Search results for: mathematical expectation
1124 Principal Component Analysis Applied to the Electric Power Systems – Practical Guide; Practical Guide for Algorithms
Authors: John Morales, Eduardo Orduña
Abstract:
Currently the Principal Component Analysis (PCA) theory has been used to develop algorithms regarding to Electric Power Systems (EPS). In this context, this paper presents a practical tutorial of this technique detailed their concept, on-line and off-line mathematical foundations, which are necessary and desirables in EPS algorithms. Thus, features of their eigenvectors which are very useful to real-time process are explained, showing how it is possible to select these parameters through a direct optimization. On the other hand, in this work in order to show the application of PCA to off-line and on-line signals, an example step to step using Matlab commands is presented. Finally, a list of different approaches using PCA is presented, and some works which could be analyzed using this tutorial are presented.Keywords: practical guide; on-line; off-line, algorithms, faults
Procedia PDF Downloads 5641123 Mathematical and Numerical Analysis of a Reaction Diffusion System of Lambda-Omega Type
Authors: Hassan Al Salman, Ahmed Al Ghafli
Abstract:
In this study we consider a nonlinear in time finite element approximation of a reaction diffusion system of lambda-omega type. We use a fixed point theorem to prove existence of the approximations. Then, we derive some essential stability estimates and discuss the uniqueness of the approximations. Also, we prove an optimal error bound in time for d=1, 2 and 3 space dimensions. Finally, we present some numerical experiments to verify the theoretical results.Keywords: reaction diffusion system, finite element approximation, fixed point theorem, an optimal error bound
Procedia PDF Downloads 5341122 An Integrated Mixed-Integer Programming Model to Address Concurrent Project Scheduling and Material Ordering
Authors: Babak H. Tabrizi, Seyed Farid Ghaderi
Abstract:
Concurrent planning of project scheduling and material ordering can provide more flexibility to the project scheduling problem, as the project execution costs can be enhanced. Hence, the issue has been taken into account in this paper. To do so, a mixed-integer mathematical model is developed which considers the aforementioned flexibility, in addition to the materials quantity discount and space availability restrictions. Moreover, the activities duration has been treated as decision variables. Finally, the efficiency of the proposed model is tested by different instances. Additionally, the influence of the aforementioned parameters is investigated on the model performance.Keywords: material ordering, project scheduling, quantity discount, space availability
Procedia PDF Downloads 3691121 Transport Mode Selection under Lead Time Variability and Emissions Constraint
Authors: Chiranjit Das, Sanjay Jharkharia
Abstract:
This study is focused on transport mode selection under lead time variability and emissions constraint. In order to reduce the carbon emissions generation due to transportation, organization has often faced a dilemmatic choice of transport mode selection since logistic cost and emissions reduction are complementary with each other. Another important aspect of transportation decision is lead-time variability which is least considered in transport mode selection problem. Thus, in this study, we provide a comprehensive mathematical based analytical model to decide transport mode selection under emissions constraint. We also extend our work through analysing the effect of lead time variability in the transport mode selection by a sensitivity analysis. In order to account lead time variability into the model, two identically normally distributed random variables are incorporated in this study including unit lead time variability and lead time demand variability. Therefore, in this study, we are addressing following questions: How the decisions of transport mode selection will be affected by lead time variability? How lead time variability will impact on total supply chain cost under carbon emissions? To accomplish these objectives, a total transportation cost function is developed including unit purchasing cost, unit transportation cost, emissions cost, holding cost during lead time, and penalty cost for stock out due to lead time variability. A set of modes is available to transport each node, in this paper, we consider only four transport modes such as air, road, rail, and water. Transportation cost, distance, emissions level for each transport mode is considered as deterministic and static in this paper. Each mode is having different emissions level depending on the distance and product characteristics. Emissions cost is indirectly affected by the lead time variability if there is any switching of transport mode from lower emissions prone transport mode to higher emissions prone transport mode in order to reduce penalty cost. We provide a numerical analysis in order to study the effectiveness of the mathematical model. We found that chances of stock out during lead time will be higher due to the higher variability of lead time and lad time demand. Numerical results show that penalty cost of air transport mode is negative that means chances of stock out zero, but, having higher holding and emissions cost. Therefore, air transport mode is only selected when there is any emergency order to reduce penalty cost, otherwise, rail and road transport is the most preferred mode of transportation. Thus, this paper is contributing to the literature by a novel approach to decide transport mode under emissions cost and lead time variability. This model can be extended by studying the effect of lead time variability under some other strategic transportation issues such as modal split option, full truck load strategy, and demand consolidation strategy etc.Keywords: carbon emissions, inventory theoretic model, lead time variability, transport mode selection
Procedia PDF Downloads 4361120 Gas-Solid Nitrocarburizing of Steels: Kinetic Modelling and Experimental Validation
Authors: L. Torchane
Abstract:
This study is devoted to defining the optimal conditions for the nitriding of pure iron at atmospheric pressure by using NH3-Ar-C3H8 gas mixtures. After studying the mechanisms of phase formation and mass transfer at the gas-solid interface, a mathematical model is developed in order to predict the nitrogen transfer rate in the solid, the ε-carbonitride layer growth rate and the nitrogen and carbon concentration profiles. In order to validate the model and to show its possibilities, it is compared with thermogravimetric experiments, analyses and metallurgical observations (X-ray diffraction, optical microscopy and electron microprobe analysis). Results obtained allow us to demonstrate the sound correlation between the experimental results and the theoretical predictions.Keywords: gaseous nitrocarburizing, kinetic model, diffusion, layer growth kinetic
Procedia PDF Downloads 5341119 Use of Geoinformatics and Mathematical Equations to Assess Erosion and Soil Fertility in Cassava Growing Areas in Maha Sarakham Province, Thailand
Authors: Sasirin Srisomkiew, Sireewan Ratsadornasai, Tanomkwan Tipvong, Isariya Meesing
Abstract:
Cassava is an important food source in the tropics and has recently gained attention as a potential source of biofuel that can replace limited fossil fuel sources. As a result, the demand for cassava production to support industries both within the country and abroad has increased. In Thailand, most farmers prefer to grow cassava in sandy and sandy loam areas where the soil has low natural fertility. Cassava is a tuber plant that has large roots to store food, resulting in the absorption of large amounts of nutrients from the soil, such as nitrogen, phosphorus, and potassium. Therefore, planting cassava in the same area for a long period causes soil erosion and decreases soil fertility. The loss of soil fertility affects the economy, society, and food and energy security of the country. Therefore, it is necessary to know the level of soil fertility and the amount of nutrients in the soil. To address this problem, this study applies geo-informatics technology and mathematical equations to assess erosion and soil fertility and to analyze factors affecting the amount of cassava production in Maha Sarakham Province. The results show that the area for cassava cultivation has increased in every district of Maha Sarakham Province between 2015-2022, with the total area increasing to 180,922 rai or 5.47% of the province’s total area during this period. Furthermore, it was found that it is possible to assess areas with soil erosion problems that had a moderate level of erosion in areas with high erosion rates ranging from 5-15 T/rai/year. Soil fertility assessment and information obtained from the soil nutrient map for 2015–2023 reveal that farmers in the area have improved the soil by adding chemical fertilizers along with organic fertilizers, such as manure and green manure, to increase the amount of nutrients in the soil. This is because the soil resources of Maha Sarakham Province mostly have relatively low agricultural potential due to the soil texture being sand and sandy loam. In this scenario, the ability to absorb nutrients is low, and the soil holds little water, so it is naturally low in fertility. Moreover, agricultural soil problems were found, including the presence of saline soil, sandy soil, and acidic soil, which is a serious restriction on land use because it affects the release of nutrients into the soil. The results of this study may be used as a guideline for managing soil resources and improving soil quality to prevent soil degradation problems that may occur in the future.Keywords: Cassava, geoinformatics, soil erosion, soil fertility, land use change
Procedia PDF Downloads 531118 Incorporating Chinese Calligraphic Concept in 3D Space
Authors: Woon Lam Ng.
Abstract:
This paper explores the basic structures of Chinese calligraphy brushwork, its textures, its characteristic forms, and how its strength can be incorporated into 3d animation. It investigates how these structures could create visual simplification and suggest movement. The conceptual difference between realistic rendering and the Chinese calligraphic concept of simplification is discussed. With the help of the Python programmable environment in Maya, the concept of Chinese calligraphy in 3d space and its idea of visual simplification and abstraction were explored. The work demonstrates how the Chinese calligraphic brushwork could suggest the dynamics of motion in 3d space. Some limitations of the Maya emitting process are also discussed. Possible further explorations through additional mathematical adjustments to the selected Maya shader are also suggested to enhance the presentation.Keywords: calligraphy, brushwork, dynamics, movements
Procedia PDF Downloads 2591117 Resonant Tunnelling Diode Output Characteristics Dependence on Structural Parameters: Simulations Based on Non-Equilibrium Green Functions
Authors: Saif Alomari
Abstract:
The paper aims at giving physical and mathematical descriptions of how the structural parameters of a resonant tunnelling diode (RTD) affect its output characteristics. Specifically, the value of the peak voltage, peak current, peak to valley current ratio (PVCR), and the difference between peak and valley voltages and currents ΔV and ΔI. A simulation-based approach using the Non-Equilibrium Green Function (NEGF) formalism based on the Silvaco ATLAS simulator is employed to conduct a series of designed experiments. These experiments show how the doping concentration in the emitter and collector layers, their thicknesses, and the width of the barriers and the quantum well influence the above-mentioned output characteristics. Each of these parameters was systematically changed while holding others fixed in each set of experiments. Factorial experiments are outside the scope of this work and will be investigated in future. The physics involved in the operation of the device is thoroughly explained and mathematical models based on curve fitting and underlaying physical principles are deduced. The models can be used to design devices with predictable output characteristics. These models were found absent in the literature that the author acanned. Results show that the doping concentration in each region has an effect on the value of the peak voltage. It is found that increasing the carrier concentration in the collector region shifts the peak to lower values, whereas increasing it in the emitter shifts the peak to higher values. In the collector’s case, the shift is either controlled by the built-in potential resulting from the concentration gradient or the conductivity enhancement in the collector. The shift to higher voltages is found to be also related to the location of the Fermi-level. The thicknesses of these layers play a role in the location of the peak as well. It was found that increasing the thickness of each region shifts the peak to higher values until a specific characteristic length, afterwards the peak becomes independent of the thickness. Finally, it is shown that the thickness of the barriers can be optimized for a particular well width to produce the highest PVCR or the highest ΔV and ΔI. The location of the peak voltage is important in optoelectronic applications of RTDs where the operating point of the device is usually the peak voltage point. Furthermore, the PVCR, ΔV, and ΔI are of great importance for building RTD-based oscillators as they affect the frequency response and output power of the oscillator.Keywords: peak to valley ratio, peak voltage shift, resonant tunneling diodes, structural parameters
Procedia PDF Downloads 1421116 Simulation of Immiscibility Regions in Sodium Borosilicate Glasses
Authors: Djamila Aboutaleb, Brahim Safi
Abstract:
In this paper, sodium borosilicates glasses were prepared by melting in air. These heat-resistant transparent glasses have subjected subsequently isothermal treatments at different times, which have transformed them at opaque glass (milky white color). Such changes indicate that these glasses showed clearly phase separation (immiscibility). The immiscibility region in a sodium borosilicate ternary system was investigated in this work, i.e. to determine the regions from which some compositions can show phase separation. For this we went through the conditions of thermodynamic equilibrium, which were translated later by mathematical equations to find an approximate solution. The latter has been translated in a simulation which was established thereafter to find the immiscibility regions in this type of special glasses.Keywords: sodium borosilicate, heat-resistant, isothermal treatments, immiscibility, thermodynamics
Procedia PDF Downloads 3371115 The Power of the Proper Orthogonal Decomposition Method
Authors: Charles Lee
Abstract:
The Principal Orthogonal Decomposition (POD) technique has been used as a model reduction tool for many applications in engineering and science. In principle, one begins with an ensemble of data, called snapshots, collected from an experiment or laboratory results. The beauty of the POD technique is that when applied, the entire data set can be represented by the smallest number of orthogonal basis elements. It is the such capability that allows us to reduce the complexity and dimensions of many physical applications. Mathematical formulations and numerical schemes for the POD method will be discussed along with applications in NASA’s Deep Space Large Antenna Arrays, Satellite Image Reconstruction, Cancer Detection with DNA Microarray Data, Maximizing Stock Return, and Medical Imaging.Keywords: reduced-order methods, principal component analysis, cancer detection, image reconstruction, stock portfolios
Procedia PDF Downloads 861114 Possibilistic Aggregations in the Investment Decision Making
Authors: I. Khutsishvili, G. Sirbiladze, B. Ghvaberidze
Abstract:
This work proposes a fuzzy methodology to support the investment decisions. While choosing among competitive investment projects, the methodology makes ranking of projects using the new aggregation OWA operator – AsPOWA, presented in the environment of possibility uncertainty. For numerical evaluation of the weighting vector associated with the AsPOWA operator the mathematical programming problem is constructed. On the basis of the AsPOWA operator the projects’ group ranking maximum criteria is constructed. The methodology also allows making the most profitable investments into several of the project using the method developed by the authors for discrete possibilistic bicriteria problems. The article provides an example of the investment decision-making that explains the work of the proposed methodology.Keywords: expert evaluations, investment decision making, OWA operator, possibility uncertainty
Procedia PDF Downloads 5581113 Numerical Simulation of Seismic Process Accompanying the Formation of Shear-Type Fault Zone in Chuya-Kuray Depressions
Authors: Mikhail O. Eremin
Abstract:
Seismic activity around the world is clearly a threat to people's lives, as well as infrastructure and capital construction. It is the instability of the latter to powerful earthquakes that most often causes human casualties. Therefore, during construction it is necessary to take into account the risks of large-scale natural disasters. The task of assessing the risks of natural disasters is one of the most urgent at the present time. The final goal of any study of earthquakes is forecasting. This is especially important for seismically active regions of the planet where earthquakes occur frequently. Gorni Altai is one of such regions. In work, we developed the physical-mathematical model of stress-strain state evolution of loaded geomedium with the purpose of numerical simulation of seismic process accompanying the formation of Chuya-Kuray fault zone Gorni Altay, Russia. We build a structural model on the base of seismotectonic and paleoseismogeological investigations, as well as SRTM-data. Base of mathematical model is the system of equations of solid mechanics which includes the fundamental conservation laws and constitutive equations for elastic (Hooke's law) and inelastic deformation (modified model of Drucker-Prager-Nikolaevskii). An initial stress state of the model correspond to gravitational. Then we simulate an activation of a buried dextral strike-slip paleo-fault located in the basement of the model. We obtain the stages of formation and the structure of Chuya-Kuray fault zone. It is shown that results of numerical simulation are in good agreement with field observations in statistical sense. Simulated seismic process is strongly bound to the faults - lineaments with high degree of inelastic strain localization. Fault zone represents en-echelon system of dextral strike-slips according to the Riedel model. The system of surface lineaments is represented with R-, R'-shear bands, X- and Y-shears, T-fractures. Simulated seismic process obeys the laws of Gutenberg-Richter and Omori. Thus, the model describes a self-similar character of deformation and fracture of rocks and geomedia. We also modified the algorithm of determination of separate slip events in the model due to the features of strain rates dependence vs time.Keywords: Drucker-Prager model, fault zone, numerical simulation, Riedel bands, seismic process, strike-slip fault
Procedia PDF Downloads 1411112 Improving Mathematics and Engineering Interest through Programming
Authors: Geoffrey A. Wright
Abstract:
In an attempt to address shortcomings revealed in international assessments and lamented in legislation, many schools are reducing or eliminating elective courses, applying the rationale that replacing "non-essential" subjects with core subjects, such as mathematics and language arts, will better position students in the global market. However, there is evidence that systematically pairing a core subject with another complementary subject may lead to greater overall learning in both subjects. In this paper, we outline the methods and preliminary findings from a study we conducted analyzing the influence learning programming has on student mathematical comprehension and ability. The purpose of this research is to demonstrate in what ways two subjects might complement each other, and to better understand the principles and conditions that encourage what we call lateral transfer, the synergistic effect that occurs when a learner studies two complementary subjects.Keywords: programming, engineering, technology, complementary subjects
Procedia PDF Downloads 3571111 GAC Adsorption Modelling of Metsulfuron Methyl from Water
Authors: Nathaporn Areerachakul
Abstract:
In this study, the adsorption capacity of GAC with metsulfuron methyl was evaluated by using adsorption equilibrium and a fixed bed. Mathematical modelling was also used to simulate the GAC adsorption behavior. Adsorption equilibrium experiment of GAC was conducted using a constant concentration of metsulfuron methyl of 10 mg/L. The purpose of this study was to find the single component equilibrium concentration of herbicide. The adsorption behavior was simulated using the Langmuir, Freundlich, and Sips isotherm. The Sips isotherm fitted the experimental data reasonably well with an error of 6.6 % compared with 15.72 % and 7.07% for the Langmuir isotherm and Freudrich isotherm. Modelling using GAC adsorption theory could not replicate the experimental results in fixed bed column of 10 and 15 cm bed depths after a period more than 10 days of operation. This phenomenon is attributed to the formation of micro-organism (BAC) on the surface of GAC in addition to GAC alone.Keywords: isotherm, adsorption equilibrium, GAC, metsulfuron methyl
Procedia PDF Downloads 3111110 Secret Security Smart Lock Using Artificial Intelligence Hybrid Algorithm
Authors: Vahid Bayrami Rad
Abstract:
Ever since humans developed a collective way of life to the development of urbanization, the concern of security has always been considered one of the most important challenges of life. To protect property, locks have always been a practical tool. With the advancement of technology, the form of locks has changed from mechanical to electric. One of the most widely used fields of using artificial intelligence is its application in the technology of surveillance security systems. Currently, the technologies used in smart anti-theft door handles are one of the most potential fields for using artificial intelligence. Artificial intelligence has the possibility to learn, calculate, interpret and process by analyzing data with the help of algorithms and mathematical models and make smart decisions. We will use Arduino board to process data.Keywords: arduino board, artificial intelligence, image processing, solenoid lock
Procedia PDF Downloads 701109 The Impact of Supporting Productive Struggle in Learning Mathematics: A Quasi-Experimental Study in High School Algebra Classes
Authors: Sumeyra Karatas, Veysel Karatas, Reyhan Safak, Gamze Bulut-Ozturk, Ozgul Kartal
Abstract:
Productive struggle entails a student's cognitive exertion to comprehend mathematical concepts and uncover solutions not immediately apparent. The significance of productive struggle in learning mathematics is accentuated by influential educational theorists, emphasizing its necessity for learning mathematics with understanding. Consequently, supporting productive struggle in learning mathematics is recognized as a high-leverage and effective mathematics teaching practice. In this study, the investigation into the role of productive struggle in learning mathematics led to the development of a comprehensive rubric for productive struggle pedagogy through an exhaustive literature review. The rubric consists of eight primary criteria and 37 sub-criteria, providing a detailed description of teacher actions and pedagogical choices that foster students' productive struggles. These criteria encompass various pedagogical aspects, including task design, tool implementation, allowing time for struggle, posing questions, scaffolding, handling mistakes, acknowledging efforts, and facilitating discussion/feedback. Utilizing this rubric, a team of researchers and teachers designed eight 90-minute lesson plans, employing a productive struggle pedagogy, for a two-week unit on solving systems of linear equations. Simultaneously, another set of eight lesson plans on the same topic, featuring identical content and problems but employing a traditional lecture-and-practice model, was designed by the same team. The objective was to assess the impact of supporting productive struggle on students' mathematics learning, defined by the strands of mathematical proficiency. This quasi-experimental study compares the control group, which received traditional lecture- and practice instruction, with the treatment group, which experienced a productive struggle in pedagogy. Sixty-six 10th and 11th-grade students from two algebra classes, taught by the same teacher at a high school, underwent either the productive struggle pedagogy or lecture-and-practice approach over two-week eight 90-minute class sessions. To measure students' learning, an assessment was created and validated by a team of researchers and teachers. It comprised seven open-response problems assessing the strands of mathematical proficiency: procedural and conceptual understanding, strategic competence, and adaptive reasoning on the topic. The test was administered at the beginning and end of the two weeks as pre-and post-test. Students' solutions underwent scoring using an established rubric, subjected to expert validation and an inter-rater reliability process involving multiple criteria for each problem based on their steps and procedures. An analysis of covariance (ANCOVA) was conducted to examine the differences between the control group, which received traditional pedagogy, and the treatment group, exposed to the productive struggle pedagogy, on the post-test scores while controlling for the pre-test. The results indicated a significant effect of treatment on post-test scores for procedural understanding (F(2, 63) = 10.47, p < .001), strategic competence (F(2, 63) = 9.92, p < .001), adaptive reasoning (F(2, 63) = 10.69, p < .001), and conceptual understanding (F(2, 63) = 10.06, p < .001), controlling for pre-test scores. This demonstrates the positive impact of supporting productive struggle in learning mathematics. In conclusion, the results revealed the significance of the role of productive struggle in learning mathematics. The study further explored the practical application of productive struggle through the development of a comprehensive rubric describing the pedagogy of supporting productive struggle.Keywords: effective mathematics teaching practice, high school algebra, learning mathematics, productive struggle
Procedia PDF Downloads 541108 Management of Postoperative Pain, Intercultural Differences Among Registered Nurses: Czech Republic and Kingdom of Saudi Arabia
Authors: Denisa Mackova, Andrea Pokorna
Abstract:
The management of postoperative pain is a meaningful part of quality care. The experience and knowledge of registered nurses in postoperative pain management can be influenced by local know-how. Therefore, the research helps to understand the cultural differences between two countries with the aim of evaluating the management of postoperative pain management among the nurses from the Czech Republic and the Kingdom of Saudi Arabia. Both countries have different procedures on managing postoperative pain and the research will provide an understanding of both the advantages and disadvantages of the procedures and also highlight the knowledge and experience of registered nurses in both countries. Between the Czech Republic and the Kingdom of Saudi Arabia, the expectation is for differing results in the usage of opioid analgesia for the patients postoperatively and in the experience of registered nurses with Patient Controlled Analgesia. The aim is to evaluate the knowledge and awareness of registered nurses and to merge the data with the postoperative pain management in the early postoperative period in the Czech Republic and the Kingdom of Saudi Arabia. Also, the aim is to assess the knowledge and experience of registered nurses by using Patient Controlled Analgesia and epidural analgesia treatment in the early postoperative period. The criteria for those providing input into the study, are registered nurses, working in surgical settings (standard departments, post-anesthesia care unit, day care surgery or ICU’s) caring for patients in the postoperative period. Method: Research is being conducted by questionnaires. It is a quantitative research, a comparative study of registered nurses in the Czech Republic and the Kingdom of Saudi Arabia. Questionnaire surveys were distributed through an electronic Bristol online survey. Results: The collection of the data in the Kingdom of Saudi Arabia has been completed successfully, with 550 respondents, 77 were excluded and 473 respondents were included for statistical data analysis. The outcome of the research is expected to highlight the differences in treatment through Patient Controlled Analgesia, with more frequent use in the Kingdom of Saudi Arabia. A similar assumption is expected for treatment conducted by analgesia. We predict that opioids will be used more regularly in the Kingdom of Saudi Arabia, whilst therapy through NSAID’s being the most common approach in the Czech Republic. Discussion/Conclusion: The majority of respondents from the Kingdom of Saudi Arabia were female registered nurses from a multitude of nations. We are expecting a similar split in gender between the Czech Republic respondents; however, there will be a smaller number of nationalities. Relevance for research and practice: Output from the research will assess the knowledge, experience and practice of patient controlled analgesia and epidural analgesia treatment. Acknowledgement: This research was accepted and affiliated to the project: Postoperative pain management, knowledge and experience registered nurses (Czech Republic and Kingdom of Saudi Arabia) – SGS05/2019-2020.Keywords: acute postoperative pain, epidural analgesia, nursing care, patient controlled analgesia
Procedia PDF Downloads 1801107 Disability Management and Occupational Health Enhancement Program in Hong Kong Hospital Settings
Authors: K. C. M. Wong, C. P. Y. Cheng, K. Y. Chan, G. S. C. Fung, T. F. O. Lau, K. F. C. Leung, J. P. C. Fok
Abstract:
Hospital Authority (HA) is the statutory body to manage all public hospitals in Hong Kong. Occupational Care Medicine Service (OMCS) is an in-house multi-disciplinary team responsible for injury management in HA. Hospital administrative services (AS) provides essential support in hospital daily operation to facilitate the provision of quality healthcare services. An occupational health enhancement program in Tai Po Hospital (TPH) domestic service supporting unit (DSSU) was piloted in 2013 with satisfactory outcome, the keys to success were staff engagement and management support. Riding on the success, the program was rolled out to another 5 AS departments of Alice Ho Miu Ling Nethersole Hospital (AHNH) and TPH in 2015. This paper highlights the indispensable components of disability management and occupational health enhancement program in hospital settings. Objectives: 1) Facilitate workplace to support staff with health affecting work problem, 2) Enhance staff’s occupational health. Methodology: Hospital Occupational Safety and Health (OSH) team and AS departments (catering, linen services, and DSSU) of AHNH and TPH worked closely with OMCS. Focus group meetings and worksite visits were conducted with frontline staff engagement. OSH hazards were identified with corresponding OSH improvement measures introduced, e.g., invention of high dusting device to minimize working at height; tailor-made linen cart to minimize back bending at work, etc. Specific MHO trainings were offered to each AS department. A disability management workshop was provided to supervisors in order to enhance their knowledge and skills in return-to-work (RTW) facilitation. Based on injured staff's health condition, OMCS would provide work recommendation, and RTW plan was formulated with engagement of staff and their supervisors. Genuine communication among stakeholders with expectation management paved the way for realistic goals setting and success in our program. Outcome: After implementation of the program, a significant drop of 26% in musculoskeletal disorders related sickness absence day was noted in 2016 as compared to the average of 2013-2015. The improvement was postulated by innovative OSH improvement measures, teamwork, staff engagement and management support. Staff and supervisors’ feedback were very encouraging that 90% respondents rated very satisfactory in program evaluation. This program exemplified good work sharing among departments to support staff in need.Keywords: disability management, occupational health, return to work, occupational medicine
Procedia PDF Downloads 2131106 Mathematical Model to Simulate Liquid Metal and Slag Accumulation, Drainage and Heat Transfer in Blast Furnace Hearth
Authors: Hemant Upadhyay, Tarun Kumar Kundu
Abstract:
It is utmost important for a blast furnace operator to understand the mechanisms governing the liquid flow, accumulation, drainage and heat transfer between various phases in blast furnace hearth for a stable and efficient blast furnace operation. Abnormal drainage behavior may lead to high liquid build up in the hearth. Operational problems such as pressurization, low wind intake, and lower material descent rates, normally be encountered if the liquid levels in the hearth exceed a critical limit when Hearth coke and Deadman start to float. Similarly, hot metal temperature is an important parameter to be controlled in the BF operation; it should be kept at an optimal level to obtain desired product quality and a stable BF performance. It is not possible to carry out any direct measurement of above due to the hostile conditions in the hearth with chemically aggressive hot liquids. The objective here is to develop a mathematical model to simulate the variation in hot metal / slag accumulation and temperature during the tapping of the blast furnace based on the computed drainage rate, production rate, mass balance, heat transfer between metal and slag, metal and solids, slag and solids as well as among the various zones of metal and slag itself. For modeling purpose, the BF hearth is considered as a pressurized vessel, filled with solid coke particles. Liquids trickle down in hearth from top and accumulate in voids between the coke particles which are assumed thermally saturated. A set of generic mass balance equations gives the amount of metal and slag intake in hearth. A small drainage (tap hole) is situated at the bottom of the hearth and flow rate of liquids from tap hole is computed taking in account the amount of both the phases accumulated their level in hearth, pressure from gases in the furnace and erosion behaviors of tap hole itself. Heat transfer equations provide the exchange of heat between various layers of liquid metal and slag, and heat loss to cooling system through refractories. Based on all that information a dynamic simulation is carried out which provides real time information of liquids accumulation in hearth before and during tapping, drainage rate and its variation, predicts critical event timings during tapping and expected tapping temperature of metal and slag on preset time intervals. The model is in use at JSPL, India BF-II and its output is regularly cross-checked with actual tapping data, which are in good agreement.Keywords: blast furnace, hearth, deadman, hotmetal
Procedia PDF Downloads 1861105 CSR Health Programs: A Supplementary Tool of a Government’s Role in a Developing Nation
Authors: Kristine Demilou Santiago
Abstract:
In a context of a developing nation, how important is the role of Corporate Social Responsibility health programs? Is there a possibility that this will render a large impact in a society where health benefits are insufficient? The Philippine government has been in an unceasing battle to provide its citizens competitive health benefits through launching various health programs. As the efforts are being claimed by the government, the numbers just show that all the health benefits being offered such as PhilHealth health cards, medical missions and other subsidized government health benefits are not effective and sufficient at the minimum level. This is a major characteristic of a developing nation which the Philippine government is focusing on addressing as it becomes a national concern under the effects of poverty. Industrial companies, through Corporate Social Responsibility, are playing an important role in the aspiration to resolve this problem on health programs as supposed to be basic services to citizens of the Philippine government. The rise of commitment by these industrial companies to render health programs to communities as part of their corporate citizenship has covered a large portion of the basic health services that the Filipino citizens are supposed to be receiving. This is the most salient subject that a developing nation should focus on determining the important contribution of industrial companies present in their country as part of the citizens’ access to basic health services. The use of survey forms containing quantitative and qualitative questions which aim to give numerical figures and support answers as to the role of CSR Health programs in helping the communities receive the basic health services they need was the methodological procedure followed in this research. A sample population in a community where the largest industrial company in a province of the Philippines was taken through simple random sampling. The assumption is that this sample population which represents the whole of the community has the highest opportunities to access both the government health services and the CSR health program services of the industrial company located in their community. Results of the research have shown a significant level of participation by industrial companies through their CSR health programs in the attainment of basic health services that should be rendered by the Philippine government to its citizens as part of the state’s health benefits. In a context of a developing nation such as the Philippines, the role of Corporate Social Responsibility is beyond the expectation of initiating to resolve environmental and social issues. It is moving deeper in the concept of the corporate industries being a pillar of the government in catering the support needed by the individuals in the community for its development. As such, the concept of the presence of an industrial company in a community is said to be a parallel progress: by which when an industrial company expands because it is becoming more profitable, so is the community gaining the same step of progress in terms of socioeconomic development.Keywords: basic health services, CSR health program, health services in a developing nation, Philippines health benefits
Procedia PDF Downloads 2101104 A Survey Study Exploring Principal Leadership and Teachers’ Expectations in the Social Working Life of Two Swedish Schools
Authors: Anette Forssten Seiser, Ulf Blossing, Mats Ekholm
Abstract:
The expectation on principals to manage, lead and develop their schools and teachers are high. However, principals are not left alone without guidelines. Policy texts, curricula and syllabuses guide the orientation of their leadership. Moreover, principals’ traits and experience as well as professional norms, are decisive. However, in this study we argue for the importance to deepen the knowledge of how the practice of leadership is shaped in the daily social working life with the teachers at the school. Teachers’ experiences and expectations of leadership influence the principal’s actions, sometimes perhaps contrary to what is emphasized in official texts like the central guidelines. The expectations of teachers make up the norms of the school and thus constitute the local school culture. The aim of this study is to deepen the knowledge of teachers’ expectations on their principals to manage, lead and develop their schools. Two questions are used to guide the study: 1) How do teachers’ and principals’ expectations differ in realistic situations? 2) How do teachers’ experience-based expectations differ from more ideal expectations? To investigate teachers’ expectations of their principals, we use a social psychological perspective framed within an organisational development perspective. A social role is defined by the fact that, within the framework of the role, different people who fulfil the same role exhibit greater similarities than differences in their actions. The way a social role is exercised depends on the expectations placed on the role’s position but also on the expectations of the function of the role. The way in which the social role is embodied in practice also depends on how the person fulfilling the role perceives and understands those expectations. Based on interviews with school principals a questionnaire was constructed. Nine possible real-life and critical incidents were described that are important when it comes to role shaping in the dynamics between teachers and principals. Teachers were asked to make a choice between three, four, or five possible and realistic courses of action for the principal. The teachers were also asked to make two choices between these different options in real-life situations, one ideal as if they were working as a principal themselves, and one experience based – how they estimated that their own principal would act in such a situation. The sample consist of two elementary schools in Sweden. School A consists of two principals and 38 teachers and school B of two principals and 22 teachers. The response rate among the teachers is 95 percent in school A and 86 percent in school B. All four principals answered our questions. The results show that the expectations of teachers and principals can be understood as variations of being harmonic or disharmonic. The harmonic expectations can be interpreted to lead to an attuned leadership, while the disharmonic expectations lead to a more tensed leadership. Harmonious expectations and an attuned leadership are prominent. The results are compared to earlier research on leadership. Attuned and more tensed leadership are discussed in relation to school development and future research.Keywords: critical incidents, principal leadership, school culture, school development, teachers' expectations
Procedia PDF Downloads 961103 Extended Boolean Petri Nets Generating N-Ary Trees
Authors: Riddhi Jangid, Gajendra Pratap Singh
Abstract:
Petri nets, a mathematical tool, is used for modeling in different areas of computer sciences, biological networks, chemical systems and many other disciplines. A Petri net model of a given system is created by the graphical representation that describes the properties and behavior of the system. While looking for the behavior of any system, 1-safe Petri nets are of particular interest to many in the application part. Boolean Petri nets correspond to those class in 1- safe Petri nets that generate all the binary n-vectors in their reachability analysis. We study the class by changing different parameters like the token counts in the places and how the structure of the tree changes in the reachability analysis. We discuss here an extended class of Boolean Petri nets that generates n-ary trees in their reachability-based analysis.Keywords: marking vector, n-vector, petri nets, reachability
Procedia PDF Downloads 841102 Comparison of MODIS-Based Rice Extent Map and Landsat-Based Rice Classification Map in Determining Biomass Energy Potential of Rice Hull in Nueva Ecija, Philippines
Authors: Klathea Sevilla, Marjorie Remolador, Bryan Baltazar, Imee Saladaga, Loureal Camille Inocencio, Ma. Rosario Concepcion Ang
Abstract:
The underutilization of biomass resources in the Philippines, combined with its growing population and the rise in fossil fuel prices confirms demand for alternative energy sources. The goal of this paper is to provide a comparison of MODIS-based and Landsat-based agricultural land cover maps when used in the estimation of rice hull’s available energy potential. Biomass resource assessment was done using mathematical models and remote sensing techniques employed in a GIS platform.Keywords: biomass, geographic information system (GIS), remote sensing, renewable energy
Procedia PDF Downloads 4821101 Towards Accurate Velocity Profile Models in Turbulent Open-Channel Flows: Improved Eddy Viscosity Formulation
Authors: W. Meron Mebrahtu, R. Absi
Abstract:
Velocity distribution in turbulent open-channel flows is organized in a complex manner. This is due to the large spatial and temporal variability of fluid motion resulting from the free-surface turbulent flow condition. This phenomenon is complicated further due to the complex geometry of channels and the presence of solids transported. Thus, several efforts were made to understand the phenomenon and obtain accurate mathematical models that are suitable for engineering applications. However, predictions are inaccurate because oversimplified assumptions are involved in modeling this complex phenomenon. Therefore, the aim of this work is to study velocity distribution profiles and obtain simple, more accurate, and predictive mathematical models. Particular focus will be made on the acceptable simplification of the general transport equations and an accurate representation of eddy viscosity. Wide rectangular open-channel seems suitable to begin the study; other assumptions are smooth-wall, and sediment-free flow under steady and uniform flow conditions. These assumptions will allow examining the effect of the bottom wall and the free surface only, which is a necessary step before dealing with more complex flow scenarios. For this flow condition, two ordinary differential equations are obtained for velocity profiles; from the Reynolds-averaged Navier-Stokes (RANS) equation and equilibrium consideration between turbulent kinetic energy (TKE) production and dissipation. Then different analytic models for eddy viscosity, TKE, and mixing length were assessed. Computation results for velocity profiles were compared to experimental data for different flow conditions and the well-known linear, log, and log-wake laws. Results show that the model based on the RANS equation provides more accurate velocity profiles. In the viscous sublayer and buffer layer, the method based on Prandtl’s eddy viscosity model and Van Driest mixing length give a more precise result. For the log layer and outer region, a mixing length equation derived from Von Karman’s similarity hypothesis provides the best agreement with measured data except near the free surface where an additional correction based on a damping function for eddy viscosity is used. This method allows more accurate velocity profiles with the same value of the damping coefficient that is valid under different flow conditions. This work continues with investigating narrow channels, complex geometries, and the effect of solids transported in sewers.Keywords: accuracy, eddy viscosity, sewers, velocity profile
Procedia PDF Downloads 1121100 Simulating Drilling Using a CAD System
Authors: Panagiotis Kyratsis, Konstantinos Kakoulis
Abstract:
Nowadays, the rapid development of CAD systems’ programming environments results in the creation of multiple downstream applications, which are developed and becoming increasingly available. CAD based manufacturing simulations is gradually following the same trend. Drilling is the most popular hole-making process used in a variety of industries. A specially built piece of software that deals with the drilling kinematics is presented. The cutting forces are calculated based on the tool geometry, the cutting conditions and the tool/work piece materials. The results are verified by experimental work. Finally, the response surface methodology (RSM) is applied and mathematical models of the total thrust force and the thrust force developed because of the main cutting edges are proposed.Keywords: CAD, application programming interface, response surface methodology, drilling, RSM
Procedia PDF Downloads 4701099 A Data-Driven Optimal Control Model for the Dynamics of Monkeypox in a Variable Population with a Comprehensive Cost-Effectiveness Analysis
Authors: Martins Onyekwelu Onuorah, Jnr Dahiru Usman
Abstract:
Introduction: In the realm of public health, the threat posed by Monkeypox continues to elicit concern, prompting rigorous studies to understand its dynamics and devise effective containment strategies. Particularly significant is its recurrence in variable populations, such as the observed outbreak in Nigeria in 2022. In light of this, our study undertakes a meticulous analysis, employing a data-driven approach to explore, validate, and propose optimized intervention strategies tailored to the distinct dynamics of Monkeypox within varying demographic structures. Utilizing a deterministic mathematical model, we delved into the intricate dynamics of Monkeypox, with a particular focus on a variable population context. Our qualitative analysis provided insights into the disease-free equilibrium, revealing its stability when R0 is less than one and discounting the possibility of backward bifurcation, as substantiated by the presence of a single stable endemic equilibrium. The model was rigorously validated using real-time data from the Nigerian 2022 recorded cases for Epi weeks 1 – 52. Transitioning from qualitative to quantitative, we augmented our deterministic model with optimal control, introducing three time-dependent interventions to scrutinize their efficacy and influence on the epidemic's trajectory. Numerical simulations unveiled a pronounced impact of the interventions, offering a data-supported blueprint for informed decision-making in containing the disease. A comprehensive cost-effectiveness analysis employing the Infection Averted Ratio (IAR), Average Cost-Effectiveness Ratio (ACER), and Incremental Cost-Effectiveness Ratio (ICER) facilitated a balanced evaluation of the interventions’ economic and health impacts. In essence, our study epitomizes a holistic approach to understanding and mitigating Monkeypox, intertwining rigorous mathematical modeling, empirical validation, and economic evaluation. The insights derived not only bolster our comprehension of Monkeypox's intricate dynamics but also unveil optimized, cost-effective interventions. This integration of methodologies and findings underscores a pivotal stride towards aligning public health imperatives with economic sustainability, marking a significant contribution to global efforts in combating infectious diseases.Keywords: monkeypox, equilibrium states, stability, bifurcation, optimal control, cost-effectiveness
Procedia PDF Downloads 881098 Numerical Investigation of the Effects of Surfactant Concentrations on the Dynamics of Liquid-Liquid Interfaces
Authors: Bamikole J. Adeyemi, Prashant Jadhawar, Lateef Akanji
Abstract:
Theoretically, there exist two mathematical interfaces (fluid-solid and fluid-fluid) when a liquid film is present on solid surfaces. These interfaces overlap if the mineral surface is oil-wet or mixed wet, and therefore, the effects of disjoining pressure are significant on both boundaries. Hence, dewetting is a necessary process that could detach oil from the mineral surface. However, if the thickness of the thin water film directly in contact with the surface is large enough, disjoining pressure can be thought to be zero at the liquid-liquid interface. Recent studies show that the integration of fluid-fluid interactions with fluid-rock interactions is an important step towards a holistic approach to understanding smart water effects. Experiments have shown that the brine solution can alter the micro forces at oil-water interfaces, and these ion-specific interactions lead to oil emulsion formation. The natural emulsifiers present in crude oil behave as polyelectrolytes when the oil interfaces with low salinity water. Wettability alteration caused by low salinity waterflooding during Enhanced Oil Recovery (EOR) process results from the activities of divalent ions. However, polyelectrolytes are said to lose their viscoelastic property with increasing cation concentrations. In this work, the influence of cation concentrations on the dynamics of viscoelastic liquid-liquid interfaces is numerically investigated. The resultant ion concentrations at the crude oil/brine interfaces were estimated using a surface complexation model. Subsequently, the ion concentration parameter is integrated into a mathematical model to describe its effects on the dynamics of a viscoelastic interfacial thin film. The film growth, stability, and rupture were measured after different time steps for three types of fluids (Newtonian, purely elastic and viscoelastic fluids). The interfacial films respond to exposure time in a similar manner with an increasing growth rate, which resulted in the formation of more droplets with time. Increased surfactant accumulation at the interface results in a higher film growth rate which leads to instability and subsequent formation of more satellite droplets. Purely elastic and viscoelastic properties limit film growth rate and consequent film stability compared to the Newtonian fluid. Therefore, low salinity and reduced concentration of the potential determining ions in injection water will lead to improved interfacial viscoelasticity.Keywords: liquid-liquid interfaces, surfactant concentrations, potential determining ions, residual oil mobilization
Procedia PDF Downloads 1441097 Socio-Economic and Psychological Factors of Moscow Population Deviant Behavior: Sociological and Statistical Research
Authors: V. Bezverbny
Abstract:
The actuality of the project deals with stable growing of deviant behavior’ statistics among Moscow citizens. During the recent years the socioeconomic health, wealth and life expectation of Moscow residents is regularly growing up, but the limits of crime and drug addiction have grown up seriously. Another serious Moscow problem has been economical stratification of population. The cost of identical residential areas differs at 2.5 times. The project is aimed at complex research and the development of methodology for main factors and reasons evaluation of deviant behavior growing in Moscow. The main project objective is finding out the links between the urban environment quality and dynamics of citizens’ deviant behavior in regional and municipal aspect using the statistical research methods and GIS modeling. The conducted research allowed: 1) to evaluate the dynamics of deviant behavior in Moscow different administrative districts; 2) to describe the reasons of crime increasing, drugs addiction, alcoholism, suicides tendencies among the city population; 3) to develop the city districts classification based on the level of the crime rate; 4) to create the statistical database containing the main indicators of Moscow population deviant behavior in 2010-2015 including information regarding crime level, alcoholism, drug addiction, suicides; 5) to present statistical indicators that characterize the dynamics of Moscow population deviant behavior in condition of expanding the city territory; 6) to analyze the main sociological theories and factors of deviant behavior for concretization the deviation types; 7) to consider the main theoretical statements of the city sociology devoted to the reasons for deviant behavior in megalopolis conditions. To explore the level of deviant behavior’ factors differentiation, the questionnaire was worked out, and sociological survey involved more than 1000 people from different districts of the city was conducted. Sociological survey allowed to study the socio-economical and psychological factors of deviant behavior. It also included the Moscow residents’ open-ended answers regarding the most actual problems in their districts and reasons of wish to leave their place. The results of sociological survey lead to the conclusion that the main factors of deviant behavior in Moscow are high level of social inequality, large number of illegal migrants and bums, nearness of large transport hubs and stations on the territory, ineffective work of police, alcohol availability and drug accessibility, low level of psychological comfort for Moscow citizens, large number of building projects.Keywords: deviant behavior, megapolis, Moscow, urban environment, social stratification
Procedia PDF Downloads 1941096 Artificial Intelligence Based Comparative Analysis for Supplier Selection in Multi-Echelon Automotive Supply Chains via GEP and ANN Models
Authors: Seyed Esmail Seyedi Bariran, Laysheng Ewe, Amy Ling
Abstract:
Since supplier selection appears as a vital decision, selecting supplier based on the best and most accurate ways has a lot of importance for enterprises. In this study, a new Artificial Intelligence approach is exerted to remove weaknesses of supplier selection. The paper has three parts. First part is choosing the appropriate criteria for assessing the suppliers’ performance. Next one is collecting the data set based on experts. Afterwards, the data set is divided into two parts, the training data set and the testing data set. By the training data set the best structure of GEP and ANN are selected and to evaluate the power of the mentioned methods the testing data set is used. The result obtained shows that the accuracy of GEP is more than ANN. Moreover, unlike ANN, a mathematical equation is presented by GEP for the supplier selection.Keywords: supplier selection, automotive supply chains, ANN, GEP
Procedia PDF Downloads 6321095 Novel GPU Approach in Predicting the Directional Trend of the S&P500
Authors: A. J. Regan, F. J. Lidgey, M. Betteridge, P. Georgiou, C. Toumazou, K. Hayatleh, J. R. Dibble
Abstract:
Our goal is development of an algorithm capable of predicting the directional trend of the Standard and Poor’s 500 index (S&P 500). Extensive research has been published attempting to predict different financial markets using historical data testing on an in-sample and trend basis, with many authors employing excessively complex mathematical techniques. In reviewing and evaluating these in-sample methodologies, it became evident that this approach was unable to achieve sufficiently reliable prediction performance for commercial exploitation. For these reasons, we moved to an out-of-sample strategy based on linear regression analysis of an extensive set of financial data correlated with historical closing prices of the S&P 500. We are pleased to report a directional trend accuracy of greater than 55% for tomorrow (t+1) in predicting the S&P 500.Keywords: financial algorithm, GPU, S&P 500, stock market prediction
Procedia PDF Downloads 350