Search results for: heuristic algorithm
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 3709

Search results for: heuristic algorithm

2749 Aerodynamic Design an UAV and Stability Analysis with Method of Genetic Algorithm Optimization

Authors: Saul A. Torres Z., Eduardo Liceaga C., Alfredo Arias M.

Abstract:

We seek to develop a UAV for agricultural spraying at a maximum altitude of 5000 meters above sea level, with a payload of 100 liters of fumigant. For the developing the aerodynamic design of the aircraft is using computational tools such as the "Vortex Lattice Athena" software, "MATLAB", "ANSYS FLUENT", "XFoil" package among others. Also methods are being used structured programming, exhaustive analysis of optimization methods and search. The results have a very low margin of error, and the multi-objective problems can be helpful for future developments. Also we developed method for Stability Analysis (Lateral-Directional and Longitudinal).

Keywords: aerodynamics design, optimization, algorithm genetic, multi-objective problem, longitudinal stability, lateral-directional stability

Procedia PDF Downloads 591
2748 Dynamic Synthesis of a Flexible Multibody System

Authors: Mohamed Amine Ben Abdallah, Imed Khemili, Nizar Aifaoui

Abstract:

This work denotes an insight into dynamic synthesis of multibody systems. A set of mechanism parameters design variable are synthetized based on a desired mechanism response, such as, velocity, acceleration and bodies deformations. Moreover, knowing the work space, for a robot, and mechanism response allow defining optimal parameters mechanism handling with the desired target response. To this end, evolutionary genetic algorithm has been deployed. A demonstrative example for imperfect mechanism has been treated, mainly, a slider crank mechanism with a flexible connecting rod. The transversal deflection of the connecting rod has been chosen as response to identify the mechanism design parameters.

Keywords: dynamic response, evolutionary genetic algorithm, flexible bodies, optimization

Procedia PDF Downloads 318
2747 Frequent Item Set Mining for Big Data Using MapReduce Framework

Authors: Tamanna Jethava, Rahul Joshi

Abstract:

Frequent Item sets play an essential role in many data Mining tasks that try to find interesting patterns from the database. Typically it refers to a set of items that frequently appear together in transaction dataset. There are several mining algorithm being used for frequent item set mining, yet most do not scale to the type of data we presented with today, so called “BIG DATA”. Big Data is a collection of large data sets. Our approach is to work on the frequent item set mining over the large dataset with scalable and speedy way. Big Data basically works with Map Reduce along with HDFS is used to find out frequent item sets from Big Data on large cluster. This paper focuses on using pre-processing & mining algorithm as hybrid approach for big data over Hadoop platform.

Keywords: frequent item set mining, big data, Hadoop, MapReduce

Procedia PDF Downloads 433
2746 Trajectory Tracking of a Redundant Hybrid Manipulator Using a Switching Control Method

Authors: Atilla Bayram

Abstract:

This paper presents the trajectory tracking control of a spatial redundant hybrid manipulator. This manipulator consists of two parallel manipulators which are a variable geometry truss (VGT) module. In fact, each VGT module with 3-degress of freedom (DOF) is a planar parallel manipulator and their operational planes of these VGT modules are arranged to be orthogonal to each other. Also, the manipulator contains a twist motion part attached to the top of the second VGT module to supply the missing orientation of the endeffector. These three modules constitute totally 7-DOF hybrid (parallel-parallel) redundant spatial manipulator. The forward kinematics equations of this manipulator are obtained, then, according to these equations, the inverse kinematics is solved based on an optimization with the joint limit avoidance. The dynamic equations are formed by using virtual work method. In order to test the performance of the redundant manipulator and the controllers presented, two different desired trajectories are followed by using the computed force control method and a switching control method. The switching control method is combined with the computed force control method and genetic algorithm. In the switching control method, the genetic algorithm is only used for fine tuning in the compensation of the trajectory tracking errors.

Keywords: computed force method, genetic algorithm, hybrid manipulator, inverse kinematics of redundant manipulators, variable geometry truss

Procedia PDF Downloads 345
2745 Sparse Principal Component Analysis: A Least Squares Approximation Approach

Authors: Giovanni Merola

Abstract:

Sparse Principal Components Analysis aims to find principal components with few non-zero loadings. We derive such sparse solutions by adding a genuine sparsity requirement to the original Principal Components Analysis (PCA) objective function. This approach differs from others because it preserves PCA's original optimality: uncorrelatedness of the components and least squares approximation of the data. To identify the best subset of non-zero loadings we propose a branch-and-bound search and an iterative elimination algorithm. This last algorithm finds sparse solutions with large loadings and can be run without specifying the cardinality of the loadings and the number of components to compute in advance. We give thorough comparisons with the existing sparse PCA methods and several examples on real datasets.

Keywords: SPCA, uncorrelated components, branch-and-bound, backward elimination

Procedia PDF Downloads 379
2744 A Distributed Cryptographically Generated Address Computing Algorithm for Secure Neighbor Discovery Protocol in IPv6

Authors: M. Moslehpour, S. Khorsandi

Abstract:

Due to shortage in IPv4 addresses, transition to IPv6 has gained significant momentum in recent years. Like Address Resolution Protocol (ARP) in IPv4, Neighbor Discovery Protocol (NDP) provides some functions like address resolution in IPv6. Besides functionality of NDP, it is vulnerable to some attacks. To mitigate these attacks, Internet Protocol Security (IPsec) was introduced, but it was not efficient due to its limitation. Therefore, SEND protocol is proposed to automatic protection of auto-configuration process. It is secure neighbor discovery and address resolution process. To defend against threats on NDP’s integrity and identity, Cryptographically Generated Address (CGA) and asymmetric cryptography are used by SEND. Besides advantages of SEND, its disadvantages like the computation process of CGA algorithm and sequentially of CGA generation algorithm are considerable. In this paper, we parallel this process between network resources in order to improve it. In addition, we compare the CGA generation time in self-computing and distributed-computing process. We focus on the impact of the malicious nodes on the CGA generation time in the network. According to the result, although malicious nodes participate in the generation process, CGA generation time is less than when it is computed in a one-way. By Trust Management System, detecting and insulating malicious nodes is easier.

Keywords: NDP, IPsec, SEND, CGA, modifier, malicious node, self-computing, distributed-computing

Procedia PDF Downloads 277
2743 Considering Effect of Wind Turbines in the Distribution System

Authors: Majed Ahmadi

Abstract:

In recent years, the high penetration of different types of renewable energy sources (RESs) has affected most of the available strategies. The main motivations behind the high penetration of RESs are clean energy, modular system and easy installation. Among different types of RESs, wind turbine (WT) is an interesting choice referring to the availability of wind in almost any area. The new technologies of WT can provide energy from residential applications to wide grid connected applications. Regarding the WT, advantages such as reducing the dependence on fossil fuels and enhancing the independence and flexibility of large power grid are the most prominent. Nevertheless, the high volatile nature of wind speed injects much uncertainty in the grid that if not managed optimally can put the analyses far from the reality.the aim of this project is scrutiny and to offer proper ways for renewing distribution networks with envisage the effects of wind power plants and uncertainties related to distribution systems including wind power generating plants output rate and consumers consuming rate and also decrease the incidents of the whole network losses, amount of pollution, voltage refraction and cost extent.to solve this problem we use dual point estimate method.And algorithm used in this paper is reformed bat algorithm, which will be under exact research furthermore the results.

Keywords: order renewal, wind turbines, bat algorithm, outspread production, uncertainty

Procedia PDF Downloads 283
2742 Fuzzy-Genetic Algorithm Multi-Objective Optimization Methodology for Cylindrical Stiffened Tanks Conceptual Design

Authors: H. Naseh, M. Mirshams, M. Mirdamadian, H. R. Fazeley

Abstract:

This paper presents an extension of fuzzy-genetic algorithm multi-objective optimization methodology that could effectively be used to find the overall satisfaction of objective functions (selecting the design variables) in the early stages of design process. The coupling of objective functions due to design variables in an engineering design process will result in difficulties in design optimization problems. In many cases, decision making on design variables conflicts with more than one discipline in system design. In space launch system conceptual design, decision making on some design variable (e.g. oxidizer to fuel mass flow rate O/F) in early stages of the design process is related to objective of liquid propellant engine (specific impulse) and Tanks (structure weight). Then, the primary application of this methodology is the design of a liquid propellant engine with the maximum specific impulse and cylindrical stiffened tank with the minimum weight. To this end, the design problem is established the fuzzy rule set based on designer's expert knowledge with a holistic approach. The independent design variables in this model are oxidizer to fuel mass flow rate, thickness of stringers, thickness of rings, shell thickness. To handle the mentioned problems, a fuzzy-genetic algorithm multi-objective optimization methodology is developed based on Pareto optimal set. Consequently, this methodology is modeled with the one stage of space launch system to illustrate accuracy and efficiency of proposed methodology.

Keywords: cylindrical stiffened tanks, multi-objective, genetic algorithm, fuzzy approach

Procedia PDF Downloads 654
2741 A Mini Radar System for Low Altitude Targets Detection

Authors: Kangkang Wu, Kaizhi Wang, Zhijun Yuan

Abstract:

This paper deals with a mini radar system aimed at detecting small targets at the low latitude. The radar operates at Ku-band in the frequency modulated continuous wave (FMCW) mode with two receiving channels. The radar system has the characteristics of compactness, mobility, and low power consumption. This paper focuses on the implementation of the radar system, and the Block least mean square (Block LMS) algorithm is applied to minimize the fortuitous distortion. It is validated from a series of experiments that the track of the unmanned aerial vehicle (UAV) can be easily distinguished with the radar system.

Keywords: unmanned aerial vehicle (UAV), interference, Block Least Mean Square (Block LMS) Algorithm, Frequency Modulated Continuous Wave (FMCW)

Procedia PDF Downloads 319
2740 Monte Carlo Pathwise Sensitivities for Barrier Options with Application to Coco-Bond Calibration

Authors: Thomas Gerstner, Bastian von Harrach, Daniel Roth

Abstract:

The Monte Carlo pathwise sensitivities approach is well established for smooth payoff functions. In this work, we present a new Monte Carlo algorithm that is able to calculate the pathwise sensitivities for discontinuous payoff functions. Our main tool is the one-step survival idea of Glasserman and Staum. Although this technique yields to new terms per observation, while differentiating, the algorithm is still efficient. As an application, we use the results for a two-dimensional calibration of a Coco-Bond, which we model with different types of discretely monitored barrier options.

Keywords: Monte Carlo, discretely monitored barrier options, pathwise sensitivities, Coco-Bond

Procedia PDF Downloads 356
2739 Paddy/Rice Singulation for Determination of Husking Efficiency and Damage Using Machine Vision

Authors: M. Shaker, S. Minaei, M. H. Khoshtaghaza, A. Banakar, A. Jafari

Abstract:

In this study a system of machine vision and singulation was developed to separate paddy from rice and determine paddy husking and rice breakage percentages. The machine vision system consists of three main components including an imaging chamber, a digital camera, a computer equipped with image processing software. The singulation device consists of a kernel holding surface, a motor with vacuum fan, and a dimmer. For separation of paddy from rice (in the image), it was necessary to set a threshold. Therefore, some images of paddy and rice were sampled and the RGB values of the images were extracted using MATLAB software. Then mean and standard deviation of the data were determined. An Image processing algorithm was developed using MATLAB to determine paddy/rice separation and rice breakage and paddy husking percentages, using blue to red ratio. Tests showed that, a threshold of 0.75 is suitable for separating paddy from rice kernels. Results from the evaluation of the image processing algorithm showed that the accuracies obtained with the algorithm were 98.36% and 91.81% for paddy husking and rice breakage percentage, respectively. Analysis also showed that a suction of 45 mmHg to 50 mmHg yielding 81.3% separation efficiency is appropriate for operation of the kernel singulation system.

Keywords: breakage, computer vision, husking, rice kernel

Procedia PDF Downloads 379
2738 Parallel Gripper Modelling and Design Optimization Using Multi-Objective Grey Wolf Optimizer

Authors: Golak Bihari Mahanta, Bibhuti Bhusan Biswal, B. B. V. L. Deepak, Amruta Rout, Gunji Balamurali

Abstract:

Robots are widely used in the manufacturing industry for rapid production with higher accuracy and precision. With the help of End-of-Arm Tools (EOATs), robots are interacting with the environment. Robotic grippers are such EOATs which help to grasp the object in an automation system for improving the efficiency. As the robotic gripper directly influence the quality of the product due to the contact between the gripper surface and the object to be grasped, it is necessary to design and optimize the gripper mechanism configuration. In this study, geometric and kinematic modeling of the parallel gripper is proposed. Grey wolf optimizer algorithm is introduced for solving the proposed multiobjective gripper optimization problem. Two objective functions developed from the geometric and kinematic modeling along with several nonlinear constraints of the proposed gripper mechanism is used to optimize the design variables of the systems. Finally, the proposed methodology compared with a previously proposed method such as Teaching Learning Based Optimization (TLBO) algorithm, NSGA II, MODE and it was seen that the proposed method is more efficient compared to the earlier proposed methodology.

Keywords: gripper optimization, metaheuristics, , teaching learning based algorithm, multi-objective optimization, optimal gripper design

Procedia PDF Downloads 187
2737 An Enhanced Hybrid Backoff Technique for Minimizing the Occurrence of Collision in Mobile Ad Hoc Networks

Authors: N. Sabiyath Fatima, R. K. Shanmugasundaram

Abstract:

In Mobile Ad-hoc Networks (MANETS), every node performs both as transmitter and receiver. The existing backoff models do not exactly forecast the performance of the wireless network. Also, the existing models experience elevated packet collisions. Every time a collision happens, the station’s contention window (CW) is doubled till it arrives at the utmost value. The main objective of this paper is to diminish collision by means of contention window Multiplicative Increase Decrease Backoff (CWMIDB) scheme. The intention of rising CW is to shrink the collision possibility by distributing the traffic into an outsized point in time. Within wireless Ad hoc networks, the CWMIDB algorithm dynamically controls the contention window of the nodes experiencing collisions. During packet communication, the backoff counter is evenly selected from the given choice of [0, CW-1]. At this point, CW is recognized as contention window and its significance lies on the amount of unsuccessful transmission that had happened for the packet. On the initial transmission endeavour, CW is put to least amount value (C min), if transmission effort fails, subsequently the value gets doubled, and once more the value is set to least amount on victorious broadcast. CWMIDB is simulated inside NS2 environment and its performance is compared with Binary Exponential Backoff Algorithm. The simulation results show improvement in transmission probability compared to that of the existing backoff algorithm.

Keywords: backoff, contention window, CWMIDB, MANET

Procedia PDF Downloads 276
2736 Writing a Parametric Design Algorithm Based on Recreation and Structural Analysis of Patkane Model: The Case Study of Oshtorjan Mosque

Authors: Behnoush Moghiminia, Jesus Anaya Diaz

Abstract:

The current study attempts to present the relationship between the structure development and Patkaneh as one of the Iranian geometric patterns and parametric algorithms by introducing two practical methods. While having a structural function, Patkaneh is also used as an ornamental element. It can be helpful in the scientific and practical review of Patkaneh. The current study aims to use Patkaneh as a parametric form generator based on the algorithm. The current paper attempts to express how can a more complete algorithm of this covering be obtained based on the parametric study and analysis of a sample of a Patkaneh and also investigate the relationship between the development of the geometrical pattern of Patkaneh as a structural-decorative element of Iranian architecture and digital design. In this regard, to achieve the research purposes, researchers investigated the oldest type of Patkaneh in the architecture history of Iran, such as the Northern Entrance Patkaneh of Oshtorjan Jame’ Mosque. An accurate investigation was done on the history of the background to answer the questions. Then, by investigating the structural behavior of Patkaneh, the decorative or structural-decorative role of Patkaneh was investigated to eliminate the ambiguity. Then, the geometrical structure of Patkaneh was analyzed by introducing two practical methods. The first method is based on the constituent units of Patkaneh (Square and diamond) and investigating the interactive relationships between them in 2D and 3D. This method is appropriate for cases where there are rational and regular geometrical relationships. The second method is based on the separation of the floors and the investigation of their interrelation. It is practical when the constituent units are not geometrically regular and have numerous diversity. Finally, the parametric form algorithm of these methods was codified.

Keywords: geometric properties, parametric design, Patkaneh, structural analysis

Procedia PDF Downloads 150
2735 Insider Theft Detection in Organizations Using Keylogger and Machine Learning

Authors: Shamatha Shetty, Sakshi Dhabadi, Prerana M., Indushree B.

Abstract:

About 66% of firms claim that insider attacks are more likely to happen. The frequency of insider incidents has increased by 47% in the last two years. The goal of this work is to prevent dangerous employee behavior by using keyloggers and the Machine Learning (ML) model. Every keystroke that the user enters is recorded by the keylogging program, also known as keystroke logging. Keyloggers are used to stop improper use of the system. This enables us to collect all textual data, save it in a CSV file, and analyze it using an ML algorithm and the VirusTotal API. Many large companies use it to methodically monitor how their employees use computers, the internet, and email. We are utilizing the SVM algorithm and the VirusTotal API to improve overall efficiency and accuracy in identifying specific patterns and words to automate and offer the report for improved monitoring.

Keywords: cyber security, machine learning, cyclic process, email notification

Procedia PDF Downloads 56
2734 An Automatic Method for Building Learners’ Groups in Virtual Environment

Authors: O. Bourkoukou, Essaid El Bachari

Abstract:

The group composing is one of the key issue in collaborative learning to achieve a positive educational experience. The goal of this work is to propose for teachers and tutors a method to create effective collaborative learning groups in e-learning environment based on the learner profile. For this purpose, a new function was defined to rate implicitly learning objects used by the learner during his learning experience. This paper describes the proposed algorithm to build an adequate collaborative learning group. In order to verify the performance of the proposed algorithm, several experiments were conducted in real data set in virtual environment. Results show the effectiveness of the method for which it appears that the proposed approach may be promising to produce better outcomes.

Keywords: building groups, collaborative learning, e-learning, learning objects

Procedia PDF Downloads 296
2733 Artificial Bee Colony Optimization for SNR Maximization through Relay Selection in Underlay Cognitive Radio Networks

Authors: Babar Sultan, Kiran Sultan, Waseem Khan, Ijaz Mansoor Qureshi

Abstract:

In this paper, a novel idea for the performance enhancement of secondary network is proposed for Underlay Cognitive Radio Networks (CRNs). In Underlay CRNs, primary users (PUs) impose strict interference constraints on the secondary users (SUs). The proposed scheme is based on Artificial Bee Colony (ABC) optimization for relay selection and power allocation to handle the highlighted primary challenge of Underlay CRNs. ABC is a simple, population-based optimization algorithm which attains global optimum solution by combining local search methods (Employed and Onlooker Bees) and global search methods (Scout Bees). The proposed two-phase relay selection and power allocation algorithm aims to maximize the signal-to-noise ratio (SNR) at the destination while operating in an underlying mode. The proposed algorithm has less computational complexity and its performance is verified through simulation results for a different number of potential relays, different interference threshold levels and different transmit power thresholds for the selected relays.

Keywords: artificial bee colony, underlay spectrum sharing, cognitive radio networks, amplify-and-forward

Procedia PDF Downloads 581
2732 Relevance Feedback within CBIR Systems

Authors: Mawloud Mosbah, Bachir Boucheham

Abstract:

We present here the results for a comparative study of some techniques, available in the literature, related to the relevance feedback mechanism in the case of a short-term learning. Only one method among those considered here is belonging to the data mining field which is the K-Nearest Neighbours Algorithm (KNN) while the rest of the methods is related purely to the information retrieval field and they fall under the purview of the following three major axes: Shifting query, Feature Weighting and the optimization of the parameters of similarity metric. As a contribution, and in addition to the comparative purpose, we propose a new version of the KNN algorithm referred to as an incremental KNN which is distinct from the original version in the sense that besides the influence of the seeds, the rate of the actual target image is influenced also by the images already rated. The results presented here have been obtained after experiments conducted on the Wang database for one iteration and utilizing colour moments on the RGB space. This compact descriptor, Colour Moments, is adequate for the efficiency purposes needed in the case of interactive systems. The results obtained allow us to claim that the proposed algorithm proves good results; it even outperforms a wide range of techniques available in the literature.

Keywords: CBIR, category search, relevance feedback, query point movement, standard Rocchio’s formula, adaptive shifting query, feature weighting, original KNN, incremental KNN

Procedia PDF Downloads 278
2731 Normalizing Scientometric Indicators of Individual Publications Using Local Cluster Detection Methods on Citation Networks

Authors: Levente Varga, Dávid Deritei, Mária Ercsey-Ravasz, Răzvan Florian, Zsolt I. Lázár, István Papp, Ferenc Járai-Szabó

Abstract:

One of the major shortcomings of widely used scientometric indicators is that different disciplines cannot be compared with each other. The issue of cross-disciplinary normalization has been long discussed, but even the classification of publications into scientific domains poses problems. Structural properties of citation networks offer new possibilities, however, the large size and constant growth of these networks asks for precaution. Here we present a new tool that in order to perform cross-field normalization of scientometric indicators of individual publications relays on the structural properties of citation networks. Due to the large size of the networks, a systematic procedure for identifying scientific domains based on a local community detection algorithm is proposed. The algorithm is tested with different benchmark and real-world networks. Then, by the use of this algorithm, the mechanism of the scientometric indicator normalization process is shown for a few indicators like the citation number, P-index and a local version of the PageRank indicator. The fat-tail trend of the article indicator distribution enables us to successfully perform the indicator normalization process.

Keywords: citation networks, cross-field normalization, local cluster detection, scientometric indicators

Procedia PDF Downloads 202
2730 Novel GPU Approach in Predicting the Directional Trend of the S&P500

Authors: A. J. Regan, F. J. Lidgey, M. Betteridge, P. Georgiou, C. Toumazou, K. Hayatleh, J. R. Dibble

Abstract:

Our goal is development of an algorithm capable of predicting the directional trend of the Standard and Poor’s 500 index (S&P 500). Extensive research has been published attempting to predict different financial markets using historical data testing on an in-sample and trend basis, with many authors employing excessively complex mathematical techniques. In reviewing and evaluating these in-sample methodologies, it became evident that this approach was unable to achieve sufficiently reliable prediction performance for commercial exploitation. For these reasons, we moved to an out-of-sample strategy based on linear regression analysis of an extensive set of financial data correlated with historical closing prices of the S&P 500. We are pleased to report a directional trend accuracy of greater than 55% for tomorrow (t+1) in predicting the S&P 500.

Keywords: financial algorithm, GPU, S&P 500, stock market prediction

Procedia PDF Downloads 349
2729 Phasor Measurement Unit Based on Particle Filtering

Authors: Rithvik Reddy Adapa, Xin Wang

Abstract:

Phasor Measurement Units (PMUs) are very sophisticated measuring devices that find amplitude, phase and frequency of various voltages and currents in a power system. Particle filter is a state estimation technique that uses Bayesian inference. Particle filters are widely used in pose estimation and indoor navigation and are very reliable. This paper studies and compares four different particle filters as PMUs namely, generic particle filter (GPF), genetic algorithm particle filter (GAPF), particle swarm optimization particle filter (PSOPF) and adaptive particle filter (APF). Two different test signals are used to test the performance of the filters in terms of responsiveness and correctness of the estimates.

Keywords: phasor measurement unit, particle filter, genetic algorithm, particle swarm optimisation, state estimation

Procedia PDF Downloads 5
2728 Transmit Power Optimization for Cooperative Beamforming in Reverse-Link MIMO Ad-Hoc Networks

Authors: Younghyun Jeon, Seungjoo Maeng

Abstract:

In the Ad-hoc network, the great interests regarding MIMO scheme leads to their combination, which is also utilized into its applicable network. We manage the field of the problem into Reverse-link MIMO Ad-hoc Network (RMAN) and propose the methodology to maximize the data rate with its power consumption using Node-Cooperative beamforming technique. Based on the result of mathematical optimization formulation, we design the algorithm to construct optimal orthogonal weight vector according to channel feedback and control its transmission power according to QoS-pricing value level. In simulation results, we show the validity of the proposed mathematical optimization result and algorithm which mean that the sum-rate of each link is converged into some point.

Keywords: ad-hoc network, MIMO, cooperative beamforming, transmit power

Procedia PDF Downloads 398
2727 Distributed Optical Fiber Vibration Sensing Using Phase Generated Carrier Demodulation Algorithm

Authors: Zhihua Yu, Qi Zhang, Mingyu Zhang, Haolong Dai

Abstract:

Distributed fiber-optic vibration sensors are gaining extensive attention, for the advantages of high sensitivity, accurate location, light weight, large-scale monitoring, good concealment, and etc. In this paper, a novel optical fiber distributed vibration sensing system is proposed, which is based on self-interference of Rayleigh backscattering with phase generated carrier (PGC) demodulation algorithm. Pulsed lights are sent into the sensing fiber and the Rayleigh backscattering light from a certain position along the sensing fiber would interfere through an unbalanced Michelson Interferometry (MI) to generate the interference light. An improved PGC demodulation algorithm is carried out to recover the phase information of the interference signal, which carries the sensing information. Three vibration events were applied simultaneously to different positions over 2000m sensing fiber and demodulated correctly. Experiments show that the spatial resolution of is 10 m, and the noise level of the Φ-OTDR system is about 10-3 rad/√Hz, and the signal to noise ratio (SNR) is about 30.34dB. This vibration measurement scheme can be applied at surface, seabed or downhole for vibration measurements or distributed acoustic sensing (DAS).

Keywords: fiber optics sensors, Michelson interferometry, MI, phase-sensitive optical time domain reflectometry, Φ-OTDR, phase generated carrier, PGC

Procedia PDF Downloads 188
2726 Tower Crane Selection and Positioning on Construction Sites

Authors: Dirk Briskorn, Michael Dienstknecht

Abstract:

Cranes are a key element in construction projects as they are the primary lifting equipment and among the most expensive construction equipment. Thus, selecting cranes and locating them on-site is an important factor for a project's profitability. We focus on a site with supply and demand areas that have to be connected by tower cranes. There are several types of tower cranes differing in certain specifications such as costs or operating radius. The objective is to select cranes and determine their locations such that each demand area is connected to its supply area at minimum cost. We detail the problem setting and show how to obtain a discrete set of candidate locations for each crane type without losing optimality. This discretization allows us to reduce our problem to the classic set cover problem. Despite its NP-hardness, we achieve good results employing a standard solver and a greedy heuristic, respectively.

Keywords: positioning, selection, standard solver, tower cranes

Procedia PDF Downloads 372
2725 An Optimal Steganalysis Based Approach for Embedding Information in Image Cover Media with Security

Authors: Ahlem Fatnassi, Hamza Gharsellaoui, Sadok Bouamama

Abstract:

This paper deals with the study of interest in the fields of Steganography and Steganalysis. Steganography involves hiding information in a cover media to obtain the stego media in such a way that the cover media is perceived not to have any embedded message for its unintended recipients. Steganalysis is the mechanism of detecting the presence of hidden information in the stego media and it can lead to the prevention of disastrous security incidents. In this paper, we provide a critical review of the steganalysis algorithms available to analyze the characteristics of an image stego media against the corresponding cover media and understand the process of embedding the information and its detection. We anticipate that this paper can also give a clear picture of the current trends in steganography so that we can develop and improvise appropriate steganalysis algorithms.

Keywords: optimization, heuristics and metaheuristics algorithms, embedded systems, low-power consumption, steganalysis heuristic approach

Procedia PDF Downloads 290
2724 Anticipation of Bending Reinforcement Based on Iranian Concrete Code Using Meta-Heuristic Tools

Authors: Seyed Sadegh Naseralavi, Najmeh Bemani

Abstract:

In this paper, different concrete codes including America, New Zealand, Mexico, Italy, India, Canada, Hong Kong, Euro Code and Britain are compared with the Iranian concrete design code. First, by using Adaptive Neuro Fuzzy Inference System (ANFIS), the codes having the most correlation with the Iranian ninth issue of the national regulation are determined. Consequently, two anticipated methods are used for comparing the codes: Artificial Neural Network (ANN) and Multi-variable regression. The results show that ANN performs better. Predicting is done by using only tensile steel ratio and with ignoring the compression steel ratio.

Keywords: adaptive neuro fuzzy inference system, anticipate method, artificial neural network, concrete design code, multi-variable regression

Procedia PDF Downloads 283
2723 Design and Development of an Algorithm to Predict Fluctuations of Currency Rates

Authors: Nuwan Kuruwitaarachchi, M. K. M. Peiris, C. N. Madawala, K. M. A. R. Perera, V. U. N Perera

Abstract:

Dealing with businesses with the foreign market always took a special place in a country’s economy. Political and social factors came into play making currency rate changes fluctuate rapidly. Currency rate prediction has become an important factor for larger international businesses since large amounts of money exchanged between countries. This research focuses on comparing the accuracy of mainly three models; Autoregressive Integrated Moving Average (ARIMA), Artificial Neural Networks(ANN) and Support Vector Machines(SVM). series of data import, export, USD currency exchange rate respect to LKR has been selected for training using above mentioned algorithms. After training the data set and comparing each algorithm, it was able to see that prediction in SVM performed better than other models. It was improved more by combining SVM and SVR models together.

Keywords: ARIMA, ANN, FFNN, RMSE, SVM, SVR

Procedia PDF Downloads 211
2722 Using the Smith-Waterman Algorithm to Extract Features in the Classification of Obesity Status

Authors: Rosa Figueroa, Christopher Flores

Abstract:

Text categorization is the problem of assigning a new document to a set of predetermined categories, on the basis of a training set of free-text data that contains documents whose category membership is known. To train a classification model, it is necessary to extract characteristics in the form of tokens that facilitate the learning and classification process. In text categorization, the feature extraction process involves the use of word sequences also known as N-grams. In general, it is expected that documents belonging to the same category share similar features. The Smith-Waterman (SW) algorithm is a dynamic programming algorithm that performs a local sequence alignment in order to determine similar regions between two strings or protein sequences. This work explores the use of SW algorithm as an alternative to feature extraction in text categorization. The dataset used for this purpose, contains 2,610 annotated documents with the classes Obese/Non-Obese. This dataset was represented in a matrix form using the Bag of Word approach. The score selected to represent the occurrence of the tokens in each document was the term frequency-inverse document frequency (TF-IDF). In order to extract features for classification, four experiments were conducted: the first experiment used SW to extract features, the second one used unigrams (single word), the third one used bigrams (two word sequence) and the last experiment used a combination of unigrams and bigrams to extract features for classification. To test the effectiveness of the extracted feature set for the four experiments, a Support Vector Machine (SVM) classifier was tuned using 20% of the dataset. The remaining 80% of the dataset together with 5-Fold Cross Validation were used to evaluate and compare the performance of the four experiments of feature extraction. Results from the tuning process suggest that SW performs better than the N-gram based feature extraction. These results were confirmed by using the remaining 80% of the dataset, where SW performed the best (accuracy = 97.10%, weighted average F-measure = 97.07%). The second best was obtained by the combination of unigrams-bigrams (accuracy = 96.04, weighted average F-measure = 95.97) closely followed by the bigrams (accuracy = 94.56%, weighted average F-measure = 94.46%) and finally unigrams (accuracy = 92.96%, weighted average F-measure = 92.90%).

Keywords: comorbidities, machine learning, obesity, Smith-Waterman algorithm

Procedia PDF Downloads 296
2721 Using ε Value in Describe Regular Languages by Using Finite Automata, Operation on Languages and the Changing Algorithm Implementation

Authors: Abdulmajid Mukhtar Afat

Abstract:

This paper aims at introducing nondeterministic finite automata with ε value which is used to perform some operations on languages. a program is created to implement the algorithm that converts nondeterministic finite automata with ε value (ε-NFA) to deterministic finite automata (DFA).The program is written in c++ programming language. The program inputs are FA 5-tuples from text file and then classifies it into either DFA/NFA or ε -NFA. For DFA, the program will get the string w and decide whether it is accepted or rejected. The tracking path for an accepted string is saved by the program. In case of NFA or ε-NFA automation, the program changes the automation to DFA to enable tracking and to decide if the string w exists in the regular language or not.

Keywords: DFA, NFA, ε-NFA, eclose, finite automata, operations on languages

Procedia PDF Downloads 487
2720 Probability-Based Damage Detection of Structures Using Kriging Surrogates and Enhanced Ideal Gas Molecular Movement Algorithm

Authors: M. R. Ghasemi, R. Ghiasi, H. Varaee

Abstract:

Surrogate model has received increasing attention for use in detecting damage of structures based on vibration modal parameters. However, uncertainties existing in the measured vibration data may lead to false or unreliable output result from such model. In this study, an efficient approach based on Monte Carlo simulation is proposed to take into account the effect of uncertainties in developing a surrogate model. The probability of damage existence (PDE) is calculated based on the probability density function of the existence of undamaged and damaged states. The kriging technique allows one to genuinely quantify the surrogate error, therefore it is chosen as metamodeling technique. Enhanced version of ideal gas molecular movement (EIGMM) algorithm is used as main algorithm for model updating. The developed approach is applied to detect simulated damage in numerical models of 72-bar space truss and 120-bar dome truss. The simulation results show the proposed method can perform well in probability-based damage detection of structures with less computational effort compared to direct finite element model.

Keywords: probability-based damage detection (PBDD), Kriging, surrogate modeling, uncertainty quantification, artificial intelligence, enhanced ideal gas molecular movement (EIGMM)

Procedia PDF Downloads 238