increased significantly, the teachers ability to design learning with project approach have also improved significantly. The result of learning design that the teachers had made shows a remarkable result for the first stage of the project approach; however the second and third design result was not as optimal. Challenges faced in the research will be elaborated further in the research discussion.Keywords: project approach, teacher training, learning method, kindergarten
Procedia PDF Downloads 33131295 Imparting Second Language Skill through M-Learning
Authors: Subramaniam Chandran, A. Geetha
Abstract:
This paper addresses three issues: how to prepare instructional design for imparting English language skill from inter-disciplinary self-learning material; how the disadvantaged students are benefited from such kind of language skill imparted through m-learning; and how do the m-learners perform better than the other learners. This paper examines these issues through an experimental study conducted among the distance learners enrolled in preparatory program for bachelor’s degree. This program is designed for the disadvantage learners especially for the school drop-outs to qualify to pursue graduate program through distant education. It also explains how mobile learning helps them to enhance their capacity in learning despite their rural background and other disadvantages. In India nearly half of the students enrolled in schools do not complete their study. The pursuance of higher education is very low when compared with developed countries. This study finds a significant increase in their learning capacity and mobile learning seems to be a viable alternative where conventional system could not reach the disadvantaged learners. Improving the English language skill is one of the reasons for such kind of performance. Exercises framed from the relevant self-learning material for enhancing English language skill not only improves language skill but also widens the subject-knowledge. This paper explains these issues out of the study conducted among the disadvantaged learners.Keywords: English language skill, disadvantaged learners, distance education, m-learning
Procedia PDF Downloads 66631294 Facial Emotion Recognition with Convolutional Neural Network Based Architecture
Authors: Koray U. Erbas
Abstract:
Neural networks are appealing for many applications since they are able to learn complex non-linear relationships between input and output data. As the number of neurons and layers in a neural network increase, it is possible to represent more complex relationships with automatically extracted features. Nowadays Deep Neural Networks (DNNs) are widely used in Computer Vision problems such as; classification, object detection, segmentation image editing etc. In this work, Facial Emotion Recognition task is performed by proposed Convolutional Neural Network (CNN)-based DNN architecture using FER2013 Dataset. Moreover, the effects of different hyperparameters (activation function, kernel size, initializer, batch size and network size) are investigated and ablation study results for Pooling Layer, Dropout and Batch Normalization are presented.Keywords: convolutional neural network, deep learning, deep learning based FER, facial emotion recognition
Procedia PDF Downloads 27431293 Innovative Pictogram Chinese Characters Representation
Authors: J. H. Low, S. H. Hew, C. O. Wong
Abstract:
This paper proposes an innovative approach to represent the pictogram Chinese characters. The advantage of this representation is using an extraordinary to represent the pictogram Chinese character. This extraordinary representation is created accordingly to the original pictogram Chinese characters revolution. The purpose of this innovative creation is to assistant the learner learning Chinese as second language (SCL) in Chinese language learning specifically on memorize Chinese characters. Commonly, the SCL will give up and frustrate easily while memorize the Chinese characters by rote. So, our innovative representation is able to help on memorize the Chinese character by the help of visually storytelling. This innovative representation enhances the Chinese language learning experience of SCL.Keywords: Chinese e-learning, innovative Chinese character representation, knowledge management, language learning
Procedia PDF Downloads 48731292 Factors Affecting Happiness Learning of Students of Faculty of Management Science, Suan Sunandha Rajabhat University
Authors: Somtop Keawchuer
Abstract:
The objectives of this research are to compare the satisfaction of students, towards the happiness learning, sorted by their personal profiles, and to figure out the factors that affect the students’ happiness learning. This paper used survey method to collect data from 362 students. The survey was mainly conducted in the Faculty of Management Science, Suan Sunandha Rajabhat University, including 3,443 students. The statistics used for interpreting the results included the frequencies, percentages, standard deviations and One-way ANOVA. The findings revealed that the students are aware and satisfaction that all the factors in 3 categories (knowledge, skill and attitude) influence the happiness learning at the highest levels. The comparison of the satisfaction levels of the students toward their happiness learning leads to the results that the students with different genders, ages, years of study, and majors of the study have the similar satisfaction at the high level.Keywords: happiness, learning satisfaction, students, Faculty of Management Science
Procedia PDF Downloads 31031291 Like a Bridge over Troubled Waters: The Value of Joint Learning Programs in Intergroup Identity-Based Conflict in Israel
Authors: Rachelly Ashwall, Ephraim Tabory
Abstract:
In an attempt to reduce the level of a major identity-based conflict in Israel between Ultra-orthodox and secular Jews, several initiatives in recent years have tried to bring members of the two societies together in facilitated joint discussion forums. Our study analyzes the impact of two types of such programs: joint mediation training classes and confrontation-based learning programs that are designed to facilitate discussions over controversial issues. These issues include claims about an unequal shouldering of national obligations such as military service, laws requiring public observance of the Sabbath, and discrimination against women, among others. The study examines the factors that enabled the two groups to reduce their social distance, and increase their understanding of each other, and develop a recognition and tolerance of the other group's particular social identity. The research conducted over a course of two years involved observations of the activities of the groups, interviews with the participants, and analysis of the social media used by the groups. The findings demonstrate the progression from a mutual initial lack of knowledge about habits, norms, and attitudes of the out-group to an increasing desire to know, understand and more readily accept the identity of a previously rejected outsider. Participants manifested more respect, concern for and even affection for those whose identity initially led them to reject them out of hand. We discuss the implications for seemingly intractable identity-based conflict in fragile societies.Keywords: identity-based conflict, intergroup relations, joint mediation learning, out-group recognition, social identity
Procedia PDF Downloads 25231290 The Reality of the Digital Inequality and Its Negative Impact on Virtual Learning during the COVID-19 Pandemic: The South African Perspective
Authors: Jacob Medupe
Abstract:
Life as we know it has changed since the global outbreak of Coronavirus Disease 2019 (COVID-19) and business as usual will not continue. The human impact of the COVID-19 crisis is already immeasurable. Moreover, COVID-19 has already negatively impacted economies, livelihoods and disrupted food systems around the world. The disruptive nature of the Corona virus has affected every sphere of life including the culture and teaching and learning. Right now the majority of education research is based around classroom management techniques that are no longer necessary with digital delivery. Instead there is a great need for new data about how to make the best use of the one-on-one attention that is now becoming possible (Diamandis & Kotler, 2014). The COVID-19 pandemic has necessitated an environment where the South African learners are focused to adhere to social distancing in order to minimise the wild spread of the Corona virus. This arrangement forces the student to utilise the online classroom technologies to continue with the lessons. The historical reality is that the country has not made much strides on the closing of the digital divide and this is particularly a common status quo in the deep rural areas. This will prove to be a toll order for most of the learners affected by the Corona Virus to be able to have a seamless access to the online learning facilities. The paper will seek to look deeply into this reality and how the Corona virus has brought us to the reality that South Africa remains a deeply unequal society in every sphere of life. The study will also explore the state of readiness for education system around the online classroom environment.Keywords: virtual learning, virtual classroom, COVID-19, Corona virus, internet connectivity, blended learning, online learning, distance education, e-learning, self-regulated Learning, pedagogy, digital literacy
Procedia PDF Downloads 12731289 Bidirectional Encoder Representations from Transformers Sentiment Analysis Applied to Three Presidential Pre-Candidates in Costa Rica
Authors: Félix David Suárez Bonilla
Abstract:
A sentiment analysis service to detect polarity (positive, neural, and negative), based on transfer learning, was built using a Spanish version of BERT and applied to tweets written in Spanish. The dataset that was used consisted of 11975 reviews, which were extracted from Google Play using the google-play-scrapper package. The BETO trained model used: the AdamW optimizer, a batch size of 16, a learning rate of 2x10⁻⁵ and 10 epochs. The system was tested using tweets of three presidential pre-candidates from Costa Rica. The system was finally validated using human labeled examples, achieving an accuracy of 83.3%.Keywords: NLP, transfer learning, BERT, sentiment analysis, social media, opinion mining
Procedia PDF Downloads 17431288 Interactive Effects of Organizational Learning and Market Orientation on New Product Performance
Authors: Qura-tul-aain Khair
Abstract:
Purpose- The purpose of this paper is to empirically examining the strength of association of responsive market orientation and proactive market orientation with new product performance and exploring the possible moderating role of organizational learning based on contingency theory. Design/methodology/approach- Data for this study was collected from FMCG manufacturing industry and services industry, where customers are in contact frequently and responses are recorded on continuous basis. Sample was collected through convenience sampling. The data collected from different marketing department and sales personnel were analysed using SPSS 16 version. Findings- The paper finds that responsive market orientation is more strongly associated with new product performance. The moderator, organizational learning, plays it significant role on the relationship between responsive market orientation and new product performance. Research limitations/implications- this paper has taken sample from just FMCG industry and service industry, more work can be done regarding how different-markets require different market orientation behaviours. Originality/value- This paper will be useful for foreign business looking for investing and expanding in Pakistan, they can find opportunity to get sustained competitive advantage through exploring the proactive side of market orientation and importance of organizational learning.Keywords: organizational learning, proactive market orientation, responsive market orientation, new product performance
Procedia PDF Downloads 38231287 Teachers' Emphatic Concern for Their Learners
Authors: Prakash Singh
Abstract:
The focus of this exploratory study is on whether teachers demonstrate emphatic concern for their learners in planning, implementing and assessing learning outcomes in their regular classrooms. Empathy must be shown to all learners equally and not only for high-risk learners at the expense of other ability learners. Empathy demonstrated by teachers allows them to build a stronger bond with all their learners. This bond based on trust leads to positive outcomes for learners to be able to excel in their work. Empathic teachers must make every effort to simplify the subject matter for high risk learners so that these learners not only enjoy their learning activities but are also successful like their more able peers. A total of 87.5% of the participants agreed that empathy allows teachers to demonstrate humanistic values in their choice of learning materials for learners of different abilities. It is therefore important for teachers to select content and instructional materials that will contribute to the learners’ success in the mainstream of education. It is also imperative for teachers to demonstrate empathic skills and consequently, to be attuned to the emotions and emotional needs of their learners. Schools need to be reformed, not by simply lengthening the school day or by simply adding more content in the curriculum, but by making school more satisfying to learners. This must be consistent with their diverse learning needs and interests so that they gain a sense of power, fulfillment, and importance in their regular classrooms. Hence, teacher - pupil relationships based on empathic concern for the latter’s educational needs lays the foundation for quality education to be offered.Keywords: emotional intelligence, empathy, learners’ emotional needs, teachers’ empathic skills
Procedia PDF Downloads 43631286 Machine Learning Based Gender Identification of Authors of Entry Programs
Authors: Go Woon Kwak, Siyoung Jun, Soyun Maeng, Haeyoung Lee
Abstract:
Entry is an education platform used in South Korea, created to help students learn to program, in which they can learn to code while playing. Using the online version of the entry, teachers can easily assign programming homework to the student and the students can make programs simply by linking programming blocks. However, the programs may be made by others, so that the authors of the programs should be identified. In this paper, as the first step toward author identification of entry programs, we present an artificial neural network based classification approach to identify genders of authors of a program written in an entry. A neural network has been trained from labeled training data that we have collected. Our result in progress, although preliminary, shows that the proposed approach could be feasible to be applied to the online version of entry for gender identification of authors. As future work, we will first use a machine learning technique for age identification of entry programs, which would be the second step toward the author identification.Keywords: artificial intelligence, author identification, deep neural network, gender identification, machine learning
Procedia PDF Downloads 32431285 Orthogonal Basis Extreme Learning Algorithm and Function Approximation
Abstract:
A new algorithm for single hidden layer feedforward neural networks (SLFN), Orthogonal Basis Extreme Learning (OBEL) algorithm, is proposed and the algorithm derivation is given in the paper. The algorithm can decide both the NNs parameters and the neuron number of hidden layer(s) during training while providing extreme fast learning speed. It will provide a practical way to develop NNs. The simulation results of function approximation showed that the algorithm is effective and feasible with good accuracy and adaptability.Keywords: neural network, orthogonal basis extreme learning, function approximation
Procedia PDF Downloads 53431284 New Machine Learning Optimization Approach Based on Input Variables Disposition Applied for Time Series Prediction
Authors: Hervice Roméo Fogno Fotsoa, Germaine Djuidje Kenmoe, Claude Vidal Aloyem Kazé
Abstract:
One of the main applications of machine learning is the prediction of time series. But a more accurate prediction requires a more optimal model of machine learning. Several optimization techniques have been developed, but without considering the input variables disposition of the system. Thus, this work aims to present a new machine learning architecture optimization technique based on their optimal input variables disposition. The validations are done on the prediction of wind time series, using data collected in Cameroon. The number of possible dispositions with four input variables is determined, i.e., twenty-four. Each of the dispositions is used to perform the prediction, with the main criteria being the training and prediction performances. The results obtained from a static architecture and a dynamic architecture of neural networks have shown that these performances are a function of the input variable's disposition, and this is in a different way from the architectures. This analysis revealed that it is necessary to take into account the input variable's disposition for the development of a more optimal neural network model. Thus, a new neural network training algorithm is proposed by introducing the search for the optimal input variables disposition in the traditional back-propagation algorithm. The results of the application of this new optimization approach on the two single neural network architectures are compared with the previously obtained results step by step. Moreover, this proposed approach is validated in a collaborative optimization method with a single objective optimization technique, i.e., genetic algorithm back-propagation neural networks. From these comparisons, it is concluded that each proposed model outperforms its traditional model in terms of training and prediction performance of time series. Thus the proposed optimization approach can be useful in improving the accuracy of time series forecasts. This proves that the proposed optimization approach can be useful in improving the accuracy of time series prediction based on machine learning.Keywords: input variable disposition, machine learning, optimization, performance, time series prediction
Procedia PDF Downloads 10931283 Using Differentiated Instruction Applying Cognitive Approaches and Strategies for Teaching Diverse Learners
Authors: Jolanta Jonak, Sylvia Tolczyk
Abstract:
Educational systems are tasked with preparing students for future success in academic or work environments. Schools strive to achieve this goal, but often it is challenging as conventional teaching approaches are often ineffective in increasingly diverse educational systems. In today’s ever-increasing global society, educational systems become increasingly diverse in terms of cultural and linguistic differences, learning preferences and styles, ability and disability. Through increased understanding of disabilities and improved identification processes, students having some form of disabilities tend to be identified earlier than in the past, meaning that more students with identified disabilities are being supported in our classrooms. Also, a large majority of students with disabilities are educated in general education environments. Due to cognitive makeup and life experiences, students have varying learning styles and preferences impacting how they receive and express what they are learning. Many students come from bi or multilingual households and with varying proficiencies in the English language, further impacting their learning. All these factors need to be seriously considered when developing learning opportunities for student's. Educators try to adjust their teaching practices as they discover that conventional methods are often ineffective in reaching each student’s potential. Many teachers do not have the necessary educational background or training to know how to teach students whose learning needs are more unique and may vary from the norm. This is further complicated by the fact that many classrooms lack consistent access to interventionists/coaches that are adequately trained in evidence-based approaches to meet the needs of all students, regardless of what their academic needs may be. One evidence-based way for providing successful education for all students is by incorporating cognitive approaches and strategies that tap into affective, recognition, and strategic networks in the student's brain. This can be done through Differentiated Instruction (DI). Differentiated Instruction is increasingly recognized model that is established on the basic principles of Universal Design for Learning. This form of support ensures that regardless of the students’ learning preferences and cognitive learning profiles, they have opportunities to learn through approaches that are suitable to their needs. This approach improves the educational outcomes of students with special needs and it benefits other students as it accommodates learning styles as well as the scope of unique learning needs that are evident in the typical classroom setting. Differentiated Instruction also is recognized as an evidence-based best practice in education and is highly effective when it is implemented within the tiered system of the Response to Intervention (RTI) model. Recognition of DI becomes more common; however, there is still limited understanding of the effective implementation and use of strategies that can create unique learning environments for each student within the same setting. Through employing knowledge of a variety of instructional strategies, general and special education teachers can facilitate optimal learning for all students, with and without a disability. A desired byproduct of DI is that it can eliminate inaccurate perceptions about the students’ learning abilities, unnecessary referrals for special education evaluations, and inaccurate decisions about the presence of a disability.Keywords: differentiated instruction, universal design for learning, special education, diversity
Procedia PDF Downloads 21931282 Awareness and Utilization of E-Learning Technologies in Teaching and Learning of Human Kinetics and Health Education Courses in Nigeria Universities
Authors: Ibrahim Laro ABUBAKAR
Abstract:
The study examined the Availability and Utilization of E-Learning Technologies in Teaching of Human Kinetics and Health Education courses in Nigerian Universities, specifically, Universities in Kwara State. Two purposes were formulated to guide the study from which two research questions and two hypotheses were raised. The descriptive research design was used in the research. Three Hundred respondents (100 Lecturers and 200 Students) made up the population for the study. There was no sampling, as the population of the study was not much. A structured questionnaire tagged ‘Availability and Utilization of E-Learning Technologies in Teaching and Learning Questionnaire’ (AUETTLQ) was used for data collection. The questionnaire was subjected to face and content validation, and it was equally pilot tested. The validation yielded a reliability coefficient of 0.78. The data collected from the study were statistically analyzed using frequencies and percentage count for personal data of the respondents, mean and standard deviation to answer the research questions. The null hypotheses were tested at 0.05 level of significance using the independent t-test. One among other findings of this study showed that lecturers and Student are aware of synchronous e-learning technologies in teaching and learning of Human Kinetics and Health Education but often utilize the synchronous e-learning technologies. It was recommended among others that lecturers and Students should be sensitized through seminars and workshops on the need to maximally utilize available e-learning technologies in teaching and learning of Human Kinetics and Health Education courses in Universities.Keywords: awareness, utilization, E-Learning, technologies, human kinetics synchronous
Procedia PDF Downloads 11931281 Artificial Intelligence as a Policy Response to Teaching and Learning Issues in Education in Ghana
Authors: Joshua Osondu
Abstract:
This research explores how Artificial Intelligence (AI) can be utilized as a policy response to address teaching and learning (TL) issues in education in Ghana. The dual (AI and human) instructor model is used as a theoretical framework to examine how AI can be employed to improve teaching and learning processes and to equip learners with the necessary skills in the emerging AI society. A qualitative research design was employed to assess the impact of AI on various TL issues, such as teacher workloads, a lack of qualified educators, low academic performance, unequal access to education and educational resources, a lack of participation in learning, and poor access and participation based on gender, place of origin, and disability. The study concludes that AI can be an effective policy response to TL issues in Ghana, as it has the potential to increase students’ participation in learning, increase access to quality education, reduce teacher workloads, and provide more personalized instruction. The findings of this study are significant for filling in the gaps in AI research in Ghana and other developing countries and for motivating the government and educational institutions to implement AI in TL, as this would ensure quality, access, and participation in education and help Ghana industrialize.Keywords: artificial intelligence, teacher, learner, students, policy response
Procedia PDF Downloads 92